首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rotation of maize (Zea mays) with fast-growing, N2-fixing trees (improved fallows) can increase soil fertility and crop yields on N-deficient soils. There is little predictive understanding on the magnitude and duration of residual effects of improved fallows on maize yield. Our objectives were to determine the effect of fallow species and duration on biomass production and to relate biomass produced during the fallow to residual effects on maize. The study was conducted on an N-deficient, sandy loam (Alfisol) under unimodal rainfall conditions in Zimbabwe. Three fallow species — Acacia angustissima, pigeonpea (Cajanus cajan), and Sesbania sesban — of one-, two-, and three-year duration were followed by three seasons of maize. Pigeonpea and acacia produced more fallow biomass than sesbania. The regrowth of acacia during post-fallow maize cropping provided an annual input of biomass to maize. Grain yields for the first unfertilized maize crop after the fallows were higher following sesbania (mean = 4.2 Mg ha–1) than acacia (mean = 2.6 Mg ha–1). The increased yield of the first maize crop following sesbania was directly related to leaf biomass of sesbania at the end of the fallow. Nitrogen fertilizer did not increase yield of the first maize crop following one- and two-year sesbania fallows, but it increased yield following acacia fallows. Nitrogen fertilizer supplementation was not required for the first maize crop after sesbania, which produced high-quality biomass. For acacia, which produced low-quality biomass and regrew after cutting, N fertilizer increased yield of the first post-fallow maize crop, but it had little benefit on yield of the third post-fallow maize crop.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Nitrogen deficiency is widespread in southern Africa, but inorganic fertilizers are often unaffordable for smallholder farmers. Short-duration leguminous fallows are one possible means of soil fertility restoration. We monitored preseason topsoil (0 to 20 cm) ammonium and nitrate, fallow biomass production and grain yields for three years in a relay cropping trial with sesbania [Sesbania sesban (L.) Merr.] and maize (Zea mays L.). Sesbania seedlings were interplanted with maize during maize sowing at 0, 7400 or 14,800 trees ha–1, in factorial combination with inorganic N fertilizer at 0 or 48 kg N ha–1 (half the recommended rate). After maize harvest, fallows were allowed to grow during the seven-month dry season, and were cleared before sowing the next maize crop. Both sesbania fallows and inorganic N fertilizer resulted in significantly greater (P < 0.01 to 0.05) preseason topsoil nitrate-N than following unfertilized sole maize. In plots receiving no fertilizer N, preseason topsoil inorganic N correlated with maize yield over all three seasons (r 2 = 0.62, P < 0.001). Sesbania fallows gave significantly higher maize yields than unfertilized sole maize in two of three years (P < 0.01 to 0.05). Sesbania biomass yields were extremely variable, were not significantly related to sesbania planting density, and were inconsistently related to soil N fractions and maize yields. Short-duration fallows may offer modest yield increases under conditions where longer duration fallows are not possible. This gain must be considered against the loss of pigeonpea (Cajanus cajan L. Millsp) harvest in the similarly structured maize-pigeonpea intercrop common in the region.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Indigenous and exotic leguminous shrubs that are promising for planted fallow for soil fertility replenishment in east and southern Africa have been found to harbour many herbivorous insects, giving suspicion that widespread adoption of fallow systems may aggravate insect pests. Studies were conducted on farms in western Kenya from 1999 to 2001 to monitor the abundance of herbivorous insects and assess their effects on biomass yields of pure and mixed fallows. The treatments tested were single and two-species mixtures of Tephrosia vogelii, Sesbania sesban and Crotalaria grahamiana and a natural fallow in a split plot design, with the fallow systems in the main plots and protection vs. no protection against insects in sub-plots spread over six farms. Eighteen insect species belonging to seven orders and 14 families were identified as pests of␣the fallows with varied abundance and infestation level across the sites. While Hilda patruelis and Amphicallia pactolicus were most damaging to C. grahamiana, Mesoplatys ochroptera was detrimental to S.␣sesban. T. vogelii hosted fewer insects than others. Nevertheless the pest infestation did not cause significant biomass yield reduction during the study period. Pest attack was generally greater in villages that had been testing the planted fallows for some years compared with villages that took up the fallows recently. This indicates the potential for increased pest infestation with increased adoption of the system by farmers. Multi-species fallows did not indicate any advantage over single species fallows in terms of either reduced pest incidence or increased biomass production.  相似文献   

4.
