首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在讨论α-淀粉酶活力稳定性的基础上,进行α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷单因素试验,分析淀粉浓度、酶浓度、反应时间对产物产率的影响,同时设计了三因素三水平的正交试验,确定α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷的最优条件,并对产物做了定性与定量的分析。结果显示,α-淀粉酶催化芭蕉芋淀粉在温度为50℃,pH为5,甲醇浓度为40%(V/V)下酶活力保持较好。α-淀粉酶催化芭蕉芋淀粉合成烷基糖苷的最优条件为:淀粉浓度150g/L,酶浓度138U/mL,时间18h,在此条件下最终产物得率为15.94%,产物主要由甲基葡萄糖苷和甲基麦芽糖苷组成,且经过葡萄糖淀粉酶酶解转化得到最终甲基葡萄糖苷总量为1.16mg/mL。  相似文献   

2.
α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件优化   总被引:1,自引:0,他引:1  
【目的】探讨α-淀粉酶和糖化酶协同酶解马铃薯淀粉的工艺条件,为降低微藻生产生物柴油成本提供参考。【方法】采用α-淀粉酶和糖化酶协同酶解马铃薯淀粉,以葡萄糖含量为测定指标,选取反应温度、底物质量浓度、加酶量(m(α-淀粉酶)∶m(糖化酶)=3∶1)、反应时间4个影响因素,进行L25(54)正交试验,确定最佳酶解工艺条件;采用高效液相色谱法(HPLC)、电子扫描电镜(SEM)、X射线衍射(XRD)法对酶解产物的物理特性进行分析。【结果】最佳酶解工艺条件为:反应温度80℃、底物质量浓度0.1 g/mL、加酶量为干基底物淀粉质量的0.6%、反应时间4 h、反应pH 4.0,在此条件下,马铃薯淀粉水解液中葡萄糖含量最高,为802.9 g/L。HPLC、SEM、XRD测定结果表明,酶解产物中葡萄糖所占比例最高,酶解未破坏马铃薯淀粉晶型结构,酶解作用只在淀粉表面发生。【结论】得到了α-淀粉酶和糖化酶协同酶解马铃薯淀粉的最佳工艺条件,为微藻生产生物柴油提供了较好的碳源,节约了生产成本。  相似文献   

3.
以青稞淀粉为原料,分别以普鲁兰酶法、α-淀粉酶法、β-淀粉酶法制备慢消化淀粉(Slow digestion of starch,SDS),并优化SDS的制备条件。通过正交实验确定制备SDS的最佳方案为普鲁兰酶法,制备得到的SDS含量为32.72%。普鲁兰酶法处理条件为:普鲁兰酶的添加量200 U,酶解时间10 h,冷藏回生时间1 d,淀粉浓度15%。  相似文献   

4.
α-淀粉酶固定化的研究   总被引:2,自引:0,他引:2  
综述了固定化酶的优越性,酶的固定化的方法分类以及不同方法的优点和缺点。以甘蔗纤维素衍生物为载体,用共价键结合法固定α-淀粉酶。根据温度、pH值、α-淀粉酶的浓度以及α-淀粉酶与甘蔗纤维素衍生物载体的配比对α-淀粉酶固定的影响,通过正交试验得到最佳固定条件为:温度60℃,pH值为6.0,α-淀粉酶的浓度为60U/ml,α-淀粉酶与甘蔗纤维素衍生物载体的配比为50ml∶1g。缓冲溶液为柠檬酸-磷酸氢二钾缓冲液。通过吸光度法测定所得固定化酶的活力为34.77U/g固定剂。测得米氏常数为12.88g/L,半衰期为3.17h,固定化酶在使用过程中没有α-淀粉酶脱离在产品中,所以可以减少额外的加工费用,同时可以循环使用。  相似文献   

