首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertilizer nutrients have the potential to leach from porous golf greens, especially when “flushing” is practiced where 8 or 10 cm of irrigation is applied. A greenhouse experiment was carried out with 52 cm columns (15 cm diameter) made to United States Golf Association green specifications and sodded to ‘Tifdwarf’ bermudagrass to determine the amounts of phosphorus leached for two fertilizer sources (20–20–20 and superphosphate) at three rates (0, 5, and 11 kg ha?1 added every other week for a total of 6 weeks) and two irrigation schemes (normal irrigation at 6.3 mm day?1 and the same irrigation with an additional four flushes of 8 cm each). Weekly leachate collections for 29 weeks were analyzed for soluble P. Flushes resulted in higher P concentrations in the leachate where as much as 40% of the added P was recovered in the leachate. In contrast, normal irrigations resulted in less than 10% of the P applied moving through the columns. The two fertilizer sources gave essentially similar results. The higher P rate caused higher concentrations of P in the leachate, but P concentrations for the low rate for normal irrigation were not different than the control. For flushes, the extractable P in the top 15 cm of the rooting media was lower than for normal irrigation and the extractable P in the columns was higher. Results indicate that low rates of P should be applied to golf greens and, if flushing is practiced, it should be done when little P is in the rooting media.  相似文献   

2.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

3.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

4.
Results are presented from a 3-year investigation into nitrate leaching from grassed monolith lysimeters treated with double (15NH415NO3) or single (15NH4NO3) labelled ammonium nitrate at three rates, 250, 500 and 900 kg N ha?1 a?1. Over the 3 years of the experiment, 0.14%, 3.1% and 18.1% of the applied fertilizer was recovered in the leachate at 250, 500 and 900kg N ha?1 respectively. This represented 9%, 39% and 75% of the overall nitrate leaching at the three application rates. A significant proportion of the fertilizer leached as nitrate at the three application rates was derived, via nitrification, from the fertilizer ammonium. Increasing fertilizer applications caused a rise in the leaching of both soil and fertilizer derived nitrogen, although whether the increase reflected a true priming effect was not clear.  相似文献   

5.
The main aim of this study was to compare the N leaching from grass fertilized with 220 kg N ha−1 and grass‐clover pastures receiving no fertilization during three grazing years and a renewal year, in a 4‐year ley rotation. The other aim was to compare the herbage and milk production of these pastures. The study was conducted on a lysimeter field; five lysimeters (size 10 × 10 m) were assigned to each treatment. Automated drinking water outlets for the cows were located on one of the lysimeters on each treatment. The amount of leachate was recorded and composite samples were analysed for total N, NO3‐N, NH4‐N and soluble organic N (SON). The number of grazing cows was adjusted according to the herbage mass production. The amount of milk was measured. The total input of N to the area was 290 and 215 kg N ha−1 year−1 for grass and grass‐clover treatments, respectively. The total N leaching during grazing years was 17 and 9 kg N ha−1 from grass and grass‐clover treatments, respectively. Renewal of the sward increased N leaching in both treatments, up to 60 and 40 kg total N ha−1 in grass and grass‐clover treatments, respectively. During the grazing years 96% of the leached N was in the form of NO3‐N, but during the renewal year the proportion of NO3‐N was lowered to 89% and the rest was in the form of SON. The total amount of N in the surface runoff was 3–5 kg ha−1 year−1. As high N fertilizer rates per application are a common practice in Finland, short‐term grass‐clover pastures can be considered environmentally beneficial when compared with intensively fertilized grass pastures in comparable circumstances.  相似文献   

6.

