首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate is a central metabolite for whole-animal energy and N metabolism. This study tested the hypothesis that ileal epithelium, liver, and kidney content of system X-(AG) glutamate transporters EAAC1 and GLT-1 would be up-regulated to support growth of wethers (30 +/- 1.2 kg) fed a forage-based diet for at least 14 d to gain (2.0 x NEm; n = 9) vs. maintain (1.2 x NEm; n = 9) BW. We have previously demonstrated that two high-affinity glutamate transporters (EAAC1, GLT-1) are expressed by these extensive glutamate metabolizing epithelial tissues. Wethers fed at 2.0 x NEm gained (P < 0.001; 0.26 kg/d) BW, whereas those fed 1.2 x NEm did not. Although plasma concentrations (microM) of glucose and L- or D-glutamate did not differ, plasma glutamine (precursor of glutamate) and alanine concentrations (transamination product of glutamate) were 28% (P < 0.007) and 22% (P < 0.072) greater for growing lambs than nongrowing lambs. In tissues, the concentration of L-glutamate in ileum epithelia and D-glutamate of liver was 49% (P < 0.015) and 181% (P < 0.042) greater, respectively, in growing vs. nongrowing animals, whereas concentrations of glutamate isoforms did not differ in kidney. Paralleling these increased amino acid concentrations, ileal epithelium contained 313% more (P < 0.038) EAAC1 protein and liver contained 240% more (P < 0.001) GLT-1 protein, whereas kidney transporter content did not differ between growing and nongrowing wethers. In contrast to increased EAAC1 and GLT-1 protein content in ileal and liver tissue of growing lambs, messenger RNA levels did not differ. These results indicate that the increased capacity for high-affinity glutamate uptake in growing vs. nongrowing lambs is achieved through increased expression of EAAC1 by ileal epithelium and GLT1 by liver, which parallel increased tissue concentrations of glutamate and plasma concentrations of two major interorgan N carriers, glutamine and alanine.  相似文献   

2.
Excitatory amino acid transporters (EAATs) are important for terminating glutamatergic neurotransmission and protect central nervous system (CNS) neurons from glutamatergic excitotoxicity. We selected these genes as targets that may relate to canine behavioral traits. After screening four EAAT genes (glutamate transporter-1; GLT-1, excitatory amino acid transporter 4; EAAT4, excitatory amino acid carrier; EAAC1, glutamate/aspartate transporter; GLAST) for single nucleotide polymorphisms (SNPs), we identified two silent SNPs (C129T and T471C) in the GLT-1 gene. We genotyped 193 dogs of 5 breeds and found significant variation among breeds in these two SNPs in GLT-1. The C129T polymorphism was not observed in Malteses and Miniature Schnauzers. These results suggest that polymorphisms in the GLT-1 gene may be useful markers for examining how the genetic background relates to the behavioral traits of dogs.  相似文献   

3.
4.
In the present study, we investigated expressions of vesicular glutamate transporter (VGLUT) and of the plasma membrane glutamate transporters [glutamate transporter 1 (GLT-1), glutamate/aspartate transporter (GLAST) and excitatory amino acid carrier 1 (EAAC-1)] in the gerbil hippocampus following transient ischaemia. The expressional levels and distribution patterns of VGLUT immunoreactivities were unaltered until 3 days after ischaemic-insults. However, VGLUT-2 immunoreactivity in the CA1 region was reduced at 4 days after ischaemia due to delayed neuronal death. In addition, both GLT-1 and GLAST immunoreactivities in the CA1 region were enhanced at 30 min - 12 h after ischaemia-reperfusion and their expression began to reduce at 24 h after ischaemia-reperfusion. In contrast, EAAC-1 immunoreactivity was transiently reduced in the CA1 region at 30 min after ischaemia, re-enhanced at 3-12 h after ischaemia, and re-reduced at 24 h after ischaemia. These findings suggest that malfunctions of plasma membrane glutamate transporters, not of VGLUT, may play an important role in the elevation of extracellular glutamate concentration following ischaemic insults.  相似文献   

