首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This study was designed to determine the effect of complete substitution of fish meal (FM) by three plant protein sources including extruded soybean meal (SBM), extruded full‐fat soybean (FFSB) and corn gluten meal (CGM) on growth and feed utilization of Nile tilapia Oreochromis niloticus and tilapia galilae Sarothrodon galilaeus. Four isonitrogenous of crude protein (ca. 28.0%) and isocaloric (ca. 19 MJ kg−1) experimental diets were formulated. The control diet (diet 1) was prepared with FM as the main protein sources. Diets 2–4, each FM control diet, were completely substituted with SBM (diet 2), FFSB (diet 3) and CGM (diet 4). l ‐lysine and dl ‐methionine were added to plant protein diets to cover the nutritional requirements of tilapia. Each treatment was allocated to three net pens and fed for 17 weeks. Nile tilapia fed the control diet showed significantly higher (P≤0.05) values for final body weight (FBW), feed intake (FI), weight gain (WG) and specific growth rate (SGR), whereas fish fed the diet with CGM achieved the lowest values. Tilapia galilae fed SBM diet recorded the highest (P≤0.05) values for growth performance. Better feed conversion ratio (FCR) for both Oreochromis niloticus and Sarothrodon galilaeus was observed when fish were fed SBM diet, whereas the worse FCR was recorded for FFSB diet. Feed utilization parameters including protein productive value (PPV), fat retention (FR) and energy retention (ER) showed significant differences (P≤0.05) for both the species fed different dietary protein sources. The present results suggest that, for Nile tilapia, both SBM and FFSB supplemented with dl ‐methionine and l ‐lysine can completely replace dietary FM. Meanwhile, S. galilaeus fed SBM diet exhibited comparable growth and feed utilization with those fish fed a fish‐meal‐based diet.  相似文献   

2.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

3.
An 8-week feeding trial was conducted in a static indoor rearing system to examine the effects of partial substitution of fish meal (FM) protein with sesame seed meal protein with and without supplemental amino acids in diets for rohu Labeo rohita fingerlings (average weight 3.82 ± 0.05 g). Before incorporation into diets, sesame Seasamum indicum seed meal was fermented with lactic acid bacteria Lactobacillus acidophilus in order to reduce/eliminate the antinutritional factors tannin and phytic acid present in it. Twelve experimental diets (diets D1 to D12) were formulated replacing the FM protein from a reference diet with sesame seed meal protein at different levels (four sets of diets, of which each set of three diets contained 30%, 40% and 50% replacement of FM protein by sesame seed meal protein respectively). Diets D1 to D3 were not supplemented with any amino acid. Lysine was supplemented to diets D4 to D6. Diets D7 to D9 were supplemented with methionine–cystine (together), and diets D10 to D12 contained lysine and methionine–cystine (together). Lysine and methionine–cystine were added to the diets at 5.7% and 3.1% of dietary protein respectively. The groups of fish fed diets without any supplemental amino acids had significantly lower percentage weight gain, specific growth rate (SGR) and higher feed : gain ratio (FGR) than the groups of fish fed on other experimental diets. The addition of lysine and methionine–cystine to the diet in which 50% of FM protein was replaced by sesame meal protein (diet D12) significantly improved fish weight gain and FGR. The percentage live weight gain and SGR values differed significantly (P < 0.01) from each other in the fish fed diets D10 to D12, which were supplemented with all three amino acids. The results of the present study suggest that rohu fingerlings can effectively utilize the supplemented amino acids and that sesame seed meal protein can replace up to 50% of FM protein in the diets for rohu if the sesame seed meal is properly processed (fermented) and supplemented with deficient amino acids.  相似文献   

