首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Root-knot nematodes (RKN) are obligate parasite species of the genus Meloidogyne that cause great losses in Arabica coffee (Coffea arabica L.) plantations. Identification of resistant genotypes would facilitate the improvement of coffee varieties aiming at an environmental friendly and costless nematode control. In this work, the C. arabica genotype ‘UFV 408-28’ was found to be resistant to the most destructive RKN species M. incognita. Pathogenicity assays indicated that the highly aggressive populations of M. incognita races 1, 2 and 3 were not able to successfully reproduce on ‘UFV 408-28’ roots and displayed a low gall index (GI = 2). An average reduction of 87% reduction of the M. incognita population was observed on ‘UFV 408-28’ when compared to the susceptible cultivar ‘IAC 15’. By contrast, ‘UFV 408-28’ was susceptible to the related species M. exigua and M. paranaensis (GI = 5 and 4, respectively). Histological observations performed on sections of UFV408-28 roots infected with M. incognita race 1 showed that nematode infection could be blocked right after penetration or during migration and establishment stages, at 6 days, 7 days and 8 days after infection (DAI). Fluorescence and bright field microscopy observations showed that root cells surrounding the nematodes exhibited HR-like features such as accumulation of phenolic compounds and a necrotic cell aspect. In the susceptible ‘IAC 15’ roots, 6 DAI, feeding sites contained giant cells with a dense cytoplasm. Necrotic cells were never observed throughout the entire infection cycle. The HR-like phenotype observed in the ‘UFV 408-28’—M. incognita interaction suggests that the coffee resistance may be mediated by a R-gene based immunity system and may therefore provide new insights for understanding the molecular basis of RKN resistance in perennial crops.  相似文献   

2.
The objective was to study CO2 fixation and photoassimilate partition in coffee (Coffea arabica) seedlings infested with the lesion nematode Pratylenchus coffeae. Seedlings infested with 0, 1000 and 8000 Pratylenchus coffeae nematodes were exposed to 14CO2 and the incorporation and distribution of radioactivity were followed in the roots, stems and leaves. Fresh mass, pigments, soluble sugars, sucrose and specific radioactivity of sucrose in the plant parts were determined. At the highest level of infestation almost all the parameters were significantly changed showing the carbon fixation in the leaves and partitioning to the roots were decreased. Since lesion nematodes are not sedentary and do not form feeding sites that could be characterised as metabolic sinks, it is suggested that their damage is more readily expressed by the leaves, through a reduction in photosynthesis and phloem transport.  相似文献   

3.
The greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) is occasionally found in beehives and is a major pest of stored wax. Entomopathogenic fungi have recently received attention as possible biocontrol elements for certain insect pests. In this study, 90 isolates of Beauveria bassiana and 15 isolates of Metarhizium anisopliae were screened for proteases and lipases production. The results showed significant variations in the enzymatic action between the isolates. In the bioassay, the selected isolates evinced high virulence against the 4th instar of the G. mellonella larvae. The isolates BbaAUMC3076, BbaAUMC3263 and ManAUMC3085 realized 100% mortality at concentrations of 5.5 × 106 conidia ml−1, 5.86 × 105 conidia ml−1, and 4.8 × 106 conidia ml−1, respectively. Strong enzymatic activities in vitro did not necessarily indicate high virulence against the tested insect pest. The cuticle of the infected larvae became dark and black-spotted, indicating direct attack of fungus on the defense system of the insects. The LC50 values were 1.43 × 103, 1.04 × 105 and 5.06 × 104 for Bba3263AUMC, Bba3076AUMC and Man3085AUMC, respectively, and their slopes were determined by computerized probit analysis program as 0.738 ± 0.008, 0.635 ± 0.007 and 1.120 ± 0.024, respectively.  相似文献   