Commercial fertilizer (particularly nitrogen) costs account for a substantial portion of the total production costs of cellulosic biomass and can be a major obstacle to biofuel production. In a series of greenhouse studies, we evaluated the feasibility of co-applying Gibberellins (GA) and reduced nitrogen (N) rates to produce a bioenergy crop less expensively. In a preliminary study, we determined the minimum combined application rates of GA and N required for efficient biomass (sweet sorghum, Sorghum bicolor) production. Co-application of 75 kg ha?1 (one-half of the recommended N rate for sorghum) and a modest GA rate of 3 g ha?1 optimized dry matter yield (DMY) and N and phosphorus (P) uptake efficiencies, resulting in a reduction of N and P leaching. Organic nutrient sources such as manures and biosolids can be substituted for commercial N fertilizers (and incidentally supply P) to further reduce the cost of nutrient supply for biomass production. Based on the results of the preliminary study, we conducted a second greenhouse study using sweet sorghum as a test bioenergy crop. We co-applied organic sources of N (manure and biosolids) at 75 and 150 kg PAN ha?1 (representing 50 and 100% N rate respectively) with 3 g GA ha?1. In each batch of experiment, the crop was grown for 8 wk on Immokalee fine sand of minimal native fertility. After harvest, sufficient water was applied to soil in each pot to yield ~1.5 L (~0.75 pore volume) of leachate, and analyzed for total N and soluble reactive P (SRP). The reduced (50%) N application rate, together with GA, optimized biomass production. Application of GA at 3 g ha?1, and the organic sources of N at 50% of the recommended N rate, decreased nutrient cost of producing the bioenergy biomass by ~$375 ha?1 (>90% of total nutrient cost), and could reduce offsite N and P losses from vulnerable soils.  相似文献   

7.
Abstract

A long‐term soil incubation and column nutrient leaching study was conducted to determine nitrogen (N)‐mineralization rates of selected Florida Histosols with drained and intermittent‐flooded conditions. Five surface soils from the Everglades Agricultural Area (EAA) were packed in columns (5‐cm i.d. containing the 0‐ to 15‐cm depth of each soil) and leached with 0.01M CaC12 followed by distilled water every 25 d for 1 yr. Drained columns were treated with a minus‐nitrogen‐phosphorus (NP) solution followed by applying ‐0.97 MPa tension to remove excess solution. Flooded columns received the same minus‐NP solution, but were flooded to a depth of 3 cm. Both treatments were incubated for 25‐d periods, solution sampled, and treatments reapplied. Because flooding conditions could not be maintained during the sampling period, this treatment is referred to as intermittent flooded. The ammonium‐nitrogen (NH4 +‐N) released from drained soils accounted for less than 6% of the total soluble N released from all soils, compared to more than 30% released from flooded soils. There were no differences in the amounts of soluble organic N from drained and intermittent flooded soils. Total soluble N from the surface 15‐cm of drained soils ranged from 217 to 509 kg‐ha‐1yr‐1, with 50 to 67% released as nitrate‐nitrogen (NO3 ‐N). In contrast, total soluble N released from flooded soils ranged from 168 to 345 kg‐ha‐1yr‐1, with less than 3% released as NO3 ‐N.  相似文献   

8.
SW Sweden has very acidic forest soils because of deposition ofair-borne pollutants. Large-scale liming and fertilization have been proposed as countermeasures against a possible future development of forest decline. To test the effects of suggested treatments, liming (3 or 6 t ha1) and fertilization with easily soluble PK (25 or 50 kg P, 80 or 160 kg K ha1) or N(20 kg N ha1 annually in the form of NH4 NO3) were applied in different combinations in four experiments in 30–60 yr-old Picea abies forests in SW Sweden. Four yearsafter the initial application of the fertilizers, samples were taken from the O-horizon and the two uppermost 5 cm thick layersof the mineral soil. Their pH(H2O) and easily extractable Ca, Mg, K, P and inorganic N contents were analyzed. Samples werealso incubated to estimate net N mineralization and potential nitrification rates. Liming increased the pH by 0.6–1 unit in the O-horizon, and by 0.1 unit in the mineral soil. The Ca + Mg content increased by 15–25 kmolc ha1 (4–8 foldincrease) in the O-horizon of the limed plots, while an increaseof 5 kmolc ha1 (two-fold increase) was observed in theuppermost 5 cm of the mineral soil. Liming did not affect extractable P, K or inorganic N contents. Net N mineralization and potential nitrification rates in the O-horizon were enhanced 1.5- and 6-fold, respectively, by liming, but it had no apparenteffect in the mineral soil. N fertilization caused a slight increase (1.5 kg ha1) in the content of inorganic N, buthad no effects on the other variables measured. The amount ofextractable P was raised by 16 kg ha1 in plots given the high P dose (50 kg ha1), but no other effects of PK fertilization were detected.  相似文献   