4.
Two consecutive 6-week feeding trials were conducted to determine the amount of haemoglobin powder (BM) that could replace fish meal (FM) in juvenile Japanese eel Anguilla japonica (Temminck et Schlegel) diets. Fish were fed 50% crude protein diets in which each of ten isonitrogenous diets was formulated to contain white fish meal and/or blood meal as the dietary protein source to replace FM by BM as follows: Diet 1 (control), 0% BM; diet 2,12.5% BM; diet 3,25% BM; diet 4, 50% BM; diet 5, 75% BM; diet6,100%BM;diet7,25%BM + 3 Essential Amino Acids (EAA); diet 8, 50% BM + 3 EAA; diet 9, 75% BM + 3 EAA; diet 10, 100 BM + 3 EAA. In the first 6-week period, the results were not consistent with the treatments, and poor adaptation of the fish to the experimental diets and conditions was observed. In the second 6-week period, weight gain, specific growth rate, protein efficiency ratio and protein productive value offish fed diets 2, 3, 4, 7, 8 and 9 were not significantly different from those of fish fed the control diet (P > 0.05). However, feed conversion ratios offish fed diets 6 and 10 were lower than that offish fed the control diet (P < 0.05). These results demonstrate that FM can be replaced by BM up to 50% without supplementation of three EAA, and up to 75% with three EAA supplementation in juvenile Japanese eel diets.  相似文献   

5.
The main objectives of this study were to evaluate the effect of partial and total replacement of fish meal (FM) protein by cow pea seed meal (CPSM) protein in practical diets on growth performance, feed utilization, and body composition of Nile tilapia, Oreochromis niloticus (L.). Fish of an average initial weight of 4.6 ± 0.2 g were stocked in 15 glass aquariums (80 L each) at a rate of 15 fish per aquarium. FM protein (30% of the diet) was used as the sole source of animal protein in the control diet. Percent replacement of FM by CPSM on the basis of crude protein were as follows: 0% (control diet A), 25% (diet B), 50% (diet C), 75% (diet D), and 100% (diet E). Diets were fed to fish at a rate of 4% of the total fish biomass daily, for a period of 16 wk. The results of this study revealed that the fish fed control diet A (100% FM) had the best average final body weight, specific growth rate (SGR %/d), weight gain (g/fish), weight gain %, while the poorest results for all parameters were obtained with fish fed diet E (100% CPSM). The same parameters of fish fed diets B (25% CPSM) and C (50% CPSM) were not significantly different (P > 0.05) from those of fish fed the control diet A. Feed utilization parameters of fish fed diets A, B, C, and D were better than for diet E. Proximate composition of whole‐body moisture and ash contents were not significantly different (P > 0.05) among all experimental diets and control diet. Whole‐body protein contents for fish fed diets B and C were superior to the control diet A. Incorporation of CPSM in the diets significantly increased whole‐body fat content. Incorporation of CPSM in the diets significantly decreased apparent digestibility coefficient of crude protein crude fat and energy. Diets B and C were not significantly different from control diet A. Therefore, these findings suggest that up to 50% of FM protein can be replaced by CPSM protein in Nile tilapia diets without any adverse effects on growth performance, feed utilization, body composition, and digestibility.  相似文献   

6.
ABSTRACT:   In order to develop an artificial diet, the dietary utility of enzyme-treated fish meal was investigated for juvenile Pacific bluefin tuna Thunnus orientalis (PBT). Diets containing each 63% of Chilean fish meal (FM), enzyme-treated Chilean fish meal (EC) and enzyme-treated Peruvian fish meal (EP), with 10% bonito oil and raw sand lance Ammodytes personatus (SL) were fed to juvenile tuna six times per day for one week. In a different trial, diets EC and SL were fed to tuna six times per day for 2 weeks. Only diet EC sustained similar growth or caused lower survival and higher feed efficiency, hepato- and enterosomatic indices and final carcass lipid content as compared to those of SL. Diets FM and EP led to lower specific growth rate (SGR) but similar feed efficiency, survival and hepatosomatic index, yet higher enterosomatic index. Moreover, PBT fed diet EC for 2 weeks led to similar growth performance but higher final carcass and hepatic lipid contents, and plasma cholesterol and phospholipid levels than those fed SL. Carcass fatty acid composition of diet EC group had lower 20:5  n -3 and 22:6  n -3 levels than the SL group. These results revealed that EC, as a suitable dietary protein source, could sustain growth of PBT, while dietary bonito oil led to higher carcass lipid but lower accumulation of n -3 highly unsaturated fatty acids.  相似文献   