4.
Wasabi (Wasabia japonica) is grown for its highly-valued rhizome which is used as a condiment in Japanese food. Symptoms of vascular blackening in the rhizome were first observed in 2005 in plants grown in British Columbia, Canada. Microscopic observations and microbial isolation from infected tissues revealed that most of the xylem tracheid cells were blackened and bacteria were consistently associated with symptomatic plants. The bacterium most frequently recovered was identified as Pectobacterium carotovorum subsp. carotovorum (Pcc) using BioLog™ and sequencing of a specific ~510 bp IGS region. Pathogen-free plants obtained using meristem-tip micropropagation were inoculated with a wasabi isolate of Pcc. Vascular blackening symptoms developed in the rhizome after 8 weeks when the rhizome was first wounded by stabbing or cutting, or if the roots were pre-inoculated with Pythium species isolated from rhizome epidermal tissues, followed by inoculation with Pcc at 1 × 108 cells ml−1. Xylem tracheid cells were blackened and Pcc was reisolated from all diseased tissues. The highest frequency of rhizome vascular blackening occurred at 22°C and 27°C and these tissues occasionally succumbed to soft rot at higher temperatures, but not when inoculated tissues were incubated at 10°C. The rooting medium used by growers for vegetative propagation of wasabi was shown to contain Pcc but the pathogen was not recovered from the irrigation water. Entry of Pcc through wounds on wasabi rhizomes and the host tissue response result in symptoms of vascular blackening.  相似文献   

5.
Vigor and selected physiological parameters (content of phenolic compounds, soluble sugars, chlorophyll a and b, and carotenoids) of eight naked and two husked oat cultivars harvested at 15% moisture content were determined. Oat seeds were threshed using two rotational speeds of the threshing drum: 1.6 m s−1 (LS) and 2.4 m s−1 (HS). They were then inoculated with a medium pathogenicity strain of Fusarium culmorum, strain IPO 348–01. In naked cultivars, the use of HS resulted in more severe mechanical damage; in consequence, seedling vigor decreased by 16%. In naked cultivars chlorophyll a and b and carotenoids content were significantly reduced—by more than 64%—when the HS was used. The inoculation caused over a 100% increase of carbohydrates in roots at LS but only a slight increase at HS. Phenolic compound content was twice as high in roots than in leaves after inoculation for both LS and HS. Area of microdamage and reduction of root fresh weight (f.wt.) are significantly correlated with biochemical parameters. Smaller microdamage area and root f.wt. reduction are connected with higher physiological parameters, which confirms lower seedling susceptibility to pathogen infection.  相似文献   

6.
The survival of Ralstonia solanacearum A1-9Rif race 1 phylotype I was studied in ten different soil types in the absence of the host plant as well as in infected tissues of the stem and root of bell peppers buried in the soil at 0, 5, and 15 cm. The survival time of R. solanacearum A1-9Rif in the ten soil types ranged from 42 up to 77 days. Among the chemical and physical characteristics of the soil, clay content, residual moisture, and available water were positively correlated, and pH was negatively correlated, with survival time, population size at 42 days, and area under the population curve. The pathogen survival differed significantly in relation to the plant tissues, but not with respect to the incorporation depth of the infected tissues. The root tissue of bell pepper supported a larger bacterial population at 7 and 21 days (5 × 104 and 3.1 × 104 CFU g−1 tissue, respectively) compared with the stem tissue (0.35 × 104 and 0.48 × 104 CFU g−1 tissue, respectively) and also had a larger area under the population curve. On the other hand, the stem tissues presented a greater decomposition rate and pH compared with the roots. In conclusion, the different types of studied soils as well as the infected bell pepper tissues were considered potential primary sources of R. solanacearum inocula, but only for a short period.  相似文献   

7.
The nematicidal effect of soil amendments with dry top and root material from Medicago sativa and/or Medicago arborea was evaluated on the root-knot nematode Meloidogyne incognita and on the cyst nematode Globodera rostochiensis in potting mixes. All amendments suppressed root and soil population densities of both nematode species compared to non-treated and chemical controls. The suppressiveness of M. sativa differed between top and root material and among the amendment rates. In field conditions soil amendments with 20 or 40 t ha−1 of a pelleted M. sativa meal increased tomato crop yield and reduced soil population densities and root galling by M. incognita. It is suggested that saponins were at least partly responsible for the nematicidal activity.  相似文献   