Food crop production in highly populated areas around major cities of the humid lowlands of Cameroon is highly dependent on a fallow system (two–four years duration) mainly of Chromolaena odorata. Where such fallows have been in use for some time, problems of soil fertility with declining crop yields and higher incidence of weeds were reported. Although improved fallows have been widely adopted in sub-humid zones, there is no evidence of successful adoption of agroforestry-based technologies for soil fertility improvement in the humid forest areas. In response, ICRAF has developed a short fallow system with Cajanus cajan for soil fertility improvement in the humid lowlands of West Africa. Farmers' response to these cajanus fallows is positive. Benefits reported are higher crop yields after cajanus fallows compared to natural fallows, clearing of cajanus is easier and the shrubs shade out the weeds. Women particularly appreciate the technology for its low labour demand and for the fact that these shrubs can be planted on land with less secure tenure. Economic analysis of cajanus fallows compared to natural fallow over six years shows that cajanus fallows are profitable under most tested scenarios, both in terms of returns to land and to labour. It seems that improved fallows with Cajanus cajan are a good response to shortening natural fallows for households in the humid lowlands of Cameroon with land constraints. However, wider dissemination of the technology requires a targeted extension approach and adequate seed supply strategies, which should be based on joint efforts between farmers, extension services and research.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. The experiment was conducted on a high base status soil (Typic Eutropepts), and in Papua New Guinea such soils are intensively used for agriculture. Soil samples were taken prior to fallow establisment and after one year when the fallows were slashed and above ground biomass and nutrients measured. The above ground and litter biomass of piper was 13.7 Mg dry matter ha-1, compared to 23.3 Mg ha-1 of gliricidia and 14.9 Mg ha-1 of imperata. Gliricidia produced almost 7 Mg ha-1 wood. Total above ground biomass returned to the soil when the fallows were slashed was the same for piper and gliricidia (8 Mg ha-1). Gliricidia accumulated the largest amounts of all major nutrients except for K, which was highest in the above ground piper biomass. Imperata biomass contained the lowest amount of nutrients. The largest stocks of C, N, Ca and Mg were found in the soil, whereas the majority of P was found in the above ground biomass and litter. Almost half of the total K stock of piper and gliricidia was in the biomass. During the fallow period, soil organic C significantly increased under gliricidia fallow whereas no net changes occurred in piper and imperata fallows. The study has shown large differences in biomass and nutrient stocks between the two woody fallows (piper, gliricidia) and between the woody fallows and the non-woody fallow (imperata). Short-term woody fallows are to be preferred above grass (imperata) fallows in the humid lowlands of Papua New Guinea because of higher nutrient stocks.  相似文献   

6.
There are abundant local legume trees and shrubs potentially suitable for alley cropping systems in the sub-Saharan Africa, which are yet to be studied. The nitrogen contribution of two years old Albizia lebbeck and S. corymbosato yield of maize grown in alley cropping was compared to that of Senna siamea, Gliricidia sepium and Leucaena leucocephala in four seasons at Ibadan. Maize shoot biomass and maize grain yield in A. lebbeck alley compared favourably with that in G. sepium and L. leucocephala. Maize biomass and grain yield in S. corymbosa alleys were the lowest. Within A. lebbeck, L. leucocpehala, and G. sepium alleys there were no significant differences in the maize yield in the alleys that received 0, 40 or 80 kg N/ha. Application of more than 40 kg N/ha in S. corymbosa alleys was not necessary as there was no significant increase in maize yield at the higher level of nitrogen. Maize yield and N uptake in A. lebbeck alleys were not significantly different from yield and N uptake in G. sepium, and L. leucocephala at the same fertilizer level. There was a significant correlation between hedgerow tree biomass and maize grain yield. At the end of twelve weeks after pruning application, the organic residues of the pruning applied in the alleys ranged from 5% in G. sepium and 44% in A. lebbeck in the first year compared with the original pruning applied which showed that the slow rate of A. lebbeck decomposition could have a beneficial effect on the soil. The maize N recovery from applied N fertilizer was low (10–22%). Percentage N recovery from the prunings was low in the non-N fixing trees (12–22%), while the recovery was high (49–59%) in A. lebbeck as well as in the other nitrogen fixing tree prunings. Thus A. lebbeck, apart from enhancing maize growth and grain yield like in L. leucocephala and G. sepium, had an added advantage because it remained longer as mulching material on the soil because of its slow rate of decomposition. It was able to survive pruning frequencies with no die-back. This indicates that A. lebbeck is a good potential candidate for alley cropping system in West Africa. S. corymbosa performed poorly compared with the other legume trees. Though it responded to N fertilizer showing a positive interaction between the hedgerow and fertilizer application, it had a high die back rate following pruning periods and termite attack.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