7.
A 9‐week feeding trial was conducted to investigate the effect of dietary carbohydrate level on the growth performance, body composition and apparent digestibility coefficient and digestive enzyme activities of juvenile cobia. Six isonitrogenous and isolipidic diets containing graded levels of starch (1.3%, 6.5%, 12.5%, 18.4%, 24.2% and 30.4%) were fed to juvenile cobia. Specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) increased with increasing dietary starch up to 18.4% (P<0.05), and thereafter SGR declined but FER and PER remained nearly the same. Apparent digestibility coefficient of starch reduced significantly when dietary starch up to 30.4%. Fish fed the diets with starch from 18.4% to 30.4% showed higher amylase activities in intestinal tract than those fed diets containing starch 1.3% and 6.5% (P<0.05). Significantly higher whole‐body lipid contents were observed in fish fed the diets containing higher starch. Whole‐body moisture content was inversely correlated with whole‐body lipid content, while protein and ash showed no significant differences. Plasma glucose, hepatosomatic index, liver glycogen and liver lipid increased with an increasing dietary starch. Based on SGR and FER, the appropriate dietary starch supplementations of juvenile cobia were estimated to be 21.1% and 18.0 % of diet respectively.  相似文献   

8.
A 12‐week feeding trial was carried out in concrete tanks to examine complete and partial replacement (75%) of fish meal (FM) with poultry by‐product meal (PBM), meat and bone meal (MBM) and soybean meal (SBM) in practical feeds for African catfish Clarias gariepinus. Triplicate groups of fish (initial body weight ranged from 90.33 to 93.93 g fish−1) were fed seven isonitrogenous and isocaloric diets of 20% digestible protein and 300 kcal 100 g−1 of digestible energy. The control contained 25% herring meal, whereas in the other six diets, PBM, MBM and SBM replaced 75% or 100% of the FM. Final body weight (FBW) and specific growth rate (SGR) of the fish fed diets containing PBM (75% and 100%), SBM (75% and 100%) and MBM (75%) were all higher, but not significantly different than those for fish fed the control diet. Replacing 100% of the FM by MBM significantly lowered FBW and SGR. Concerning whole body composition, there were no significant differences in ash and gross energy content of whole‐body among fish; fish fed diets containing PBM‐100% recorded significantly lower protein content compared with the control diet, while fish fed diet SBM‐100% recorded significantly lower moisture content compared with the control diet. Also fish fed diets SBM‐100% and PBM‐75% recorded higher lipid and gross energy contents compared with the control diet. The study revealed that satisfactory growth and feed utilization responses could be achieved through the replacement of FM by PBM, SBM and MBM in the diet of African catfish.  相似文献   

9.
An 8‐week feeding trial was conducted to evaluate the effect of replacement of fish meal (FM) with fermented soybean meal (FSM) on growth performance, intestinal morphology and microbiota of juvenile large yellow croaker (Larimichthys crocea). Replacement ratio of FM with FSM were 0%, 15%, 30%, 45%, 60% and 75%, respectively (marked as FSM0, FSM15, FSM30, FSM45, FSM60 and FSM75). The results indicated that the survival ranged from 84.78% to 99.44%, and no significant differences were observed among all treatments (> 0.05). Weight gain ratio (WGR) and specific growth rate (SGR) significantly decreased when the replacement level of FM protein exceeded 60%, and fish fed the FSM60 and FSM75 diets had lower WGR and SGR than those fed the other diets. Feed intake (FI) and feed conversion rate (FCR) significantly increased with replacement levels of FM increasing. Illumina high‐throughput sequence analyses showed that the alpha diversity did not differ among the diets of FSM0, FSM15 and FSM75. The whole community of tested samples was not modified by FSM, Firmicutes and Proteobacteria were the dominant flora in the intestines based on the phyla level. The dominant phyla in the water sample were Proteobacteria, Bacteroidetes. Fish fed the diet containing FSM75 significantly reduced the species abundance of Paenibacillus. There was a certain correlation between the intestine microbiota and SGR, antioxidant, and immune. Results indicated that up to 45% of FM can be replaced by FSM without negative effects on growth performance and intestinal integrity of juvenile large yellow croaker.  相似文献   