9.
Abstract

Nitrogen (N) fertilizer is a key factor of yield increase but also an environmental pollution hazard. The sustainable agriculture system should have an acceptable level of productivity and profitability and an adequate environmental protection. The objectives of this study were to determine the relationships between N rate, DM yield, plant N concentration (NC) and residual soil nitrate‐nitrogen in order to improve the predicted N rate in corn (Zea mays L.) silage. The experiment was conducted over a period of three years in the province of Quebec on three soil series in a continuous corn crop sequence. Treatments consisted of six rates of N: O, 40, 80, 120, 160, and 200 kg N ha‐1 as ammonium nitrate applied at planting: broadcast and side banded. Four optimum N rates were calculated using different models: (i) economic rate base on fertilizer and corn price using the quadratic model (E); (ii) economic rate based on fertilizer and corn price using the quadratic‐plus‐plateau model (QP); (iii) critical rate based on linear‐plus‐plateau model (P); (iv) lower than maximum rate (L) corresponding to 95% of maximum yield. The optimum plant NC at all growing stages and the N uptake at harvest were calculated depending on these N rates and yields.

The NC of whole plant at 8‐leaf stage (25–30 cm plant height) of ear leaf at tasselling and of whole plant at harvest stage, the N rate, the N uptake at harvest and the DM yield were all significantly intercorrelated and affected by soils and years, but not affected by N fertilizer application method. The DM yield was linearly and significantly related to NC of whole plant at 8‐leaf stage (rv = 0.932**). At this stage, the average NC corresponding to the optimum N rate and yield was of 3.71, 3.68, and 3.66% as calculated with E, L, and P model, respectively. Our data suggest that the NC of whole plant at 8‐leaf stage may be used to evaluate the N nutrition status of plant and the required optimum N fertilizer rate. The NC of ear leaf at tassel stage was also significantly correlated to corn yield (r = 0.994**). It may be used as an indicator to evaluate the near‐optimum N rate in the subsequent years.

The N uptake by whole above‐ground plant at harvest was quadratically related to corn yield. Data show that at high fertilizer N rate, the N uptake still increased without significantly increasing yield. The N uptake was of 176.5, 163.0, and 155.0 kg N ha‐1 using the E, L and P rates of 146, 126, and 115 kg N applied ha‐1, respectively. The optimum N rate and yield were affected by soil type and year, but not by the method of N fertilizer application. The yield increased rapidly up to a N rate of about 120 kg N ha‐1 and then quite slightly to a maximum N rate of 192 kg N ha‐1. The optimum N rate was of 115 and 126 kg N ha‐1 using the P and L model respectively and as high as 146.8 kg N ha‐1 using the E model. The L model, using a much smaller N rate, gave a reasonably high yield compared to E rate (12.2 and 12.5 Mg ha‐1, respectively). The data show that a relatively much lower N rate than maximum did not proportionally diminish the yield. Thus, for a difference of 40.4% between maximum N rate and P rate a difference of only 7.4% in yield was observed. Using the L model the differences in rate and yield were of 34.4% and 4.7%, respectively. The QP model gave no significant difference compared to E model.