Six neotropical traditional fallow systems are described: 1) enriched fallows of the Amazon, 2) Babassu palm (Orbignya phalerata Mart.) forests of central and northern Brazil, 3) bracatinga (Mimosa scabrella Benth) improved fallow of southeastern Brazil, 4) carbon negro (Mimosa tenuiflora Willd.) fallow of the wet-dry zone of Mesoamerica, 5) frijolillo (Senna guatemalensis Donn. Smith) of high-elevation zones in southern Honduras, and 6) caragra (Lippia torresii) fallow of humid zones of Costa Rica.These systems include both biologically and economically enriched fallows. Some (e.g., the enriched fallows of the Amazon) require a considerable degree of human intervention, while others (e.g., the bracatinga and carbon negro fallows) seem to form with little human encouragement, following the burn in shifting cultivation systems. Some of the systems (e.g., frijolillo and caragra) are quite site-specific and have a limited distribution; others (e.g., babassu, bracatinga, and carbon negro) occur over large areas and could be adapted to considerable areas in the Americas. As economic analyses are generally lacking, it is unclear what benefits would be achieved from a wider use of these systems. Most of the biologically enriched fallows seem able to maintain low yields of food crops at low input levels. Some of the economically enriched fallows seem able to produce higher economic returns.  相似文献   

8.
Maize/cassava were intercropped between hedgerows of Senna spectabilis [(DC.) Irwin and Barneby], Flemingia macrophylla [(Willd.) Merrill] and Dactyladenia barteri [(Hook f ex Oliv.) Engl.] for five consecutive years on an Ultisol in southern Cameroon. Crop yields and hedgerow biomass production in the third to fifth year of cropping are reported. S. spectabilis produced more biomass than F. macrophylla and D. barteri in all years. Cumulative maize grain and cassava tuber yields were highest in F. macrophylla alley cropping, outyielding the no-tree control consistently by 42 to 67% (average 56%). Between hedgerows of D. barteri and S. spectabilis, crops yielded 17% and 16% more than the no-tree control, respectively. However, between S. spectabilis hedgerows, yields were highly variable between years (–15% to +35% compared to the no-tree control) and thus the system is at risk of failure. F. macrophylla is recommended for continuous alley cropping of maize/cassava intercrop. The use of D. barteri may require fallow phases for biomass accumulation followed by cropping phases with rigorous pruning. Although this may lead to lower cumulative yields, the products of the fallow phase, such as stakes and firewood, may provide some compensation.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Researchers worked with farmers in eastern Uganda to develop alternatives for soil management using crotalaria (Crotalaria ochroleuca), mucuna (Mucuna pruriens var. utilis), lablab (Dolichos lablab), and canavalia (Canavalia ensiformis) as green manures in short-term fallows. The participatory research was part of a community-based approach for systems improvement. Grain yields of maize (Zea mays) and bean (Phaseolus vulgaris) following one season of crotalaria fallow were 41% and 43%, respectively, more than following a two-season weedy fallow. Grain yields of maize following a one-season fallow with mucuna and lablab were 60% and 50% higher, respectively, as compared with maize following maize. Maize and bean yield were more, although effects were small, during the second and third subsequent seasons, indicating probable residual effects of the green manures. Mucuna and lablab were successfully produced by intersowing into maize at three weeks after sowing maize, although the yields of the associated maize crop were reduced by 24% to 28%. Farmers estimated the labor requirements for mucuna and lablab to be less than for crotalaria. Farmers independently experimented on how these species can be integrated into banana (Musa spp.), coffee (Coffea robusta), sweet potato (Ipomoea batatas), and cassava (Manihot esculenta) production systems. Farmers reported that the beneficial effects of the green manures included higher food-crop yields; weed suppression; improved soil fertility, soil moisture, and soil tilth; and erosion control. Mucuna and lablab were preferred because of reduced labor requirements and increased net benefits compared with continuous cropping. Farmer participation in the green manure research resulted in efficient generation and adaptation of green manure technology now being promoted in eastern and central Uganda.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