10.
A nutrition trial with striped catfish (Pangasianodon hypophthalmus) juveniles was undertaken to evaluate the effect of replacing dietary fishmeal (FM) protein with corn gluten meal (CGM). A diet with FM as the main protein source was used as the control diet (FM). Five experimental diets (approximately 320 g kg?1 crude protein) were formulated to progressively replace 20% (CGM20), 40% (CGM40), 60% (CGM60), 80% (CGM80) and 100% (CGM100) of FM protein. Fifteen fish per tank (initial weight 11.2 ± 0.6 g) were randomly distributed into 18 80‐litre fibreglass tanks connected to a closed recirculation system (temperature 30.3 ± 1.0 °C). The diets were tested in triplicate for 12 weeks. The final weight and specific growth rate (SGR) of fish fed diets CGM20, CGM40 and CGM60 were not significantly different compared to fish fed the FM diet. Feed intake (FI) tended to decrease with increasing dietary CGM level. Striped catfish fed FM, CGM20 and CGM40 had significantly lower feed conversion ratio (FCR) compared with fish fed CGM80 and CGM100 (< 0.05). The protein efficiency ratio (PER) of fish fed the CGM80 and CGM100 diets was significantly lower than those of all other treatments (< 0.05). Total ammonia‐nitrogen (TAN) excretion increased with elevated dietary CGM inclusion. The viscerosomatic index (VSI) of fish fed the CGM80 and CGM100 diets were significantly higher (< 0.05) than those of fish fed the other treatments. The crude lipid content in the final body composition of the striped catfish was elevated significantly with increasing dietary CGM levels. Fish fed the CGM80 and CGM100 diets displayed haematocrit levels significantly lower (< 0.05) than those fed the other diets. The haemoglobin content in fish was significantly higher in fish fed CGM20 and lower at CGM100 compared to fish fed the FM diet. The results of the present trial indicated that the optimum level of FM protein replacement with CGM determined by quadratic regression analysis was 25.1% on the basis of maximum SGR.  相似文献   

11.
Potential of using rendered animal ingredients, poultry by‐product meal (PM), meat and bone meal (MBM), feather meal (FM) and blood meal (BM) to replace fishmeal in practical diets for cuneate drum Nibea miichthioides (Chu, Lo et Wu) was examined in a net pen experiment. A total of 10 dietary treatments were compared. Nine diets were formulated to contain 363 g kg−1 digestible protein and 14.8 MJ kg−1 digestible energy, and a dietary treatment consisting of raw fish (RF) served as reference. In the formulated diets, the control diet contained 350 g kg−1 herring meal, whereas in the other eight diets, the fishmeal were replaced by MBM (30% fishmeal replacement), PM (50% fishmeal replacement), a blend of PM, MBM, FM and BM (30%, 50% and 80% fishmeal replacement), or a blend of PM, MBM and BM (30%, 50% and 80% fishmeal replacement), respectively. Cuneate drum fingerling (initial body weight 28 g) were fed the test diets for 8 weeks. Specific growth rate (SGR), final body weight (FBW), nitrogen retention efficiency (NRE), condition factor and contents of moisture, crude protein and crude lipid in carcass were not significantly different between fish fed the formulated diets. Fish fed the formulated control diet exhibited lower SGR and FBW, but higher FCR, NRE, hepatosomatic index and crude lipid content in carcass and liver than those of the fish fed the RF. Results of the present study indicate that combination of rendered animal protein ingredients can replace most of the fishmeal in practical diets for cuneate drum.  相似文献   