At harvest the residual soil NO3‐N increased significantly with increasing N fertilizer rate in whole of the 100 cm soil profile, but mainly in the top 40 cm soil layer. The total NO3‐N found in 0–100 cm profile at rate of 0, 120 and 200 kg applied N ha‐1 at planting was as high as 33.7, 60.5, and 74.5 kg N ha‐1 respectively in a light soil and 37.5, 97.5, and 145.5 kg N ha‐1 in a heavy clay soil. The difference in NO3‐N content in the 60–100 cm layer between different applied N rate suggests that at harvest, part of fertilizer N applied at planting was already leached below the 100 cm soil layer. Results, thus, show that reasonably high corn yields can be obtained using more adequate N fertilizer rates which avoid the overfertilization and are likely to reduce the air and ground water pollution.  相似文献   

10.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

11.
Improved understanding of the seasonal dynamics of C and N cycling in soils, and the main controls on these fluctuations, is needed to improve management strategies and to better match soil N supply to crop N demand. Although the C and N cycles in soil are usually considered to be closely linked, few data exist where both C and N pools and gross N fluxes have been measured seasonally. Here we present measurements of inorganic N, extracted soluble organic N, microbial biomass C and N, gross N fluxes and CO2 production from soil collected under wheat in a ley‐arable and continuous arable rotation within a long‐term experiment. The amounts of inorganic N and extracted soluble organic N were similar (range 5–35 kg N ha−1; 0–23 cm) but had different seasonal patterns: whilst inorganic N declined during wheat growth, extracted soluble organic N peaked after cultivation and also during maximal stem elongation. The microbial biomass was significantly larger in the ley‐arable (964 kg C ha−1; 0–23 cm) than the continuous arable rotation (518 kg C ha−1; 0–23 cm) but with no clear seasonal pattern. In contrast, CO2 produced from soil and gross N mineralization showed strong seasonality linked to soil temperature and moisture content. Normalization of soil CO2 production and gross N mineralization with respect to these environmental regulators enabled us to study the underlying influence of the incorporation of fresh plant material into soil on these processes. The average normalized gross rates of N mineralized during the growing season were 1.74 and 2.55 kg N ha−1 nday−1 in continuous arable and ley‐arable rotations respectively. Production rates (gross N mineralization, gross nitrification) were similar in both land uses and matched rates of NH4+ and NO3 consumption, resulting in periods of net N mineralization and immobilization. There was no simple relationship between soil CO2 production and gross N mineralization, which we attributed to changes in the C : N ratio of the mineralizing pool(s).  相似文献   

12.
A power plant that utilizes turkey manure as fuel to produce energy was built in Benson, Minnesota, and started full energy production in 2007. The plant was built to meet legislative requirements governing the use of renewable sources to generate energy in Minnesota. Although the use of turkey manure as biofuel generates energy, it also results in turkey manure ash (TMA) as a by‐product that contains phosphorus (P), potassium (K), sulfur (S), and zinc (Z) as well as other essential and nonessential elements. A 2‐year study was conducted to compare TMA with triple‐superphosphate and potassium chloride fertilizers as a source of nutrients for alfalfa (Medicago sativa) at three locations: Lamberton, Morris, and Appleton, Minnesota. The soils at Lamberton and Appleton were acidic with P and K concentrations ranging from medium‐high to very high, whereas the soil at Morris was alkaline with high concentrations of P and K. The experiment consisted of a control (0 P and 0 K) and annual and split applications of TMA and fertilizer. Annual TMA and fertilizer rates were 84 kg P2O5 ha?1, 118 kg K2O ha?1, and 34 kg S ha?1. Split rates were 42/42 kg P2O5 ha?1, 59/59 kg K2O ha?1, and 17/17 kg S ha?1. However, because of an overestimation of citrate‐soluble P in 2005 for the TMA, the total amount of available P applied with the TMA for the 2‐year study was 168 kg P2O5 ha?1 compared with 286 kg P2O5 ha?1 for the fertilizer. In the first year, fertilizer resulted in greater alfalfa biomass yield than TMA and the control, whereas in the second year, alfalfa yields with TMA and fertilizer were similar and both more than the control. In 2005, TMA resulted in more copper (Cu) and S tissue concentrations than the fertilizer. In 2006, application of both sources increased tissue P and S concentrations compared with the control. The TMA increased tissue Cu concentration and Zn plant uptake compared with fertilizer. Bray P1–extractable soil P concentrations were less with TMA and control treatments than with the fertilizer treatments. Ammonium acetate–extractable soil sodium (Na) concentrations were greater with TMA than with fertilizer and the control. By the second year, both ash and fertilizer treatments resulted in more K uptake than the untreated control with no difference in K uptake between the two sources or time of application. Both sources were effective in increasing P uptake compared with the untreated control. TMA was shown to be an effective source of nutrients for alfalfa production.  相似文献   