5.
荞麦淀粉酶水解工艺条件研究   总被引:8,自引:0,他引:8  
为探索荞麦淀粉酶水解特性及工艺条件,试验采用中温α-淀粉酶、真菌α-淀粉酶及其不同组合对荞麦淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行了二次回归正交旋转试验,确定了荞麦淀粉酶解工艺条件。结果表明,真菌α-淀粉酶适用于荞麦淀粉水解,其淀粉转化率和DE值均较高;各因素对真菌α-淀粉酶水解荞麦淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;真菌α-淀粉酶水解荞麦淀粉的适宜工艺条件为:水解温度54℃,pH 6.0,底物浓度50 g/L,酶用量100~130 U/g,水解时间为75 m in,在此工艺条件下荞麦淀粉酶水解度为66.05%。  相似文献   

6.
酶解法制备玉米抗性淀粉的研究   总被引:1,自引:0,他引:1  
以普通玉米淀粉为原料,采用酶解回生的方法制备抗性淀粉(Resistant Starch,RS)。以淀粉乳浓度、普鲁兰酶添加量、α-淀粉酶添加量、回生时间为单因素,确定其对抗性淀粉得率的影响,通过正交试验,确定最佳的制备条件。试验结果表明:在影响RS生成的4个因素中普鲁兰酶添加量、淀粉乳浓度影响较大,α-淀粉酶添加量、回生时间影响较小,淀粉乳浓度25%,普鲁兰酶添加量3.6U·g^-1淀粉,α-淀粉酶添加量4U·g^-1淀粉,回生时间为24h是制备抗性淀粉的最佳条件,得率在9.027%。  相似文献   

7.
李墨  安家彦 《安徽农业科学》2008,36(11):4403-4404
[目的]系统研究玉米在发芽过程中的3种酶活力的变化,确定玉米最佳发芽条件。[方法]以玉米为原料,通过正交试验,研究发芽温度、发芽时间和含水率对玉米发芽过程中酶活力的影响,在确定最佳发芽条件下比较各种酶活力的变化趋势。[结果]正交试验表明,玉米最佳发芽条件为:发芽温度25℃,发芽时间6 d,含水率46.1%。玉米α-淀粉酶活力主要在发芽阶段形成,发芽促进了α-淀粉酶活力的快速增长直至达最高值;-β淀粉酶活力随发芽进行缓慢增加至最大值;纤维素酶活力也随着发芽进行缓慢增加至最大值。[结论]-α淀粉酶、-β淀粉酶和纤维素酶酶活力都呈现随着时间的变化先增大后减小的趋势,最大值均出现在第5天前后。  相似文献   

8.
为了掌握荞麦微孔淀粉的制备条件及吸附性能,在对荞麦生淀粉水解适用酶进行筛选的基础上,系统研究了影响荞麦微孔淀粉吸附性能的主要因素,确定了荞麦微孔淀粉的酶法制备工艺条件。结果表明,真菌α-淀粉酶对荞麦淀粉的酶活力强,与中温α-淀粉酶无明显的协同作用;真菌α-淀粉酶对荞麦淀粉颗粒的致孔率较高,孔径较为一致;在反应温度为40℃、pH6.2、反应时间14 h、真菌α-淀粉酶用量为20 g/kg条件下制备荞麦微孔淀粉,其吸附性能最佳。通过控制反应温度、pH值、反应时间及酶用量,可以制备吸附性能良好的荞麦微孔淀粉。  相似文献   

9.
烤烟大田生长期淀粉酶变化及淀粉的积累   总被引:4,自引:0,他引:4  
通过对红花大金元和K3262个烤烟品种,经3个施氮量处理后的大田生长期烟叶中α-淀粉酶、β-淀粉酶活性和烟叶淀粉积累的研究表明:大田生长期烟叶中α-淀粉酶活性移栽后迅速升高,至移栽后40d达到最高峰,然后迅速下降,移栽后60d至成熟趋于稳定。β-淀粉酶活性变化规律与α-淀粉酶活性变化一致。移栽后40d烟叶淀粉积累很少。移栽后40~60d,烟叶淀粉积累速度最快,移栽后60d至成熟,淀粉积累速度开始减慢。不同施氮量对淀粉酶活性影响明显,对淀粉含量影响不明显。  相似文献   