8.
Root-knot nematodes (Meloidogyne spp.) threaten the livelihood of millions of farmers producing coffee worldwide. The use of resistant plants either as cultivars or rootstocks appears to be the single most effective method of control. A screening method was developed to evaluate large populations of plants for resistance to root-knot nematodes. Two coffee cultivars, one susceptible and the other resistant to Meloidogyne paranaensis, were grown under controlled conditions in two substrates: a commercial sieved potting compost and an inert substrate containing sand with a water-absorbent synthetic polymer. Plant growth and development and nematode multiplication were compared for two inoculation dates (2 and 8 weeks after planting) and two evaluation dates (eight and 13 weeks after inoculation). Root growth, but not nematode multiplication, was influenced by the choice of substrate. Evaluation of the differences in root weight and nematode numbers between the different cultivars, substrates and dates of inoculation suggested that an optimal condition could be defined. The best discrimination between susceptible and resistant plants was found in the experiment where inoculation occurred at 2 weeks after planting and evaluation occurred at 8 weeks after inoculation. Because the total duration of this experiment was only 3 months, high-throughput evaluation was possible, opening up new possibilities for screening large germplasm collections and studying the genetic control of root-knot nematode resistance in coffee.  相似文献   

9.
The apple rust mite Aculus schlechtendali (Nal.) (Acari: Eriophyidae), is a main pest in apple-growing areas in Ankara, Turkey, and chemical control applications have some limitations. Entomopathogenic fungi have a potential for biological control of mites. In this study, an entomopathogenic fungus, Paecilomyces lilacinus (Thom) Samson (Deuteromycota: Hyphomycetes), was first isolated from the mite cadavers on Japanese crab apple leaves and pathogenicity of the fungus was observed in different inoculum densities and relative humidities. The pathogen caused up to 98.22% mortality of the mite population. The effects of some fungicides on the entomopathogenic fungus were determined in in vitro studies. Carbendazim, penconazole and tebuconazole were the most effective fungicides on mycelial growth of P. lilacinus, with EC50 values under 3 μg ml−1. In spore germination tests, captan, mancozeb, propineb were the most effective fungicides, followed by tebuconazole, penconazole, nuarimol and chlorothalonil. Sulphur could not inhibit the conidia germination totally at 5,000 μg ml−1. Copper oxychloride and fosetyl-al prevented conidia formation at concentrations above 1,000 μg ml−1.  相似文献   

10.
Susceptibility of eggs of Tribolium confusum du Val. (Coleoptera: Tenebrionidae), Ephestia kuehniella (Zell.) (Lepidoptera: Phycitidae) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to vapors of essential oil from garlic (Allium sativum L.), birch (Betula lenta L.), cinnamon (Cinnamonum zeylanicum (Blume)) and aniseed (Pimpinella anisum L.) was studied. Preliminary bioassay tests indicated that vapors of the essential oils had a significant effect on the eggs of tested insect species when exposed to a concentration of 20 μl l −1 air for 24 h. Generally, garlic and birch essential oils were more toxic to the eggs of tested insect species than cinnamon and aniseed essential oils (except for eggs of T. confusum). There was also a significant difference between susceptibility of eggs of T. confusum, E. kuehniella and P. interpunctella to tested essential oils. Toxicity data indicated that eggs of T. confusum were more susceptible to tested essential oils, with LC90 values ranging from 3.11 to 33.49 μl l −1 air, than those of E. kuehniella and P. interpunctella; eggs of P. interpunctella were the most tolerant to the essential oils, with LC90 values ranging from 22.02 to 72.42 μl l −1 air. Concentration × time (Ct) products of 0.29, 0.22, 0.13 and 1.37 mg h l −1 for garlic, birch, cinnamon and aniseed essential oil, respectively, were required to obtain 90% kill of T. confusum eggs. Although cinnamon essential oil had a much closer Ct product value to methyl bromide, garlic and birch essential oils were found to be the most promising ones since they had also high fumigant toxicity on eggs of both E. kuehniella and P. interpunctella.  相似文献   

