首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对表层沉积物中重金属及粒度的分析,研究了荣成天鹅湖重金属的含量水平及分布特征,并对沉积物的环境质量进行了初步评价。结果表明,天鹅湖重金属的总体水平较低,Cd、Cr、Pb、Cu、Zn的平均含量均低于国家海洋沉积物I类质量标准,其中Cr和Pb存在轻度污染。Cd、Cr、Ni、Pb、Cu、Zn的含量范围分别为0~0.84、1.75~116.11、1.50~29.06、17.36~27.25、2.00~34.98mg.kg-1和11.48~92.61mg.kg-1,平均含量排序为Zn〉Cr〉Pb〉Cu、Ni〉Cd。天鹅湖重金属的富集状况与沉积物的粒度以及人类活动密切相关,大部分元素的高值区出现在颗粒较细的湖中央以及污染严重的西北部,东南部含量较低。相关分析表明,各重金属之间的相关性较好,其中Cd、Cu、Mn、Zn、Fe间呈高度的正相关,空间分布规律相似;重金属与有机质、粘粒含量呈极显著正相关,而与砂粒呈极显著负相关。根据加拿大制定的沉积物评价标准,天鹅湖沉积物中Cr具有较大的生态危害性。  相似文献   

2.
沉积物重金属污染是水环境污染评价的重要内容,重金属含量水平常被作为水环境质量的重要指标之一。为了掌握华北平原的府河和白洋淀中沉积物重金属的污染水平,研究了19个沉积物样品和3个土壤样品中7种重金属的污染特征,利用地积累指数法、潜在生态危害指数法及生物效应浓度法评估了重金属的环境风险,并初步分析了污染来源。结果表明,府河和白洋淀沉积物受多种重金属复合污染,其中Zn、Pb、Cu和Cd污染较为严重,府河沉积物的潜在生态环境危害强于白洋淀。相关分析显示府河和白洋淀重金属污染具有相似污染源,保定市工业废水、生活污水及府河沿岸金属冶炼企业很可能是白洋淀地区重金属的主要来源。从城市环境管理、生态环境修复、宣传教育等方面提出白洋淀区域重金属污染控制对策与建议,为白洋淀区域生态环境保护提供科技支撑。  相似文献   

3.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

4.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

5.
Zabowski  D.  Henry  C. L.  Zheng  Z.  Zhang  X. 《Water, air, and soil pollution》2001,131(1-4):261-273
The impacts of mining to watersheds are highly variabledepending on the type of mining, processing of ores, andenvironmental factors. This study examined the Hei River incentral China, for impacts of gold and iron mining onconcentrations of metals in river water, river sediments andstream-channel soils. No production processing of ores occurson-site at either mine. Total metal content and extractablemetals using DTPA were determined. Total concentrations of Cd,Cu, Pb and Zn were high in some stream sediments and soils nearthe mine sites; metal concentrations ranged from 4–24, 11–100,11–380, and 33–1600 μg g-1 for Cd, Cu, Pb, and Zn,respectively, in soil. Total cadmium was high in all soilsand sediments. Extractable metals were low, with the exceptionof Pb and Cu. At the gold mine, extractable Pb ranged from 8 to33%; extractable Cu ranged from 3 to 21% of total metalconcentration. Chromium and Ni were not above typicalconcentrations in either soils or river sediments. An abundance of carbonates, high river water pH, and high water flow rates all appear to contribute to limiting quantities of metals in the river water. If mining activities are not changed, impacts of mining on downstream metal concentrations in river water should be nominal.  相似文献   

6.
Heavy metal pollution of soils and sediments in Liaoning Province, Northeast China, was investigated. Fifty seven samples of agricultural soils and 8 samples of sediments were collected in 1996 from paddy or upland fields and irrigation channels, respectively, in Shenyang, Fushun, Liaoyang, Anshan, and Tieling regions, and concentrations of total and 0.1 mol L-1 HCI-extractable Cd, Cu, Pb, and Zn were analyzed using ICP spectrometry. Seventeen samples of unpolished rice were also collected from selected paddy fields and total concentrations of the four elements were determined.–