10.
[目的]以产酸性α-淀粉酶菌解淀粉芽孢杆菌B-5为出发菌株,通过对B-5原生质体进行紫外线诱变以达到提高产酸性α-淀粉酶活力的目的。[方法]在溶菌酶浓度为20 mg/ml,37℃酶解90 min条件下,原生质体制备率达到94%。然后经紫外线诱变处理,从中筛选水解圈与菌落比值较大者进行发酵,测定酸性α-淀粉酶活力。[结果]从大量突变菌株中筛选得到1株α-淀粉酶活力为267 U/ml的突变菌株UV-329,其产酶活力较出发菌株B-5提高了254.2%。[结论]利用紫外线对解淀粉芽孢杆菌B-5原生质体进行诱变是一种有效的微生物育种方法。  相似文献   

11.
采用微波辅助酶解法制备了玉米抗性淀粉,在固定的微波糊化条件下,考察了耐高温α-淀粉酶添加量和酶解时间、普鲁兰酶添加量和酶解时间对抗性淀粉收率的影响。结果表明:在耐高温α-淀粉酶添加量3 U/g干淀粉、酶解时间30 min,普鲁兰酶添加量8 U/g干淀粉、酶解时间4 h最佳实验条件下,抗性淀粉收率可达14.38%,实验结果可为微波辅助酶解法制备玉米淀粉提供依据。  相似文献   

12.
通过对红花大金元和K 326 2个烤烟品种,经3个施氮量处理后的大田生长期烟叶中α-淀粉酶、β-淀粉酶活性和烟叶淀粉积累的研究表明:大田生长期烟叶中α-淀粉酶活性移栽后迅速升高,至移栽后40d达到最高峰,然后迅速下降,移栽后60d至成熟趋于稳定.β-淀粉酶活性变化规律与α-淀粉酶活性变化一致.移栽后40d烟叶淀粉积累很少,移栽后40~60d,烟叶淀粉积累速度最快,移栽后60d至成熟,淀粉积累速度开始减慢.不同施氮量对淀粉酶活性影响明显,对淀粉含量影响不明显.  相似文献   

13.
对水稻进行浸泡发芽培养,使水稻分子内部构象发生改变,达到变性目的,测定变性淀粉α-淀粉酶活力的变化,选择最佳浸泡发芽条件并测定变性后淀粉的粘度。结果表明,选择在25℃,浸泡4 h断水10 h,加碱量为0.03%Ca(OH)2的条件下培养60 h,然后在25℃下发芽6 d,α-淀粉酶活性最高,粘度较好。  相似文献   

14.
[目的]以绿豆为原料,研究α-淀粉酶对绿豆粉酶解工艺.[方法]以离心沉淀率作为指标,通过对料液比、酶解时间、加酶量进行单因素试验和正交试验设计,测定饮料沉淀率以确定酶解绿豆饮料的最佳工艺参数.[结果]结果表明:料液比1∶11,酶解时间110 min,温度65℃,中温α-淀粉酶添加量200 U,绿豆谷物饮料酶解效果最佳,在该条件下离心沉淀率为29.68%.[结论]酶解后饮料的沉淀率降低,产品口感爽滑,稳定性较好.  相似文献   

15.
碎米蛋白的提取及多孔淀粉的制备   总被引:1,自引:0,他引:1  
陈三宝  周蓉 《安徽农业科学》2007,35(14):4279-4280
碎米蛋白和大米淀粉可以作为碎米综合利用的2个主产品。采用碱法将碎米蛋白和淀粉分离。研究表明:蛋白最适提取条件为碱液质量分数0.3%,提取时间8 h,提取温度为室温,料液比为15∶,蛋白得率67.3%。同时,研究了以碎米淀粉为原料,采用α-淀粉酶水解的处理方法制备多孔淀粉。研究表明多孔淀粉的最佳反应条件为:反应时间8 h,温度50℃,pH 6.0,α-淀粉酶用量1.5%,制备的多孔淀粉具有良好的吸水和吸油性能。  相似文献   