5.
Intracerebral microdialysis combined with electroencephalographic recordings was performed on 4 dogs of a familial idiopathic epileptic Shetland sheepdog colony to identify the kinds of neurotransmitters responsible for seizure activity. Immunohistochemistry using glutamate (Glu), glutamate transporter (GLT-1 and GLAST), and glutamine synthetase (GS) antibodies was also carried out on the cerebrum of four familial dogs that died of status epilepticus (SE). High values for extracellular levels of Glu and aspartate (ASP) were detected in association with an increased number of spikes and sharp waves during hyperventilation in 3 of 4 the familial epileptic dogs. The values of other amino acids analyzed were not altered in any of the familial epileptic dogs. Immunohistochemically, Glu-positive granules were occasionally found in the perineuronal spaces of the cerebral cortex in 3 of the familial epileptic dogs that died of SE. Immunostains for GLT-1 antibody predominantly decreased in the cerebral cortex and lateral nucleus of the thalamus in all the dogs that died of SE, whereas there were no differences detected in immunolabellings for GLAST and GS antibodies between familial epileptic dogs and controls. These results suggest that an extracellular release of both Glu and Asp may play an important role in the occurrence of seizure activity in this epileptic colony, and that a decreased expression of astrocytic GLT-1 may be related to development of SE.  相似文献   

6.
To investigate in vitro differentiation of canine adipose tissue-derived stromal cells (ATSCs) into neuronal cells, ATSCs from celiac adipose tissue in clinically healthy beagle dogs were treated with 100 muM dibutyryl cyclic adenosine monophosphate (dbcAMP) and 125 muM isobuthylmethylxanthine (IBMX). ATSCs were morphologically changed into differentiated ATSCs from spindle-shaped cells to neuron-like cells with numerous processes after the treatment. Expression of neuron-specific enolase (NSE) as an early neuron specific marker protein was detected in both ATSCs and differentiated ATSCs, however diachronic increase of NSE expression was observed in differentiated ATSCs after the treatment with dbcAMP/IBMX. In addition, neurofilament-68 (NF-68) as an early to mature neuron specific marker protein was weakly expressed in differentiated ATSCs. Neuron specific glutamate and glucose transporter (EAAC1 and GLUT-3, respectively) mRNAs were strongly expressed in differentiated ATSCs compared with those in ATSCs, although glia specific glutamate transporter mRNA (GLT-1) was also detected in differentiated ATSCs. ATSCs can differentiate into early to mature neuronal cells and are candidate cells for autologous nerve regeneration therapy, although additional research is needed to examine functional characteristics of differentiated ATSCs.  相似文献   

7.
To clarify the involvement of excitatory and inhibitory amino acids in canine necrotizing meningoencephalitis (NME), glutamate, aspartate, taurine and gamma-aminobutylic acid (GABA) were determined in the cerebrospinal fluids (CSF) from eight NME cases and ten healthy controls. NME dogs exhibited significantly higher concentrations of glutamate and aspartate than those in controls (p<0.001 and p<0.001, respectively), while there was no difference in taurine or GABA between the two groups. When fetal canine astrocytes were cultured for 24 hr in the presence of NME-CSF, supernatant concentrations of glutamate, aspartate and taurine were significantly elevated. Simultaneously, expression of excitatory amino acid transporter 2 (EAAT2) mRNA was significantly reduced in the astrocytes without change in EAAT1 mRNA. Hence, reduced expression of EAAT2 and impaired glutamate homeostasis may contribute to the pathogenesis of NME.  相似文献   