13.
ABSTRACT

Grain yield in many soybean experiments fails to respond to fertilizer nitrogen (N). A few positive responses have been reported when soybean were grown in the southern U.S., when N was applied near flowering and when biosolids were added. In a previous study, low N concentrations of soybean forage in north Texas on a high pH calcareous soil were reported and thus, we suspected a N nutrition problem. Consequently, we initiated this study to determine whether selected preplant N sources broadcast and incorporated into a Houston Black clay (fine, smectitic, thermic Udic Haplusterts) might increase forage N concentration, forage yield, or soybean grain yield. In 2003, N was applied as ammonium nitrate (NH4NO3, AN) up to 112 kg N ha? 1 and dairy manure compost (DMC) was applied at rates of 4.9, 9.9, 15.0, and 19.9 Mg ha? 1. The DMC contained 5.9, 2.6, and 6.7 g kg? 1 of total N, P, and K, respectively; thus DMC added 29 to 116 kg N ha? 1. In 2004, AN was applied at rates of 112 and 224 kg N ha? 1 and DMC was applied at 28 and 57 Mg ha? 1; thus, DMC added 168 to 335 kg N ha? 1. In another 2004 test, biosolids, a biosolids/municipal yard waste compost mixture (BYWC), and AN were compared. The biosolids contained 31, 18, and 2.9 g kg? 1 total N, P, and K, respectively. The BYWC mixture contained 8.8, 6.1, and 3.4 g kg? 1 of total N, P, and K, respectively. Biosolids were applied at 10 Mg ha? 1 (310 kg N ha? 1), BYWC was applied at 58 Mg ha? 1 (510 kg N ha? 1), and AN up to 224 kg N ha? 1. None of the soil treatments increased soybean grain yield or forage yield although AN slightly increased forage N concentration in 2003.  相似文献   

14.
Conservation tillage systems, including ridge‐tillage, have become increasing popular with producers in the central Great Plains because of their effectiveness in controlling soil erosion and conserving water. A major disadvantage of the ridge system is that nutrient placement options are limited by lack of any primary tillage options. The objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on irrigated grain sorghum [Sorghum bicolor (L.) Moench] grown in a ridge‐tillage system on a soil low in available P. This experiment was conducted from 1993 to 1995 on a producer's field near the North Central Kansas Experiment Field at Scandia, Kansas on a Carr sandy loam soil (course, loamy, mixed, calcareous, mesic, Typic Udifuvents). Treatments consisted of fertilizer application methods, surface broadcast, single band starter (5 cm to the side and 5 cm below seed), dual band starter (one band on each side of the row), and knifed in the center of the row middle (38 cm from each adjacent row). Each of these treatments was made at either 22 or 44 kg P2O5 ha‐1, and nitrogen (N) also was included at the rate of 13 kg ha‐1. Additional treatments were, a combination of 13 kg N and 44 kg P2O5 ha‐1 applied half broadcast and half as a single band starter, a 1:1 N:P2O5 ratio (44 kg N and 44 kg P2O5 ha‐1) applied as a single band starter, and a 3:1 ratio (134 kg N and 44 kg P2O5 ha‐1) applied as a single band starter. A no‐P check plot also was included. Broadcast and center‐of‐row middle knife applications were made approximately 1 week before planting. After planting, N was balanced on all plots to give a total of 180 kg ha‐1. Applied P treatments improved grain yield and nutrient uptake and consistently shortened the time from emergence to mid‐bloom in all 3 years of the experiment. On this low soil test P soil, treatments that subsurface banded P increased grain yield by 1.27 Mg ha‐1 compared to broadcast treatments. Placing N and P in a single starter band 5 cm to the side and 5 cm below the seed was as effective as placing a band on each side of the row. Knife applying N and P in the center of the row was not as effective as placement beside the row. Single band starter application of N and P in a 1:1 and or 3:1 N:P2O5 ratio consistently increased yields and nutrient uptake and shortened the time to mid‐bloom as compared to the single band starter treatment that provided only 13 kg N ha‐1. Over the 3 years of the study, these 1:1 and 3:1 N:P2O5 ratio starters were clearly superior to an other treatments.  相似文献   