12.
The effect of substitution of fish meal (FM) by spray‐dried blood cell meal (SBCM) with microencapsulated dl ‐methionine supplementation in trial diets for Litopenaeus vannamei was evaluated. Six isonitrogenous (320 g kg?1) and isolipidic (85 g kg?1) diets were formulated to feed shrimp (2.3±0.2 g shrimp?1) for 56 days. Shrimp were fed with six diets in which FM protein was gradually replaced by SBCM protein (0%, 20%, 40%, 60%, 80% and 100% in diets 0–5). Growth performances and feed utilization of shrimp fed diets containing 0%, 3.5%, 7.0% and 10.5% SBCM protein were not significantly different (P>0.05). Growth, feed conversion ratio and protein efficiency ratio of shrimp fed diets (80 and 100% FM substitution) were significantly poorer compared with other treatments (P<0.05). With increased levels of dietary SBCM, apparent digestibility coefficient of dry matter, crude protein enhanced from 76.9% to 82.3%, 84.8% to 89.0%, but crude lipid decreased from 90.6% to 88.3% respectively. The carcass composition values were not significantly (P>0.05) affected by the replacement level of FM, except lipid. There were no significantly differences (P>0.05) in amino acid retentions among Diets 0–3. The results suggest that the dietary FM protein could efficiently be substituted by SBCM up to 60%, without adverse effects on the growth of L. vannamei.  相似文献   

13.
A growth experiment was conducted to investigate the effects of replacement of fish meal (FM) by meat and bone meal (MBM) in diets on the growth and body composition of large yellow croaker (Pseudosciaena crocea). Six isonitrogenous (43% crude protein) and isoenergetic (20 kJ g− 1) diets replacing 0, 15, 30, 45, 60 and 75% FM protein by MBM protein were formulated. Each diet was randomly allocated to triplicate groups of fish in sea floating cages (1.0 × 1.0 × 1.5 m), and each cage was stocked with 180 fish (initial average weight of 1.88 ± 0.02 g). Fish were fed twice daily (05:00 and 17:30) to apparent satiation for 8 weeks. The water temperature ranged from 26.5 to 32.5 °C, salinity from 32 to 36‰, and dissolved oxygen content was approximately 7 mg l− 1 during the experimental period. Survival decreased with increasing dietary MBM and the survival in the fish fed the diet with 75% protein from MBM was significantly lower than other groups (P < 0.05). There were no significant differences in specific growth rate (SGR) among the fish fed the diets with 0 (the control group), 15, 30 and 45% protein from MBM. However, SGR in the fish fed the diets with 60 and 75% protein from MBM were significantly lower than other groups (P < 0.05). No significant differences in feeding rate were observed among dietary treatments. The digestibility experiment showed that the apparent digestibility coefficients (ADC) of dry matter, protein, lipid and energy of MBM were significantly lower compared with those of FM (P < 0.05). Essential amino acid index was found to be correlated positively with SGR in the present study, suggesting that essential amino acid balance was important. Body composition analysis showed that the carcass protein and essential amino acids were not significantly affected by dietary MBM. The lipid and n-3 highly unsaturated fatty acid (n-3 HUFA) in fish muscle, however, significantly decreased with increasing dietary MBM. These results showed that 45% of FM protein could be replaced by MBM protein in diets of large yellow croaker without significantly reducing growth. It was suggested that the reduced growth with higher MBM was due to lower digestibility and imbalance of essential amino acids.  相似文献   