Both paddy and upland soils were polluted with Cd: average total concentration was 0.70, 0.57, and 0.53 mg kg-1 in the western and southern parts of Shenyang, and Anshan, respectively, and significantly higher than the background level of 0.32 mg kg-1. Cd concentrations of four samples exceeded even 1 mg kg-1, which corresponds to the critical level of Cd contamination in China. About 65% of the total Cd was extracted with 0.1 mol L-1 HCI, suggesting that Cd was relatively mobile compared with other metals. The level of Cd pollution was, however, lower than that previously reported and serious polIution was not observed for Cu, Pb, and Zn. Accordingly, Cd concentration in upland rice was within the range of the unpolluted level in this study. Nevertheless, Cd concentration in a sediment of irrigation channels in the western part of Shenyang exceeded 16 mg kg-1, indicating the possibility of further contamination of agricultural soils. In conclusion, soils and sediments were still polluted with Cd in the southern part of Shenyang, Anshan, and especially in the western part of Shenyang, and further countermeasures are urgently required to ensure safe food production in these regions.  相似文献   

7.
Background, aim, and scope  Elevated levels of heavy metals in the aquatic and soil systems can be caused by the weathering of mineralized rocks. This enrichment is often considerably enlarged by historical and current mining and smelting activities. In Poland, the most contaminated river systems are those in the Silesia region. The metalliferous ore mining and smelting industries have been the main sources of heavy metal pollutions over the last 100–170 years. The previous and present studies have shown very high concentrations of heavy metals in the bottom sediments of the Mala Panew River, the most polluted tributary of the Oder River. The main objective of this work was to study temporary changes of selected metal (Zn, Pb, and Cd) concentrations in upper layer of bottom sediments at the measuring point near the outlet of the Mala Panew River into the Oder River, and to determine the vertical distribution of the metals in the sediment cores from the most polluted middle part of this river. The mobility of the metals and their potential bioavailability were assessed based on metal partitioning in the sediments and metal concentrations in pore waters. The presented data were compared with metal concentrations in aquatic sediments from similar historical mining and smelting sites in Poland and other countries. Methods  The upper layer of bottom sediment samples from the same Mala Panew River measuring point were collected six times in the period 1997–2005, while five sediment cores were collected once from the middle course of Mala Panew River in 2006. Abiotic parameters such as pH and Eh have been determined in situ. Metal contents were determined in the <20 and <63 μm size fractions of sediments after digestion in a microwave oven with aqua regia or concentrated nitric acid. Metal mobility was assessed in the selected sediment cores by the chemical forms of metals (sequential extraction method) and their concentrations in pore waters were investigated. Results  The concentrations of Cd, Pb, and Zn in the upper layer of sediments varied, depending on both the season and the year of sampling. Their mean concentrations (from six samplings) are [mg/kg]: Zn 1,846, Pb 229 and Cd 73. The metal concentrations in the sediment cores varied with the depth in the range of [mg/kg]: 0.18–559 for Cd, 26.2–3,309 for Pb and 126–11,153 for Zn, although the highest accumulations generally could be observed in the deeper layers. The most mobile metal fractions, i.e., exchangeable, carbonate and easily reducible fractions, are typical of Zn and Cd. Cadmium was found to be the most mobile metal and its relative contribution ranges from 84 to 96%, while in the case of Zn it ranged from 45 to 94%. Lead is mainly associated with the moderately reducible fraction (30–60%). Relative contributions of metal chemical forms slightly vary with the depth in the sediment profile. The results obtained for the pore water samples show very high concentrations of the metals studied, especially in the case of Cd (31–960 μg/dm3) and Zn (300–4,400 μg/dm3). Discussion  Accumulation of Cd, Pb, and Zn in the upper layer of the bottom sediments and in the sediment core samples from the Mala Panew River is very high, considerably exceeding the local geochemical background. High contributions of mobile Cd and Zn and the toxicity of cadmium can cause environmental risk. Our measurements also suggest that mobile metals can migrate into groundwater, whereas the groundwater itself can leach some chemicals from river sediments, because of a relatively high water table in the study area, especially during rainfall periods. Comparison of the results obtained with the literature data from the last decade shows that the concentrations of Cd and Zn in the sediments from the Mala Panew River are the highest among other submersed sediments in Poland and other regions (e.g., the Mulde River, Germany). Conclusions  The Mala Panew River is one of the most polluted rivers when compared with similar historical mining and smelting areas in Poland and elsewhere. The sediments studied are strongly polluted with the metals analyzed. In the upper layer of the bottom sediments there has been no reduction of Zn and Cd amounts over the last decade, which could suggests a long-term migration and a secondary contamination. Considerably higher accumulations of metals in overbank sediment cores and in the deeper core section could result from strong contamination in previous decades and translocation of Cd and Zn (secondary pollutants). The relatively high concentrations of the two metals in pore waters support these findings. Cadmium is crucial in the environmental risk assessment because of its high mobility and toxicity. These data are important for water/sediment management in the transboundary Oder River catchment, situated in Poland, Germany and the Czech Republic. Recommendations and perspectives  It is important to assess mobility phase and pore water in the contaminated historical aquatic sediments. Such studies may help explain the changes, which take place in the sediment layers as well as at the water–sediment interface. Obtained results should be used for the risk assessment of the historical contaminated sediments at the local river-basin scale. The treatment of contaminated sediments, e.g., dragging activity, should be considered as very important in management strategies in order to avoid remobilization of metals.  相似文献   