11.
A Gram-negative rhizobacterial isolate (LSW25) antagonistic to Pseudomonas corrugata, a vein necrosis pathogen of tomato, and promotes the growth of tomato seedlings was isolated from surface-sterilised tomato roots. A spontaneous rifampicin-resistant mutant (LSW25R) was selected to facilitate its tracking, and identified as Pseudomonas sp. and named as Pseudomonas sp. LSW25R (LSW25R), based on its sequences of the internal transcribed spacer (ITS) region and 16 S rRNA gene. LSW25R inhibited mycelial growth of 12 other plant fungal pathogens such as Botrytis cinerea on V8 agar plates. By using a scanning electron microscope, LSW25R colonised not only the root surface around the natural aperture of tomato radicles but also under epidermal cells like endophytic bacteria. LSW25R successfully colonised the roots of tomato, eggplant and pepper seedlings, significantly promoted the fresh weight, height and dry matter of tomato plants at 108 cfu·ml−1, and increased the plant growth of eggplants and peppers at 104 cfu·ml−1, suggesting that the optimal population density of LSW25R for growth promotion varies from species to species. Moreover, densities of LSW25R inside roots and the lowest leaf of tomato plants were > 9.3 × 103 cfu·g−1. Although the growth promotion of tomato by LSW25R was observed under N- or Ca-deficient conditions as well as a standard nutrient condition, the uptake of calcium was increased only under the standard nutrient condition. In a hydroponic system, LSW25R not only successfully colonised the rhizosphere during cultivation due to its broad spectrum of antifungal activity and endophytic colonisation, but also reduced blossom-end rot of tomato fruits presumably through increasing calcium uptake.  相似文献   

12.
The feeder roots of pepper plants (cv. California Wonder) in Campo de Cartagena (southeast Spain) were found to be severely infected by Meloidogyne incognita. Morphometric traits, differential host test and DNA analysis based on PCR were used to characterize the nematode. Naturally and artificially infected pepper plants showed severe yellowing and stunting, with heavily deformed and damaged root systems. Root galls were spherical and commonly contained more than one female and egg masses with eggs. Typical giant cells with a granular cytoplasm and many hypertrophied nuclei were observed in histological preparations. The relationship between initial nematode population density (Pi) and pepper plant growth was tested in greenhouse experiments with inoculum levels that varied from 0 to 64 eggs and second-stage juveniles (J2) ml−1 soil. A Seinhorst model was fitted to plant height and top fresh weight data of inoculated and non-inoculated plants. The tolerance limit with respect to plant height and fresh top weight of pepper to M. incognita was estimated as 0.85 eggs and J2 ml−1 soil. The minimum relative values (m) for plant height and top fresh weight were 0.15 and 0.16, respectively, at Pi ≥ 64 eggs and J2 ml−1 soil. The maximum nematode reproduction rate (Pf/Pi) was 315.4 at an initial population density (Pi) of 4 eggs and J2 ml−1 soil. The obtained results could be used as a base to establish field experiments that allow strategies to prevent surpassing the threshold of nematodes in fields that are infested.  相似文献   

13.
The infection processes of ascospores and pycnidiospores of Leptosphaeria maculans were studied on cotyledons of six cultivars of spring-type Brassica napus: one with resistance controlled by a single dominant gene (cv. Surpass 400), three with polygenic resistance (cvs. Dunkeld, Grouse, and Outback), and two susceptible cultivars (Westar and Q2). On all cultivars, ascospore germination, penetration, and development of symptoms on cotyledons were much earlier than that with pycnidiospores. At 2h after inoculation ascospores began to germinate, by 4h about 50% had germinated, and by 6–8h 85%–90% had germinated. In contrast, pycnidiospores began to germinate 1 day after inoculation (dai) and reached only 50% germination by 3 dai. Ascospores began germinating from terminal cells and then later from the interstitial cells. Pycnidiospores germinated predominantly from one end and sometimes from both ends. Germ tubes from ascospores penetrated stomata as early as 4h after inoculation, whereas those from pycnidiospores penetrated at 2 dai. Symptom development with ascospores was 2 days earlier than that with pycnidiospores. Symptoms on Surpass 400 were evident as early as 3–5 dai with ascospores and 5–7 dai with pycnidiospores. However, on other cultivars, symptoms were not evident until 10 dai with ascospores and 12 dai with pycnidiospores. This report is the first on differences in the infection processes by the two spore types. Ascospore and pycnidiospore attachment, germination, and penetration did not differ between resistant and susceptible cultivars, but there were major differences after penetration. Under high humidity, 80%–90% of stomata of susceptible Westar and Q2 had aerial hyphae emerging from stomatal pores. However, fewer stomata (5%–10%) had aerial hyphae on Surpass 400 by 10 dai with ascospores and 12 dai with pycnidiospores, but even these were usually poorly developed. Host differences in spring-type B. napus in relation to production of aerial hyphae have not previously been reported. In Surpass 400, rapid necrosis of guard cells occurred within a few hours of penetration by either type of spore, and subsequently one or a few cells immediately adjacent to the penetration site died. This necrosis then spread to the cells around the penetration site to form a hypersensitive response (in the form of a small, dark lesion) to both ascospores and pycnidiospores. This is the first detailed report on interactions between spring-type B. napus and L. maculans in relation to single dominant gene-based resistance. Neither the cultivars with polygenic resistance nor the susceptible cultivars had such a response.  相似文献   