14.
A feeding trial was conducted in aquaria with juvenile hybrid tilapia (Oreochromis niloticus×Oreochromis aureus) to evaluate the use of different protein sources in combination with distillers dried grains with solubles (DDGS). Twelve 110‐L glass aquaria were stocked with 28 juvenile (2.7±0.5‐g) hybrid tilapia per aquarium. Three replicate aquaria were randomly assigned to each of the four dietary treatments. Diets were isonitrogenous and isocaloric. The control diet contained 12% fish meal and 41% soybean meal as the primary protein sources (Diet 1). Each experimental diet contained 30% DDGS by weight, in combination with 8% fish meal and 34% soybean meal (Diet 2), 26% meat and bone meal (MBM), and 16% soybean meal (Diet 3), or 46% soybean meal alone (Diet 4). Fish were fed to apparent satiation twice a day for 10 weeks. There were no significant differences (P>0.05) in average weight gain, specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) among tilapia fed Diets 1, 2, and 3. Fish fed Diet 4 had significantly lower (P<0.05) average weight gain, SGR, and PER than fish fed Diets 1 and 3. Relative cost per unit weight gain for Diets 1, 2, and 3 were statistically similar (P>0.05), while cost per unit weight gain for Diet 4 was significantly higher (P<0.05) than other diets. Diet 3 represented approximately a 20% cost savings compared with the control diet, with no reduction in growth. This study indicates that diets without fish meal containing 30% DDGS in combination with MBM and soybean meal provide good growth in tilapia. A diet without animal protein did not support acceptable growth.  相似文献   

15.
The main objectives of this study was to evaluate the effect of partial and total replacement of fishmeal protein by okara meal (OM) protein in practical diets on growth performance, feed utilization and body composition of Nile tilapia (Oreochromis niloticus L.) mono‐sex males. Fish of an average initial weight of 2.67 ± 0.01 g were stocked in 15 glass aquariums (80 L each) at a rate of 15 fish per aquarium. Fishmeal protein (18% of the diet) was used as the sole source of animal protein in the control diet. Percent replacement of fish meal (FM) by OM on the basis of crude protein was as follows: 0% (control diet A), 25% (diet B), 50% (diet C), 75% (diet D) and 100% (diet E). Diets were fed to fish at a rate of 5%, and then gradually reduced to 4% of the total fish biomass daily, for a period of 12 weeks. The results revealed that the fish fed diets A (100% FM control), B (25% OM), C (50% OM) and D (75% OM) had significantly the best average body weight, weight gain g, specific growth rate (SGR % day?1), weight gain % and feed intake g fish?1 compared with diet E (100% OM) which had the lowest values. There were no significant differences (P > 0.05) among all experimental diets and control in terms of feed conversion ratio (FCR), protein efficiency ratio (PER) and survival rate %. Whole body protein contents for fish fed diets B, C and D were superior to the control diet. Incorporation of OM in the diets increased significantly whole body fat content. Incorporation of OM in the diets significantly increased apparent digestibility coefficient of crude protein crude fat and energy. Therefore, these findings suggest that up to 75% of FM protein can be replaced by OM protein in Nile tilapia, mono‐sex male diets.  相似文献   

16.
A 9‐week feeding trial was conducted to investigate the effects of dietary Enteromorpha prolifera on the growth performance and body composition of juvenile large yellow croaker (Pseudosciaena crocea) (Richardson, 1846) (11.41 ± 1.59 g) in floating sea cages (1.5 × 1.5 × 2.0 m). Four isonitrogenous and isoenergetic diets were formulated to contain graded levels (0%, 5%, 10% and 15%) of E. prolifera. Survival ranged from 98.7% to 99.7%, and was independent of dietary treatment (P>0.05). There were no significant differences in the feeding rate among dietary treatments (P>0.05). The specific growth rate (SGR) increased with increasing levels of E. prolifera. When the supplementation of E. prolifera was >5%, SGR was significantly higher compared with the control group (0%). The feed efficiency ratio (FER) in fish fed the diet with 5%E. prolifera (diet 2) was higher than that of the other groups, while in fish fed the diet with 10%E. prolifera (diet 3), it was the lowest (P<0.05). The protein retention (PR) decreased as the level of E. prolifera increased in diets (5%, 10% and 15%). The protein body content displayed a trend similar to that of PR. No significant difference was observed in body moisture and ash among the dietary treatments. An increase in minerals of potassium, magnesium and sodium in body was observed with an increase in dietary seaweed concentrations. On basis of the SGR and FER, supplementation levels of E. prolifera can reach at least 15% without affecting the growth and still maintain a high survival rate for juvenile large yellow croaker.  相似文献   