15.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

16.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

17.
Are Indicators for Critical Load Exceedance Related to Forest Condition?   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the suitability of the (Ca?+?Mg?+?K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha?1yr?1) and lowest in the beech stand (maximum of 11 kg N ha?1yr?1). The Sitka spruce stand leached on average 12 kg N ha?1yr?1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca?+?Mg?+?K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca?+?Mg?+?K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca?+?Mg?+?K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.  相似文献   

18.
To develop phosphorus-based agronomic application rates of phytase-diet, bisulfate-amended Delmarva poultry litter in conservation tillage systems, nutrient release dynamics of the organic fertilizer under local weather conditions were investigated. Delmarva poultry litter was placed in polyvinyl chloride columns to a depth of 5 cm and weathered in the field for 570 days. Leachate from the columns was collected and measured for concentrations of various nutrients. Cumulative release of the nutrients as a function of weathering time was modeled, and the nutrient supply capacity was determined. Poultry litter leachate contained high contents of dissolved organic carbon (15–31,500 mg L?1), nitrogen (N 5–7,070 mg L?1), phosphorus (P 5–230 mg L?1), potassium (K+ 2–7,140 mg L?1), and other nutrients. Release of most nutrients occurred principally in the first 100 days, but for P and calcium (Ca2+), it would last for years. The release kinetics of N followed a logarithm equation, while P and K demonstrated a sigmoidal logistic pattern. The nutrient supply capacity of surface-applied Delmarva poultry litter was predicted at 10.9 kg N Mg?1, 6.5 kg P Mg?1, 34.7 kg K+ Mg?1, 5.4 kg Ca2+ Mg?1, and 14.0 kg SO 4 2? Mg?1. The results suggest that Delmarva poultry litter should be applied to conservation tillage systems at 6.6 Mg ha?1 that would furnish 25 kg P ha?1 and 63 kg N ha?1 to seasonal crops. In repeated annual applications, the rate should be reduced to 5.2 Mg ha?1, with supplemental N fertilization to meet crop N requirements.  相似文献   

19.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

20.
Li  Y. C.  Alva  A. K.  Calvert  D. V. 《Water, air, and soil pollution》1999,109(1-4):303-312
The retention and transport of P by three horizon samples (A, E, and Bh) of a Spososol (Oldsmar sand: sandy, silicious, hyperthermic Alfic Arenic Haplaquods) were evaluated using a batch-equilibration and leaching column techniques with application of P in rates equivalent to 25 and 100 kg P ha-1. Adsorption coefficient (K) values followed the order: Bh > A > E. Adsorption of P by the E horizon soil sample was negligible (M = 4 μg g-1 soil) as compared to that of either A or Bh horizon samples, e.g., 303 and 479 μg g-1, respectively. The leaching column study with application of P equivalent to 100 kg ha-1 showed 39, 68, and 98% of applied P were leached from the Bh, A, and E horizons, respectively, with eight pore volumes of leachate. Elution curves showed the peak P elution at the second pore volume (equivalent to 3.7 cm of water addition). After leaching with eight pore volumes, the residual P in the soil was present primarily in non-occluded Fe and Al-P forms in the A and Bh horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号