14.
A laboratory assay was designed to determine the insecticidal efficacy of Beauveria bassiana (Balsamo) Vuillemin (Hyphomycetes: Moniliales) and diatomaceous earth (Diafil 610) against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). The fungus B. bassiana was applied at 2.23 × 107, 2.23 × 108 and 2.23 × 109 conidia kg−1 of wheat individually as well as mixed with 200 and 400 ppm of Diafil 610. The conditions for the trials were 30 ± 2oC with 55% r.h. and the counts for mortality were made after 8, 16 and 24 d. All the dead adults were removed after each count and the vials were kept for the next 60 d to assess the emergence of the F1 generation. The findings from these studies proved that the extended exposure interval and the highest combined dose rate of the entomopathogenic fungus and the diatomaceous earth gave the maximum mortality of the beetles. The emergence of the progeny was also highly suppressed where the maximum dose rate of the synergized treatments was applied. The rate of mycosis and sporulation in the cadavers of R. dominica was maximum where the low dose rates of B. bassiana were applied.  相似文献   

15.
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.  相似文献   

16.
In vitro detached leaf assays involving artificial inoculation of wounded and unwounded oat and wheat leaves were used to investigate the potential pathogenicity and aggressiveness of F. langsethiae, which was linked recently to the production of type A trichothecenes, HT-2 and T-2 in cereals in Europe. In the first two experiments, two assays compared disease development by F. langsethiae with known fusarium head blight pathogen species each used as a composited inoculum (mixture of isolates) at 10°C and 20°C and found all fungal species to be pathogenic to oat and wheat leaves in the wounded leaf assay. In the unwounded leaf assay, F. langsethiae was not pathogenic to wheat leaves. Furthermore, there were highly significant differences in the aggressiveness of pathogens as measured by lesion length (P < 0.001). In the second two experiments, pathogenicity of individual F. langsethiae isolates previously used in the composite inoculum was investigated on three oat and three wheat varieties. The wounded leaf assay showed that all isolates were pathogenic to all oat and wheat varieties but only pathogenic towards oat varieties in the unwounded assay. Highly significant differences (P < 0.001) in lesion length were found between cereal varieties as well as between isolates in the wounded assay. Significant differences in lesion lengths (P = 0.014) were also observed between isolates in the unwounded assay. Results from the detached leaf assays suggest that F. langsethiae is a pathogen of wheat and oats and may have developed some host preference towards oats.  相似文献   

17.
Root-knot nematodes (RKN) are obligate endoparasites that severely damage the host root system. Nutrient and water uptake are substantially reduced in infested plants, resulting into altered physiological processes and reduced plant growth. The effect of nematode infestation on the morphological changes of roots and subsequent physiological plant responses of infested tomatoes with the RKN Meloidogyne ethiopica was studied in a pot experiment. Plants were infested with two inoculum densities (10 or 50 eggs per cm3 substrate) and its effect was evaluated 74 and 102 days post inoculation (DPI). Morphological changes and root growth was determined by analysing scanned images of the whole root system. Nematode infestation reduced the portion of fine roots and increased that of coarse roots due to gall formation. Fine roots of non-infested control plants represented around 51% of the area of the whole root system at 74 and 102 DPI. In comparison to controls, plants inoculated with low and high nematode density had 2.1 and 3.2-times lower surface area of fine roots at 102 DPI. Root analyses revealed that plants had a very limited ability to mitigate the effects of the root-knot nematodes infestation by altering root growth. Root galls had a major influence on the hydraulic conductivity of the root system, which was significantly reduced. The low leaf water potential of infested plants coincided with decreased stomatal conductivity, transpiration and photosynthesis. The latter two were reduced by 60–70% when compared to non-infested control plants.  相似文献   