17.
Two feeding trials (experiments 1 and 2) were conducted to determine the combined effect of dietary energy levels (low energy, LE and high energy, HE) and number of daily meals (one meal with the entire daily amount, two meals with half of the daily amount, and three meals with one‐third of the daily amount) on the growth and body composition of Nile tilapia Oreochromis niloticus in a recirculating system at different water temperatures, representing winter and summer seasons. In experiment 1 (winter), weight gain and specific growth rate (SGR) were significantly (P < 0.05) affected by dietary energy levels, but not by number of meals. Weight gain and SGR for fish fed the LE diet one daily meal were significantly (P < 0.05) higher than for fish fed the HE diet in one daily meal. Feed efficiency ratio (FER) and energy efficiency ratio (EER) were significantly (P < 0.05) affected by dietary energy levels, but not by number of meals. Protein efficiency ratio (PER) was not significantly (P > 0.05) affected by either dietary energy levels or number of meals. However, protein retention was significantly (P < 0.05) affected by both dietary energy levels and number of meals. The chemical composition (moisture, protein, lipid, and ash) of fish muscle was not significantly (P > 0.05) affected by either dietary energy levels or number of meals. However, visceral fat content was significantly (P < 0.05) affected by dietary energy levels, but not by number of meals. In experiment 2 (summer), weight gain and SGR were significantly (P < 0.05) affected by number of meals, but not by dietary energy levels. Weight gain and SGR for fish fed the LE and HE diets in two daily meals were significantly (P < 0.05) higher than those fed one daily meal. FER and PER were significantly (P < 0.05) affected by number of meals, but not by dietary energy levels. The highest FER and PER were observed in fish fed two daily meals. EER was significantly (P < 0.05) affected by both dietary energy levels and number of meals. Moisture and protein content of the whole fish were not significantly (P > 0.05) affected by either dietary energy levels or number of meals. Lipid content was significantly (P < 0.05) affected by dietary energy levels, but not by number of meals. Based on the results of these experiments, Nile tilapia should not be fed high‐energy diets to improve fish performance even under a limited feed allowance during winter or summer. Fish grew rapidly when fed two daily meals during summer, but number of meals had no effect on fish performance during winter.  相似文献   

18.
Two experiments (Experiment I and 11) were conducted to evaluate the effects of dietary soybean meal (SBM) with or without supplementation of methionine on the growth performance of the southern catfish Silurus meridionalis. Fish were fed isonitrogenous (48% crude protein) and isoenergetic (20 KJ/g gross energy) diets for 8 wk in a recirculating rearing system. In Experiment I, six diets containing 0.0,11.6, 23.1, 34.7, 46.3, and 57.9% solvent‐extracted SBM as replacement of 0% (control), 13%, 26%, 39%, 52% and 65% fish meal (FM) protein were formulated to examine the effects of dietary SBM on growth performance. Each of the six diets was randomly fed to triplicate tanks, and each tank was stocked with 10 fish (average initial weight 23.78 ± 0.09 g). Fish fed the diets with 13%, 26%, and 39% protein from SBM had significantly higher or similar specific growth rate (SGR) compared with the control group. However, SGR in fish fed the diets with 52% and 65% protein from SBM was significantly lower than other groups (P < 0.05). These results showed that 39% of FM protein could be replaced by SBM protein in diets of the southern catfish without significantly reducing growth. In Experiment II, seven diets were formulated to examine the effects of supplemental methionine on the growth performance of this fish (initial weight of 19.73 ± 0.36 g) fed diets at the two SBM substitution level (SL) for replacing 39% or 52% FM protein. The control diet was the same as that (0% SL) in Experiment I. Three methionine levels (0.00%, 0.12%, or 0.26% at 39% SL, 0.00%, 0.21%, or 0.33% at 52% SL) were separately supplemented to represent two endogenous controls (no methionine supplementation), and to produce diets with the same methionine content as that found in either the body carcass of this fish or the control diet (0% SBM protein), respectively. The results showed that there were no significant differences in feeding rate, digestibility and SGR between fish fed the diets with and without supplementation of methionine at 39% SL. However, supplementation of methionine at 52% SL results in significantly higher SGR and feed efficiency (FE) than that of fish fed the diet without supplementation (P < 0.05). It is suggested that the endogenous methionine content in the diet at 39% SL could meet the requirement for the growth, but is insufficient at 52% SL. The results of the present study indicate that methionine is one of the limiting factors in SBM‐based diets to growth of the southern catfish, and supplementation of methionine into diets containing a high content of SBM could improve the growth performance of this fish.  相似文献   