8.
The contents of ten elements [Cd, Pb, W, Zn, Mn, As, Se, Cr, Cu, and organic carbon (Corg)] have been determined in the surficial sediments of Keratsini harbor, Saronikos Gulf, Greece. The contamination of the sediments was assessed on the basis of geoaccumulation index and to corresponding sediment quality guidelines (SQGs) effects range low/effects range median. The results revealed highly elevated Cd, Pb, W, Zn, As, Se, Cr, Cu, and Corg values (Cd, 190–1,763 mg kg?1; Pb, 521–1,263 mg kg?1; W, 38–100 mg kg?1; Zn, 409–6,725 mg kg?1; Mn, 95–1,101 mg kg?1; As, not detectable–1,813 mg kg?1; Se, not detectable–58 mg kg?1; Cr, 264–860 mg kg?1; Cu, 195–518 mg kg?1; and Corg, 0.69–4.41%). The enrichment of metals in the sediments results from the contribution of the central Athens sewage outfall through which the waste of the Attica basin ends up in Keratsini harbor as well as from industrial and ship contaminants.  相似文献   

9.
Land pollution due to past mining activities is a major environmental issue in many European countries. The Aljustrel mine (SW Portugal), located in the western sector of the Iberian Pyrite Belt (IBP) presents a negative visual and environmental impact as a consequence of the mining activity that has developed since the Roman era. Its impacts are also a restraint on the life quality of the population. The exposure of pyrite and other sulphides to air are responsible for the pollution observed in soils, surface water and stream sediments. This paper investigates the pollution load of potential toxic elements in soil samples collected around the Aljustrel mining area. The aim is to assess the levels of soil contamination with respect to average concentrations of toxic elements in the region and to understand the partitioning and availability of pollutants in the area. The results showed severe soil contamination (mainly As, Cd, Cu, Pb and Zn). The concentrations of As (up to 3936 mg kg−1) and certain heavy metals (up to 5414 mg kg−1 Cu, 61·6 mg kg−1 Cd, 20 000 mg kg−1 Pb and 20 000 mg kg−1 Zn) are two orders of magnitude above the regional South Portuguese Zone (SPZ) background values. The median concentrations of As, Cd, Cu, Pb and Zn exceed the values established for world soils, the European Union, Portugal and Andalusia. The results suggest that the distribution patterns of Co, Cr and Ni element concentrations in the Aljustrel area are primarily influenced by the lithology and geochemistry nature of bedrock. The soil background of this geological domain is characterized by relatively high heavy metal contents, essentially derived from the parent rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Soil‐plant transfer of metals is a nonlinear process. We therefore aimed at evaluating the potential of Freundlich‐type functions (cPlant = b × cSoila) to predict Cd, Cu, Pb, and Zn concentrations in wheat (Triticum aestivum L.) grain and leaf (cPlant) from soil concentrations (cSoil). Wheat plants and soil A horizons, mainly developed from Holocene sediments, were sampled at 54 agricultural sites in Slovakia. Metals were extracted from soils with 0.025 M EDTA at pH 4.6 and concentrated HNO3/HClO4 (3:1); plant samples were digested with concentrated HNO3. Total metal concentrations of soil samples were 0.07—25 mg Cd kg—1, 9.3—220 mg Cu kg—1, 14—1827 mg Pb kg—1, and 34—1454 mg Zn kg—1. On average, between 20 % (Zn) and 80 % (Cd) of the total concentrations were EDTA‐extractable. The total metal concentrations of grain samples were < 0.01—1.3 mg Cd kg—1, 1.3—6.6 mg Cu kg—1, < 0.05—0.30 mg Pb kg—1, and 8—104 mg Zn kg—1. The leaves contained up to 3.2 mg Cd kg—1, 111 mg Cu kg—1, 4.3 mg Pb kg—1, and 177 mg Zn kg—1. Linear regression without data transformation was precluded because of the nonnormal data distribution. The Freundlich‐type function was suitable to predict Cd (grain: r = 0.71, leaf: 0.86 for the log‐transformed data) and Zn concentrations (grain: 0.69, leaf: 0.68) in wheat grain and leaf from the EDTA‐extractable metal concentrations. The prediction of Cu and Pb concentrations in grain (Cu: r = 0.44, Pb: 0.41) was poorer and in leaf only possible for Pb (0.50). We suggest to use the Freundlich‐type function for defining threshold values instead of linear regression because it is more appropriate to simulate the nonlinear uptake processes and because it offers interpretation potential. The results suggest that the coefficient b of the Freundlich‐type function depends on the intensity of metal uptake, while the coefficient a reflects the plants' capability to control the heavy metal uptake. The latter is also sensitive to metal translocation in plants and atmospheric deposition.<?show $6#>  相似文献   