In southern Benin, West Africa, two alley cropping systems were studied from 1986 to 1992. Yield development was followed in a maize and cassava crop rotation vs. intercropping system, with alleys of Leucaena leucocephala (Lam.) de Wit and Cajanus cajan (L.) Millsp. vs. a no-tree control, with and without NPK fertiliser. Without alleys, NPK fertilisation maintained high yield levels of 2–3 t maize dry grain plus 4–6 t ha–1 cassava root DM in intercropping, 3–4 t ha–1 maize and 6–10 t ha–1 cassava in solercropping. Without NPK, final yields seemed to stabilise at about 1 t maize plus 2 t cassava in intercropping and twice as much in each solecrop. Alley cropping induced significant yield increases by about 50% with both tree species in unfertilised, intercropped maize, and with Cajanus in fertilised, solecropped cassava. In monetary terms, the NPK-fertiliser response of stabilised yields was significant for all treatments except the solecropped Leucaena alleys. It is concluded that on Ultisols with low nutrient status in the upper rooting zone, alley cropping with low-competitive tree species may improve food crop yields but the greatest monetary output is achieved by intercropping with mineral fertiliser independent of the presence or absence of an agroforestry component.  相似文献   

11.
Soil moisture depletion during dry seasons by planted hedgerows to lower levels than under natural fallow, would reduce drainage and nutrient losses in the following rainy season when food crops are grown. The volumetric water content of the 0–150 cm soil profile was measured under planted hedgerows (alternating Leucaena leucocephala and Gliricidia sepium) and natural fallow, both either annually cropped to sole maize or in a two-year crop/two-year fallow rotation, in the humid forest zone (annual rainfall 1700 mm) of southern Cameroon during the 1995–1996 and 1996–1997 dry seasons. Hedgerows were cut to 0.05 m height, largely eliminating trees’ water consumption during cropping phases. Differences in total soil water content at 0–150 cm depth, between systems, occurred only in the early phases of the 1996–1997 dry season. In both dry seasons, differences between systems in water content were found in some soil layers, all within 0–60 cm depth, yet, without consistent advantage of any system in exploiting the topsoil water resources. Soil water content was lower under L. leucocephala than G. sepium at 20–40 cm depth only. Below 60 cm depth, no differences in water regimes between systems were found. Under southern Cameroonian conditions it is unlikely that any of the systems has an advantage in accessing or recovering water and thus, if available, nutrients from the sub-soil. None of the systems examined was capable of delaying drainage and thus it appears unlikely that downward displacement of nutrients is delayed after the start of the rains.  相似文献   

12.
Crop and livestock production in the Guinea savanna zone of northern Ghana has been declining over the past years as a result of increasing pressure on land. To sustain soil productivity, pigeon pea(Cajanus cajan), a leguminous perennial crop was evaluated for its potential as a short duration fallow crop for fodder and grain, and maize (Zea mays)production. It involved comparing a natural fallow (i.e., control) and four improved fallows of pigeon pea pruned annually at 30 cm, 60 cm and 90 cm from the ground, and unpruned pigeon pea over a two-year period. After this time, the land was cleared manually and planted to maize. The highest mean annual biomass of pigeon pea over the two-year period of 6.1 t ha−1 dry matter (DM) was obtained by pruning at 60 cm. The highest leaf litter production and pigeon pea seed yield was obtained from the no pruning treatment. The mean maize grain yield from the improved fallow (3.02 t ha−1) in the first year after clearing was significantly (P < 0.05) greater than that of the natural fallow (1.54 t ha−1). Considering the biomass of pigeon pea from pruning, pigeon pea seed yield and maize grain yield after the pigeon pea, pruning pigeon pea at 60 cm is the most promising regime for crop-livestock production systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The use of agroforestry systems in which pruning from trees is used to mulch the companion crops is an important area of research in the tropics. However, previous studies mostly evaluated the contribution of mulch to soil improvement and rarely examined the effect of mulch on weeds. Field experiments were conducted during the 1995 and 1996 growing seasons to investigate the effects of mulch from three woody fallow species on weed composition, biomass and maize grain yield. Treatments consisted of mulch from Leucaena leucocephala, Gliricidia sepium, and Senna siamea applied at rates of five and three tons dry matter ha–1 at planting and three weeks after planting (WAP), respectively, an unmulched treatment