18.
Fusarium graminearum and F. verticillioides are among the most important pathogens causing ear rot of maize in Central Europe. Our objectives were to (1) compare eight isolates of each species on two susceptible inbred lines for their variation in ear rot rating and mycotoxin production across 3 years, and (2) analyse two susceptible and three resistant inbred lines for potential isolate x line interactions across 2 years by silk-channel inoculation. Ear rot rating, zearalenone (ZEA) and deoxynivalenol (DON) concentrations were evaluated for all F. graminearum isolates. In addition, nivalenol (NIV) concentrations were analysed for two NIV producers. Fumonisin (FUM) concentrations were measured for all F. verticillioides isolates. Mean ear rot severity was highest for DON producers of F. graminearum (62.9% of the ear covered by mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. verticillioides isolates (9.8%). For the latter species, ear rot severities differed highly among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates showed a broad range (DON: 100–284 mg kg−1, NIV: 15–38 mg kg−1, ZEA: 1.1–49.5 mg kg−1, FUM: 14.5–57.5 mg kg−1). Genotypic variances were significant for isolates and inbred lines in all traits and for both species. Isolate x line interactions were significant only for ear rot rating (P < 0.01) and DON concentration (P < 0.05) of the F. graminearum isolates, but no rank reversals occurred. Most isolates were capable of differentiating the susceptible from the resistant lines for ear rot severity. For resistance screening, a sufficiently aggressive isolate should be used to warrant maximal differentiation among inbred lines. With respect to F. verticillioides infections, high FUM concentrations were found in grains from ears with minimal disease symptoms.  相似文献   

19.
A conventional PCR and a SYBR Green real-time PCR assays for the detection and quantification of Phytophthora cryptogea, an economically important pathogen, have been developed and tested. A conventional primer set (Cryp1 and Cryp2) was designed from the Ypt1 gene of P. cryptogea. A 369 bp product was amplified on DNA from 17 isolates of P. cryptogea. No product was amplified on DNA from 34 other Phytophthora spp., water moulds, true fungi and bacteria. In addition, Cryp1/Cryp2 primers were successfully adapted to real-time PCR. The conventional PCR and real-time PCR assays were compared. The PCR was able to detect the pathogen on naturally infected gerbera plants and on symptomatic artificially infected plants collected 21 days after pathogen inoculation. The detection limit was 5 × 103 P. cryptogea zoospores and 16 fg of DNA. Real-time PCR showed a detection limit 100 times lower (50 zoospores, 160 ag of DNA) and the possibility of detecting the pathogen in symptomless artificially infected plants and in the re-circulating nutrient solution of closed soilless cultivation systems.  相似文献   

20.
The functional response types and parameters of 3rd and 4th instar larvae, and adult females and males of a coccinellid predator, Adalia fasciatopunctata revelierei (Mulsant) (Col.: Coccinellidae), were evaluated at five different densities of Callaphis juglandis (Goeze) (Hemiptera: Aphididae) in order to understand their role for the aphid’s biological control. Experiments were carried out in petri dishes at 25 ± 1°C, 60 ± 10% r.h. and 16L:8D photoperiod in a controlled temperature room. All tested stages exhibited a Type II response determined by a logistic regression model. The attack rate (α) and handling time (T h ) coefficients of a Type II response were estimated by fitting a “random-predator” equation to the data. Although the estimates of α for all stages of A. fasciatopunctata revelierei tested were similar, the longest T h was obtained for 3rd instar larva because of the lower consumption rate at densities above 40 prey/day. Results indicated that the adult female has the highest predation of C. juglandis followed by 4th instar larvae, adult males and 3rd instar larvae. However, further field-based studies are needed to draw firm conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号