11.
In Godavari estuary, the enhanced metal concentration in the sediment is localized, and is accompanied by marked enrichment in organic carbon, Kjeldahl nitrogen, and humic acid. High concentration of organic carbon was observed near the riverside sampling stations. A similar pattern was found for the humic acid concentrations. Relatively high organic carbon content was observed in pre-monsoon/monsoon compared to post-monsoon seasons which can be attributed to higher productivity due to upwelling in the former and landrunoff due to excessive rainfall in the later seasons. The trace metals in the sediments were found to be in the following order of their abundanceFe≥Mn≥Zn≥Pb≥Ni≥Cu≥Cd. In monsoon season relatively high levels of trace metals were reported in surface sediments which are transported by currents. The dominant process controllingthe metal enrichment may be either precipitation of metal-humic acid type of complexes. Our results indicate that in the Godavari estuary, the metal distribution is mainly influenced by sedimentarydynamics, while the contamination effect is very limited.  相似文献   

12.

The Park River watershed (PRW), a sub-basin of the Lower Connecticut River watershed, has experienced increased urbanization over the last century as the city of Hartford and its surrounding towns have grown and developed. We present watershed-wide and outflow scale maps of the trace metals Cd, Cu, Zn, and Pb to determine patterns of contamination in fine (<63 μm) stream sediment. Results are compared to established sediment quality guidelines (SQG) and probable effect concentrations (PEC) for each metal. Throughout the watershed, higher concentrations of trace metals are observed in the more urbanized south branch of the PRW. In this sub-basin, there are more industries that use, and waste, metals in their manufacturing processes that contribute to acutely high concentrations of metals in the fine bedload sediments. Impervious surfaces are examined as well in the context of the entire watershed. While an increase in metals can be attributed to an increase in impervious surfaces, these increases do not generally exceed SQGs and PECs. Two focused mapping studies were conducted at the storm water outflow of the West Hartford Landfill and the Trout Brook Sanitary Sewer Overflow (SSO). The purpose of these studies was to analyze the local effects of natural stream features such as channel bar deposits next to the outfalls. We determined that the sediment directly below the two outfalls often exceeded the PEC, while the accumulated sediment around the channel bar deposits was not contaminated beyond background stream levels. We believe mapping at both the small (watershed) and large (outfall) scale can be helpful in future urban studies to determine the extent of trace metal sediment contamination in both channelized and natural sections and may provide a useful method for sediment mitigation endeavors.