8.
为了研究重组人促红细胞生成素(rhEPO)对缺糖缺氧(OGD)培养大鼠星形胶质细胞GLT-1和GLAST表达的影响,将缺糖缺氧培养星形胶质细胞分成不同浓度rhEPO处理组:0、20、100U/mL,不同浓度rhEPO与星形胶质细胞在缺氧缺糖条件下培养6h,用RT-PCR测定GLT-1和GLAST的mRNA表达变化,免疫印迹技术测定GLT-1和GLAST蛋白的表达变化。20、100U/mL rhEPO星形胶质细胞GLT-1的mRNA和蛋白质水平较OGD对照组明显升高(P0.05),GLAST的mRNA和蛋白质水平变化不明显(P0.05)。GLT-1水平可能与rhEPO对缺糖缺氧培养大鼠星形胶质细胞的保护作用有关。  相似文献   

9.
本试验旨在研究仔猪出生后10~20 d,早期断奶仔猪小肠谷氨酸转运载体基因表达情况与哺乳仔猪的差异。试验分别从40头不同母猪的仔猪中各选出体重相近,10日龄的"杜×长×大"三元杂交仔猪1头,共40头仔猪,随机不配对分为2组,每组20头仔猪,对照组(哺乳组)为哺乳仔猪,随母猪喂养;试验组(断奶组)为断奶仔猪,隔离断奶饲养;试验期10 d。饲养结束,每组随机取12只仔猪,宰杀取空肠和回肠,测定谷氨酸转运载体兴奋性氨基酸转运载体1(EAAC1)蛋白质表达情况和游离氨基酸含量。结果显示,断奶显著降低了仔猪空肠和回肠EAAC1(57和73 ku)及其相关蛋白谷氨酸转运联合蛋白(GTRAP3-18)(50 ku)的蛋白质和mRNA表达量(P0.05)。断奶提高了仔猪空肠游离谷氨酸和总氨基酸含量,却降低了仔猪回肠游离谷氨酸和总氨基酸含量,差异显著(P0.05)。结果提示,早期断奶降低EAAC1和GTRAP3-18的蛋白质含量,这可能与早期断奶仔猪遭受营养谷氨酸缺乏导致的肠道氨基酸吸收转运障碍有关。  相似文献   

10.
本试验旨在研究饲粮能量和蛋白质水平对滩羊小肠中小肽和氨基酸转运载体mRNA表达量的影响。选取112只健康、体重相近的滩羊,随机分成4组,每组4个重复,每个重复7只羊。标准水平的饲粮能量和蛋白质水平参考《肉羊饲养标准》(NY/T 816—2004),各组试验滩羊分别饲喂不同能量和蛋白质水平饲粮:0.84×标准水平(Ⅰ组)、0.96×标准水平(Ⅱ组)、1.08×标准水平(Ⅲ组)和1.20×标准水平(Ⅳ组)。试验根据羊体重分2个阶段:29~35 kg和36~40 kg。于每个阶段末,每个重复屠宰1只试验羊,取其小肠组织样,运用实时荧光定量PCR技术,研究小肽转运载体1(Pep T1)、y+型氨基酸转运载体1(CAT1)、兴奋性氨基酸转运载体3(EAAT3)mRNA表达量的变化。结果表明:1)在29~35 kg阶段末,小肠中Pep T1 mRNA的表达量随着饲粮能量和蛋白质水平的提高呈先下降再上升的趋势,Ⅱ组显著低于其他3组(P0.05);Ⅳ组小肠中CAT1 mRNA的表达量显著高于其他3组(P0.05);Ⅲ组小肠中EAAT3mRNA的表达量显著高于其他3组(P0.05)。2)在36~40 kg阶段末,Ⅱ组小肠中Pep T1mRNA的表达量显著高于其他3组(P0.05);Ⅱ组小肠中CAT1 mRNA的表达量显著高于Ⅲ组(P0.05);小肠中EAAT3 mRNA的表达量随着饲粮能量和蛋白质水平的提高呈上升趋势,Ⅲ组和Ⅳ组小肠中EAAT3 mRNA的表达量显著高于Ⅰ组和Ⅱ组(P0.05)。由此可见,饲粮能量和蛋白质水平会影响滩羊小肠中Pep T1、CAT1、EAAT3 mRNA的表达量,使机体对小肽和氨基酸的吸收利用率随之改变,以适应滩羊的生长发育。  相似文献   