16.
刘聪  安家彦 《安徽农业科学》2008,36(8):3112-3113
[目的]优化小麦发芽前浸泡条件。[方法]采用L(934)正交试验进行优化,通过分光光度法测定α-淀粉酶活力。[结果]各因素对小麦发芽前浸泡对α-淀粉酶活力影响的主次顺序依次为:浸泡温度>浸泡方式>加碱量。小麦发芽前最适浸泡条件为15℃,"浸4断10",加碱(生石灰)量0.015%。[结论]最佳的浸泡条件对发芽产生了积极的影响,使发芽过程中的α"淀粉酶活力有较大的增强。  相似文献   

17.
以马铃薯淀粉为原料、耐高温α-淀粉酶为液化酶,依据DE值和透光率为衡量指标,采用单因素对比分析与Box-Behnken设计相结合的试验方法,研究马铃薯淀粉制备高麦芽糖浆酶法液化工艺的最佳条件.结果表明:在液化温度96℃、液化时间15.55min、耐高温α-淀粉酶添加量15.13U/g淀粉、淀粉乳质量分数21.4%、pH值为6.2以及无水CaCl2添加量为0.10%的条件下,马铃薯淀粉液化液的理论预测DE值为9.99%,可以制备DE值最接近于10的液化酶解产物.  相似文献   

18.
目的1探究外源淀粉酶和ca26‘、Mn2+、K+对烘烤中烤烟‘KRK26’上部叶淀粉酶比活力和淀粉降解的效应。【方法】用分光光度法检测烟叶的淀粉酶比活力和淀粉含量。【结果】8U/g用量的外源α-淀粉酶能在变黄和定色阶段提高烟叶α-淀粉酶的比活力,但在干筋阶段不能,80 U/g用最的外源β.淀粉酶类似地能在变黄阶段和定色早期提高烟叶β.淀粉酶的比活力:烟叶淀粉的降解被外源α-或β-淀粉酶强化。前者的效果优于后者的。1.50mg/ml Ca2+主要因其对烟叶α-淀粉酶的强化效应而强化烟叶总淀粉酶的比活力,并促进的淀粉降解。4mmol/LMn2+在变黄至定色早期抑制烟叶α-淀粉酶、在变黄至定色晚期抑制烟叶β-和总淀粉酶,但在定色晚期至干筋早期促进烟叶α-淀粉酶、在于筋晚期促进娴叶β-和总淀粉酶。同时,Mn2+在变黄阶段妨碍淀粉降解,但在定色早期至于筋期促进。1mg/ml K+在变黄阶段提很高烟叶α-、β-。和总淀粉酶比活力、但在定色早期至于筋晚期降低,并总是抑制淀粉降解。【结论】适当浓度的外源淀粉酶和Ca2+能用于在烘烤前处理烤烤叶片以促进叶片淀粉在烘烤中的降解。  相似文献   

19.
双酶法水解板栗淀粉工艺研究   总被引:2,自引:0,他引:2  
为使板栗中的淀粉能被人体更有效利用,减少板栗饮料生产中的分层和沉淀现象。采用双酶法(耐高温α-淀粉酶、糖化酶)对板栗浆液中的淀粉进行水解。以淀粉水解度为指标,通过单因素试验和正交试验优化,最终确定了制取板栗淀粉水解液的糊化、糖化的最佳工艺条件分别为加酶量8U/g、95℃、pH6.0、时间60min以及加酶量80U/g、60℃、pH4.0、时间50min。  相似文献   

20.
利用α-淀粉酶、γ-淀粉酶水解淀粉,探讨了麦麸中淀粉水解工艺条件。以料液比、α-淀粉酶与γ-淀粉酶的比例、复合酶添加量、酶解温度、时间和pH值为单因素,研究各单因素对淀粉残留率的影响,用正交法对试验工艺进行优化。结果表明,麦麸中淀粉液化水解残留率最低的工艺条件为α-淀粉酶与γ-淀粉酶的比例6∶4、添加量0.7%、酶解温度40℃、时间90 min、pH 6.5,在此条件下,酶解后麦麸中淀粉的残留率仅为0.62%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号