  相似文献   

13.
滨岸排污口对潮滩沉积物中重金属的影响研究   总被引:4,自引:2,他引:4  
通过对排污口附近及对照点的潮滩沉积物中重金属Zn ,Cu ,Cr和Pb的含量分析发现:各采样点沉积物中的重金属含量均高于环境背景值,平均含量约为环境背景值的2~3倍,排污口附近潮滩沉积物中重金属的含量明显高于对照点潮滩沉积物中的含量;各采样点的柱状沉积物中重金属的含量随深度的变化呈现出一定的变化规律;在垃圾填埋场附近高中低潮滩由于距离排污口的远近不同,表层沉积物中重金属的含量依次降低;对各采样点沉积物中重金属含量的相关性分析发现各点沉积物中累积的重金属的来源有所不同:在排污口附近潮滩的沉积物中重金属主要来源于排污口排放的污水,而对照点朝阳农场潮滩沉积物中重金属主要来源于自然的本底输入或海水外源输入  相似文献   

14.
Poses dam in the Seine River estuary acts as receptacle of water drain-offs from highly urbanized and industrialized catchment area; therefore, this water is highly contaminated by trace metals. Most trace elements are mainly bound to particulate matter and are incorporated rapidly into the sediments. Scavenging of these metals in the sediments can be reversible due to several perturbations so as sediments also act as a source of pollutants for the overlying water. For instance, natural events (tide, flood, storm) and anthropogenic processes (water management actions) can cause disturbance of sediments and subsequent remobilization of pollutants to the water column, thereby posing a potential threat for aquatic organisms. The purpose of this study was to evaluate the mobility of trace metals by different methods in the Seine estuary sediments. The surface sediment sampled at Poses dam was characterized by high pollution level of Cd, Cu, Zn, and Pb. The estimation of metal bioavailability through ratio ΣSEM/AVS (simultaneously extracted metals/acid volatile sulfides) indicates a potential bioavailability of trace metals. The chemical partitioning using the European Community of Bureau of Reference sequential extraction method revealed that over 85, 82, and 80 % of the total Cd, Zn, and Pb, respectively, were found to be associated with the exchangeable and reducible fractions of the sediment. Another approach used consists in the quantification of dissolved metals released by sediment resuspension experiments in laboratory under controlled conditions. The results indicated that metals are released rapidly from sediment with a sharp peak at the beginning of the experiment, followed by a fast coprecipitation and/or adsorption processes on the suspended particles. Also, the Cd, Pb, and Ni mobility is higher compared to that of the other metals.  相似文献   

15.
Background, aim and scope  The urban environment in Bratislava is, in association with rapid urbanisation and industrialisation, significantly influenced by several potential sources of pollution, including automobile exhaust and industry emmissions. Urban road-deposited sediments contain many potentially toxic elements such as Pb, Cr, Cu, Zn and also Fe at concentrations much higher than in soil. In this study, the chemical composition and spatial variability of road-deposited sediments in urban area of Bratislava were assessed for the elements As, Cd, Cr, Cu, Hg, Ni, Pb, Fe and Mn. Additional evaluation of archive data for soil, snow and atmospheric dust was undertaken to provide an integrated view on urban environment contamination. Materials and methods  Urban road-deposited sediments (RDS) were collected during summer 2003 and 2004 mainly from major city crossroads. RDS samples were analysed for total metal content, pseudo-total metal content (HNO3 digestion) and by a sequential extraction method, grain fraction composition and mineralogical composition (X-ray analysis). Metal concentrations in soil and snow samples from urban and non urban city area were compared. Results and discussion  The highest concentrations for all metals were found in the finest RDS fraction (<0.125 mm). Whilst in the fraction <1 mm mean concentrations of Cr, Cu and Pb reached 55.2, 143.8 and 34.4 mg kg−1, respectively, for the fraction <0.125 mm, markedly higher contents of these elements were documented at the level of 86.8, 218.4 and 63.1 mg kg−1, respectively. The soil contents of potentially toxic risk elements in the urban area including As, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were higher than in the non-urban area (except for Cd with similar contents). This distribution pattern of evaluated chemicals in urban and non-urban area is more evident in the case of winter precipitation (snow). The snow concentrations of As, Cr, Cu, Fe, Mn, Pb and Zn in the urban area were two tot five times higher than in non-urban area. Conclusions and recommendations  Monitoring of road-deposited sediments, dust, soil and precipitation has confirmed the significant contamination of the urban environment in Bratislava with potentially toxic elements that can pose a threat for the health of its residents. Future works should be based on analyses of temporal variability of RDS and analyses of organic matter content.  相似文献   