19.
The effects of total replacement of dietary fish meal (FM) with animal protein sources on the growth, feed efficiency and profit indices of Nile tilapia, Oreochromis niloticus (L.), were investigated. Shrimp meal (SM), blood meal (BM), meat and bone meal (MBM), BM + MBM mix and poultry by-product meal (PBM) replaced FM in six isonitrogenous (30% crude protein), isocaloric (400 kcal GE 100 g–1) diets. The diets were fed to O. niloticus fingerlings (12.5 g) to satiation twice a day for 150 days. The growth of fish fed SM, PBM and MBM was not significantly different from those fed the FM-based diet, while feed conversion and protein efficiency ratios were significantly retarded. Further reduction in fish performance was noticed when BM or BM + MBM replaced FM in the control diet. Cost–benefit analyses of the test diets indicated that these sources were economically superior to FM. The PBM-based diet produced higher carcass lipid than other diets. Fish fed SM, MBM and PBM diets had significantly higher ash contents (P < 0.05).  相似文献   

20.
The study was undertaken to evaluate the growth performance and feed utilization of African catfish, Clarias gariepinus, fed six diets (D) in which fishmeal (FM) was gradually replaced by a mixture of local plant by‐products. In diets 1 and 2, FM (250 g kg?1) was replaced by sunflower oil cake (SFOC). In diets 3 and 4, FM (250 and 150 g kg?1, respectively) was replaced by SFOC and bean meal (BM) while FM was totally substituted by a mixture of groundnut oil cake (GOC), BM and SFOC in diets 5 and 6. Sunflower oil cake was cooked, soaked or dehulled in order to determine the appropriate processing techniques for improving the SFOC nutritive value and to evaluate the apparent digestibility coefficient (ADC) values of the alternative diets. No significant differences were observed for daily feed intake, weight gain, specific growth rate (SGR) and feed efficiency (FE) among fish fed D1, D2, D3 (250 g kg?1 FM), D4 (150 g kg?1 FM) and D6 (0 g kg?1 FM). The highest SGR (3.2% per day) and FE (1.2) were achieved in fish fed D3, and the lowest in fish fed D5 (0% FM), suggesting a maximum acceptable dietary concentration of hulled SFOC below 250 g kg?1 in African catfish juveniles. Protein efficiency ratio ranged from 2.2 to 3.2 for all dietary treatments and was positively influenced by FM inclusion. African catfish were able to digest plant protein very efficiently in all diets tested. ADC of protein ranged from 88.6 to 89.5%, while ADC of energy was relatively low for diets containing hulled sunflower oilcake (71–74%) and high when sunflower oilcake was dehulled (78.6–81.3%). Similarly, ADC of dry matter was higher when sunflower was dehulled (72.1%) when compared with crude SFOC (60.5%). Soaking increased ADC values for neutral detergent fibre (NDF), dry matter, energy, protein and amino acids (AA). There were no significant differences in protein ADCs (88–90%) with increased levels of dietary vegetable ingredients. Both soaking and dehulling of sunflower before incorporation helped in the reduction of NDF, antitrypsin and tannins. Digestibility of all AA was generally high, greater than 90% for both indispensable and non‐indispensable AA. Based on the data obtained, it was possible to totally replace menhaden fish meal with a mixture of vegetable proteins (72% of total dietary protein) when diets contained a relatively low percentage of animal protein (28% based on blood meal and chicken viscera meal) without negative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号