11.
Glutamate is the major excitatory amino acid transmitter in vertebrate retinae. Glutamate transporters therefore play an important role in the precise control of glutamate concentration in the synaptic cleft by regulating extracellular glutamate concentration. In the present study, we performed an analysis of the expressions of three glutamate transporters in gerbil retina using immunohistochemistry. In the gerbil retina, excitatory amino acid carrier 1 and glutamate transporter 1 immunoreactivity was predominant in the ganglion cells but not amacrine or bipolar cells. Glutamate/aspartate transporter (GLAST) immunoreactivity was observed in the radial gliocytes of which the dense network of fine processes was localized in the inner and outer plexiform layers. GLAST immunoreactivity was also detected in astrocytes in the nerve fibre layer. These results demonstrate that three glutamate transporters show specific distributions in the gerbil retina and suggest that the glutamate re-uptake system in the gerbil retina may be different from that of the rat.  相似文献   

12.
Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense‐to‐moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds.  相似文献   

13.
A full-length cDNA sequence of canine L-type amino acid transporter 1 (Lat1) was determined from a canine brain. The sequence was 1828 bp long and was predicted to encode 485 amino acid polypeptides. The deduced amino acid sequence of canine Lat1 showed 93.2% and 91.1% similarities to those of humans and rats, respectively. Northern blot analysis detected Lat1 expression in the cerebellum at 4 kb, and Western blot analysis showed a single band at 40 kDa. RT-PCR analysis revealed a distinct expression of Lat1 in the pancreas and testis in addition to the cerebrum and cerebellum. Notably, Lat1 expression was observed in the tissues of thyroid cancer, melanoma and hemangiopericytoma. Although the cancer samples examined were not enough, Lat1 may serve as a useful biomarker of cancer cells in veterinary clinic.  相似文献   

14.
Herein, we studied whether sustained exercise positively affects growth of gilthead sea bream by alterations in a) plasma concentrations of insulin and IGF-I, b) signaling pathways in muscle, or c) regulation of lipid metabolism. Specifically, we evaluated the effects of moderated swimming (1.5 body lengths per second; BL/s) on the circulating concentrations of insulin and IGF-I, morphometric parameters, and expression of genes related to lipid metabolism in gilthead sea bream (80–90 g BW). Exercise increased the specific growth rate (P < 0.05) and reduced the hepatosomatic index (P = 0.006). Plasma IGF-I concentrations increased in exercised fish (P = 0.037), suggesting a role for this endocrine factor in the control of muscular growth and metabolic homeostasis during swimming. The observed decrease in plasma insulin concentrations (P = 0.016) could favor the mobilization of tissue reserves in exercised fish. In this sense, the increase in liver fatty acid content (P = 0.041) and the changes in expression of peroxisome proliferator-activated receptors PPARα (P = 0.017) and PPARγ (P = 0.033) indicated a hepatic lipid mobilization. Concentration of glycogen in both white and red muscles was decreased (P = 0.021 and P = 0.017, respectively) in exercised (n = 12) relative to control (n = 12) gilthead sea bream, whereas concentrations of glucose (P = 0.016) and lactate (P = 0.0007) were decreased only in red muscle, indicating the use of these substrates. No changes in the glucose transporter and in lipoprotein lipase mRNA expression were found in any of the tissues studied. Exercised sea bream had decreased content of PPARβ mRNA in white and red muscle relative to control sea bream expression (P = 0.001 and P = 0.049, respectively). Mitogen-activated protein kinase phosphorylation was significantly down-regulated in both white and red muscles of exercised sea bream (P = 0.0374 and P = 0.0371, respectively). Tumor necrosis factor-α expression of white muscle was down-regulated in exercised gilthead sea bream (P = 0.045). Collectively, these results contribute to the knowledge base about hormonal regulation of growth and lipid metabolism in exercised gilthead sea bream.  相似文献   