that received 90 kg N ha–1 of inorganic fertiliser, and an unmulched control plot that received no fertiliser. In both years and sampling dates, plots mulched with G. sepium and S. siamea had significantly lower weed density and biomass than the control plot in each of the sampling times and year of study. There was no significant difference in either weed density or biomass between the plot mulched with L. leucocephala and the unmulched plots. Mulches from G. sepium and S. siamea reduced weed density and weed biomass, while L. leucocephala was less effective in reducing weed biomass and weed density. Weed reduction by the mulches was in the order G. sepium S. siamea > L. leucocephala. Sedges were the dominant species in all the treatments except in G. sepium plots, where Talinum triangulare and other broadleaved species were dominant.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Reductions of up to 90% in weed biomass was observed under Leucaena leucocephala alley cropping with varying tree between (2,4 and 8 m) and within-row spacing combinations when compared to crop-only control. An increase of 24 to 76 % in maize yields of alley cropped plots compared to the crop-only control was also recorded. The 2m alley widths closed canopy faster than the 4 and 8m, and hence realized highest weed biomass reduction during the short-fallow period between two cropping seasons. At the end of the short fallow period, substantial fuelwood (up to 8 t ha –1) was realized.  相似文献   

15.
In the Palcazu Valley alluvial Inceptisols are relay-cropped with maize-cassavaplantain in rotation with 2–5 years of tree fallow. These lands, of limited extent, yet important for Yanesha Indian subsistence production, are being cropped even more intensively as population increases and land is converted to other uses. The relay-planting of the tree-thicket combination Inga edulis with Desmodium ovalifolium into the on-farm crop sequence was evaluated as a means to accelerate fallow recovery and thereby shorten fallow rotations. Three experiments with Inga/Desmodium planted with cassava-plantain and one with rice under different weeding regimes after a Desmodium fallow were conducted. Inga and Desmodium were not chopped back or pruned during these experiments. Desmodium/Inga suppressed herbaceous weeds from one year after planting. Desmodium/Inga accumulated more woody biomass than natural fallows. Cassava yields were unaffected by the presence of Desmodium/Inga, while plantain yields were greater under Desmodium/Inga compared to natural weeds. Desmodium/Inga, while promising for shortening fallow rotations, demonstrated potential difficulties: increased labor for establishment, tendency of Desmodium to weediness in later crop cycles, and suppression of the natural regeneration of trees and shrubs.  相似文献   

16.
Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, labour investment increases and returns to labour tend to decrease in successive years as weed pressure intensifies and soil quality declines.Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the labour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades.On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But labour is the scarcest resource on small farms and tree-pruning is usually too labour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize labour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses.The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.  相似文献   

17.
Theee trials to evaluat the potential of alley cropping in maize production on the low fertility, acidic soils in Northern Zambia are described. Leucaena leucocephala, Gliricidia sepium, Sesbania sesban, Albizia falcataria, Fleminga congesta, and Cassia spectabilis, were grown in alley crops with hybrid maize and soybean. All trials received recommended rates of P and K fertiliser; N fertiliser was applied at three rates as a subplot treatment. One trial received lime before establishment.Only in the limed trial was there a significant improvement in maize yields through alley cropping; when no N fertiliser was applied, incorporation of Leucaena leucocephala prunings resulted in an increase of up to 95% in yields, with a smaller improvement being produced by Flemingia congesta. There was a significant correlation between the quantity of prunings biomass applied and the proportional increase in maize yields over the control treatment. It is suggested that the lack of effect of most of the tree species on crop yields was due to low biomass production.An economic analysis showed that alley cropping with limed Leucaena was only profitable when fertiliser costs were high in relation to maize prices. However, lime is both expensive and difficult to obtain and transport for most small scale farmers in the region, and is therefore not a practical recommendation. It is suggested that future alley cropping research should focus on screening a wider range of tree species, including other species of Leucaena, for acid tolerance and higher biomass production.  相似文献   

18.