16.
汉江上游汉中段河流表层沉积物重金属污染风险评价   总被引:4,自引:0,他引:4  
通过监测汉江上游汉中段河流表层沉积物重金属Pb,Cu,Zn,Cd,Cr的浓度,分析了各元素的含量分布特征,并选用Hakanson生态风险指数法对研究区进行了环境风险评价。结果表明,汉江上游汉中段各监测点重金属富集顺序为:Cd >Zn >Pb >Cr >Cu。单个重金属的污染指数Cfi显示,汉江上游汉中段监测点仅有Cu的含量均值为0.83,小于1,为轻微污染;Pb,Zn,Cd,Cr的均值分别为1.06,1.25,1.33,1.02,略大于等于1,处于轻微污染以上水平,达到中度污染水平。综合分析多项重金属污染系数Cd,单项重金属的潜在生态风险系数Eri和多种重金属的生态系统的潜在生态风险指数IR可知,汉江上游汉中段各监测点沉积物重金属污染属于轻微生态危害。  相似文献   

17.
Stormwater ponds are an increasingly common feature in urban landscapes. Because these ponds retain runoff and particulate-bound contaminants from impervious surfaces, organisms inhabiting stormwater ponds may be exposed to elevated metal levels in sediments. This study evaluated temporal changes in sediment and macroinvertebrate Cu, Pb and Zn over an eleven-year period with specific attention to land use in pond watersheds. Sediment and invertebrate metal levels were quantified using atomic absorption spectrophotometry (1993 samples) or inductively coupled plasma mass spectrometry (2003–2004 samples). Sediment trace element levels did not significantly change from 1993 to 2003-2004 with the exception of Zn in ponds receiving runoff from highways, which increased from a mean of 32 mg kg?1 in 1993 to 344 mg kg?1 in 2003–2004. Sediment Pb and Cu generally remained below published threshold effects concentrations (TEC) except for two instances of elevated Cu in 2003–2004. Zn remained below the TEC in 1993 but exceeded the TEC in six ponds in 2003–2004. Trace metal body burdens varied among invertebrate groups, and to a lesser extent among land uses, but in both cases this variation was a function of year. In general, trace element body burdens were more similar among invertebrate groups or land use or both during 2003–2004 when compared to levels in 1993. Our results suggest sediment and invertebrate trace metal levels are at steady state in these stormwater management ponds and that risk to organisms inhabiting these ponds does not vary as a function of pond age.  相似文献   

18.
The concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil.  相似文献   

19.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

20.
This study explores the extent and possible sources of heavy metal (Cd, Cr, Cu, Fe, Mn, Pb, Zn and Ni) contamination in the bed sediments of the Gomti River performing principal component analysis on the five years (Jan. 1994–Dec. 1998) data set obtained through continuous monitoring of the river water and bed sediments at eight selected sites and water/wastewater of its tributaries/drains. Influence of anthropogenic activities on metal contamination of the bed sediments was evaluated through computing the geoaccumulation index for various metals at studied sites. PCA performed on combined (river bed sediment, water, suspended solids, water/wastewater from tributaries/drains) data set extracted two significant factors explaining more than 58% of total variance. Factor loadings suggested the presence of both natural as well as anthropogenic sources for all these metals in the river bed sediments. Among all the sites, the sites 4 and 5 are more contaminated with Cd, Cu, Cr and Pb, which was supported by the geoaccumulation indices computed for metals. Factor scores revealed presence of seasonal (monsoon-related) differences in metals profiles for river water and suspended solids and absence of seasonal differences for bed sediment and wastewater. Further, the metal contamination of the bed sediment was also evaluated using biological thresholds. Results suggested that the river bed sediments are contaminated with heavy metals, which may contribute to sediment toxicity to the freshwater ecosystem of the Gomti River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号