15.
16.
17.
18.
本试验旨在研究槲皮素促进猪肠上皮细胞利用蛋白质的作用及机制。猪肠上皮细胞孵育48 h后试验组分别用含0.1、0.2、0.4、0.8和1.6 mg/L槲皮素的二甲基亚砜(DMSO)溶液处理72 h,对照组采用0.2%DMSO处理。采用二喹啉甲酸(BCA)测定受试细胞中蛋白质的含量;采用实时荧光定量PCR(RT-qPCR)法测定氨基酸和小肽转运载体以及哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关基因的mRNA相对表达量;采用Western blot法测定mTOR信号通路相关基因的蛋白表达。结果表明:与对照组相比,1)0.4和0.8 mg/L槲皮素均极显著增加猪肠上皮细胞中蛋白质的含量(P<0.01)。2)1.6 mg/L槲皮素极显著提高猪肠上皮细胞中兴奋性氨基酸转运载体1(EAAC1)、谷氨酰胺载体2(ASCT2)、氨基酸转运载体A2(ATA2)、L型氨基酸转运载体2(LAT2)、阳离子氨基酸转运载体1(CAT1)、b 0,+系统氨基酸转运载体(rBAT)、y+L系统氨基酸转运载体1(y+LAT1)、y+L系统氨基酸转运载体2(y+LAT2)和寡肽转运载体1(PepT1)mRNA相对表达量(P<0.01)。3)0.4 mg/L槲皮素极显著降低猪肠上皮细胞中结节性硬化复合物1(TSC1)mRNA相对表达量(P<0.01);0.8 mg/L槲皮素极显著增加mTOR和核糖体蛋白S6(RPS6)mRNA相对表达量并极显著降低TSC1 mRNA相对表达量(P<0.01);1.6 mg/L槲皮素极显著增加mTOR、真核起始因子4E结合蛋白1(4E-BP1)、真核细胞翻译起始因子4E(eIF4E)、真核细胞翻译起始因子4B(eIF4B)、真核细胞翻译起始因子4A(eIF4A)和RPS6 mRNA相对表达量(P<0.01)。4)0.1和1.6 mg/L槲皮素极显著提高猪肠上皮细胞中mTOR、eIF4E和eIF4A蛋白表达量并极显著降低4E-BP1蛋白表达量(P<0.01)。由此可见,槲皮素可通过调控氨基酸转运载体、小肽转运载体及mTOR信号通路相关基因的表达来促进猪肠上皮细胞对蛋白质的利用。  相似文献   

19.
20.
Glucose delivery and uptake by the mammary gland are a rate-limiting step in milk synthesis. It is thought that insulin-independent glucose uptake decreases in tissues, except for the mammary gland, and insulin resistance in the whole body increases following the onset of lactation. To study glucose metabolism in peak-, late-, and nonlactating cows, the expression of erythrocyte-type glucose transporter (GLUT1) and the insulin-responsive glucose transporter (GLUT4) in the mammary gland, adipose tissue, and muscle were assessed by Western blotting and real-time PCR. Our results demonstrated that the mammary gland of lactating cows expressed a large amount of GLUT1, whereas the mammary gland of nonlactating cows did not (P < 0.05). On the other hand, adipose tissue of late and nonlactating cows expressed a large amount of GLUT1, whereas the adipose tissue of peak-lactating cows did not (P < 0.05). There were no significant differences in the abundance of GLUT4 mRNA in adipose tissue and muscle, whereas GLUT4 mRNA was not detected in the mammary gland. The plasma insulin concentration was greater (P < 0.05) in nonlactating cows than in peak- and late-lactating cows. The results of the present study indicate that in lactation, GLUT1 expression in the mammary gland and adipose tissue is a major factor for insulin-independent glucose metabolism, and the expression of GLUT4 in muscle and adipose tissue is not an important factor in insulin resistance in lactation; however, the plasma insulin concentration may play a role in insulin-dependent glucose metabolism. Factors other than GLUT4 may be involved in insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号