In order to identify for alley cropping new candidate species with high biomass and nitrogen-fixing potential, a screening study was conducted on ten woody and shrub legumes (Acacia auriculiformis, Albizia lebbeck, Gliricidia sepium, Leucaena diversifolia, L. leucocephala cv. K28 and cv. K636, Lonchocarpus sericeus, Cajanus cajan, Crotalaria juncea and Tephorsia candida) for 6 months using an acid Ultisol and a non-acid Alfisol. A wide interspecific variability of legumes appeared within soil types, and there were significant species-by-soil interactions for many parameters in this study. In the acid Ultisol, plant growth in height and grith, nodule numbers, nitrogen yield and N2-fixing potential were significantly (P = 0.05) lower than those in the Alfisol. While Albizia lebbeck was outstanding in both acid and non-acid soil conditions for most performance criteria, L. leucocephala cv. K28 was most sensitive to soil acidity with 41.7% of total nitrogen yield in the Ultisol relative to that accumulated in the Alfisol. In addition to L. leucocephala cv. K28 and G. sepium, the most common hedgerow species, A. lebbeck, L. leucocephala cv. K636, L. diversifolia on Alfisol, and A. lebbeck, L. leucocephala cv. K636, L. diversifolia, Tephrosia candida and Cajanus cajan on acid Ultisol, could be considered promising and thus, worthy of further site adaptability trials.  相似文献   

19.
The effect of tree species on the characteristics of the herbaceous stratum, during the first five years of a fallow, was evaluated in the North of Cameroon (average annual temperature 28.2 °C, total annual rainfall 1050 mm). Treatments included a natural grazed herbaceous fallow, a natural ungrazed herbaceous fallow and three planted tree fallows (Acacia polyacantha Willd. ssp. campylacantha (Hochst. ex A. Rich.), Senna siamea Lam. and Eucalyptus camaldulensis Dehnh.), which were protected against grazing. Because tree species influenced light interception in different ways, as well as having different root patterns, they had different effects on the herbaceous stratum in terms of species composition and biomass. The grazed herbaceous fallow maintained the greatest species richness. Protection against grazing or the introduction of tree species associated with the absence of grazing induced both a progressive evolution to a particular species composition. The ungrazed herbaceous fallow consisted mainly of Andropogon gayanus Kunth, which provided the greatest biomass (8 t dry matter ha–1 at the end of the fallow period). E. camaldulensis provided little shade and the lowest fine root mass in the top layer allowing the growth of A. gayanus and thus a greater herbaceous biomass (3.5 t DM ha–1) than that found under the other tree species. Under the heavy shade of A. polyacantha, the herbaceous stratum consisted mainly of annual Pennisetum spp. (2.2 t DM ha–1) and showed the greatest N concentration (1.3%), probably due to N2 fixation by the tree species. After the fourth year, despite the relatively open tree canopy, S. siamea, which showed the highest fine root mass, had a strong depressive effect on the herbaceous stratum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In eastern Zambia, nitrogen deficiency is a major limiting factor for increased food production. Soil fertility has been declining because of nearly continuous maize (Zea mays) cultivation with little or no nutrient inputs. The use of short-duration tree fallows was one of several agroforestry options hypothesized to restore soil fertility. Sesbania sesban, an indigenous N2-fixing tree was the most promising among species tested in screening trials. Several studies since 1987 have demonstrated the dramatic potential of two- or three-year sesbania fallows in restoring soil fertility and increasing maize yields. Analyses showed that these improved fallow systems were feasible, profitable, and acceptable to farmers. Results suggest that high maize yields following fallows are primarily due to improved N input and availability by the fallows. The potential to increase maize production without applying mineral fertilizers has excited thousands of farmers who are enthusiastically participating in the evaluation of this technology. The number of farmers who are testing a range of improved fallow practices has increased from 200 in 1994 to over 3000 in 1997. Presently, a strong network of institutions comprising government, NGOs, development projects, and farmer organizations is facilitating the adaptive research and expansion of improved fallow technology in eastern Zambia. Key elements in the research process that contributed to the achievements are effective diagnosis of farmers' problems, building on farmers' indigenous knowledge, generating several different fallow options for farmers to test, ex-ante economic analysis, farmer participation in on-farm trials, and development of a network for adaptive research and dissemination.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号