首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
应用PCR检测成年鸭体内鸭瘟强毒的分布   总被引:8,自引:0,他引:8  
鸭瘟病毒(DPV)强毒经人工接种和同居感染100日龄鸭后,应用聚合酶链反应(PCR)检测病毒在鸭体内各组织器官的动态分布。试验结果表明,DPV强毒经肌肉注射进入鸭体后6h可在肝、脾、血液和粪便中检测到DPV DNA;DPV强毒经肌肉注射到鸭体后各受检样品被检测到DPV DNA的先后顺序为:肝、脾、血液和直肠粪便(6h)→肺、脑和腿肌(12h)→肾和胸肌(24h);同居鸭于混群后48h在肝、肺、血液和直肠粪便中检出DPV DNA;DPV强毒经同居感染鸭后各受检样品检测到DPV DNA的先后顺序为:肝、肺、血液和直肠粪便(48h)→脾和脑(72h)→胸肌和腿肌(96h)→肾(120h)。  相似文献   

2.
PCR检测鸭瘟病毒的研究   总被引:10,自引:0,他引:10  
根据鸭瘟病毒DNA聚合酶基因序列,设计、合成了1对引物,以1株鸭瘟病毒疫苗株DNA为模板,进行:PCR扩增,扩增出预期563bp的目的DNA片段。将扩增出的DNA片段克隆到pMDl8—T载体,经Amp/IPTG/X-gal平板筛选,HindⅢ、XbaⅠ双酶切鉴定,获得阳性重组质粒。对重组质粒进行序列测定,与参考序列比较,二者同源性为99.3%。小鹩瘟病毒、鸭肝炎病毒、鹅副黏病毒:PCR扩增均为阴性。用此方法检测人工感染和自然感染鸭瘟的组织(脑、肝、脾),均能检测到鸭瘟病毒DNA。PCR检测鸭瘟病毒具有高度的特异性、敏感性,能够用于鸭瘟急性及亚临床感染的检测与诊断。  相似文献   

3.
为研究鸭坦布苏病毒对雏鸭的致病性,对1周龄樱桃谷雏鸭肌肉接种坦布苏病毒FX 2010株,建立雏鸭感染模型,动态观察感染雏鸭的临床表现、病理变化、组织病毒含量及免疫反应。结果显示,雏鸭攻毒后第3天食欲下降,排黄白色稀粪,第5天时出现神经症状,部分雏鸭急性死亡,死亡率高达22.5%(9/40)。剖检病、死鸭可见心内膜出血,脾肿胀、坏死,肝、肾变性肿胀,脑膜充血。感染雏鸭的组织病理学变化主要表现心、肝、肾实质细胞变性、坏死,间质炎性细胞浸润或见出血;脾淋巴细胞局灶性坏死并伴有大量异嗜性粒细胞浸润;大脑呈典型的病毒性脑炎变化。雏鸭感染后第1天各器官就能检测到坦布苏病毒,第3天器官病毒含量除脾外均达峰值,后逐渐下降。雏鸭攻毒后第5天血清中出现微弱的中和抗体,以后逐渐升高,第17天时达峰值。以上结果表明,鸭坦布苏病毒感染雏鸭后能迅速入侵机体各组织器官并大量复制,呈组织泛嗜性特征,造成全身广泛性组织损伤,重症雏鸭死于急性败血症病变。雏鸭接种病毒后能快速产生中和抗体以抵抗感染并迅速清除病毒。  相似文献   

4.
用鸭瘟病毒(Duck plague virus,DPV)人工感染2月龄SPF鸭,定期剖杀,经聚合酶链反应(PCR)检测为鸭瘟后,对各组织器官的病理组织学变化进行观察,并进行血常规和血液生化指标检测.结果显示,人工感染后24 h,试验鸭中枢免疫器官胸腺、法氏囊表现为淋巴细胞数量减少,组织间隙增大;肝脏、脾脏组织病变较为严重,大部分组织器官均出现程度较轻的病理变化.感染后48~96 h,中枢免疫器官的淋巴细胞极度减少、网状细胞增生、组织器官结构模糊不清,严重充血、出血;其余组织器官出现细胞变性、出血等不可逆病理变化.感染后120 h,组织细胞变性、坏死,出现大片坏死区.点眼滴鼻组鸭感染DPV后组织学变化与皮下注射组相似,只是发生的时间偏后约24~48 h.对照组鸭病理组织学观察未见损伤.WBC、HGB、AST、ALT等发生显著变化.结果表明,接种DPV强毒感染鸭的组织器官严重受损,特别是免疫器官,甚至会引起免疫抑制.  相似文献   

5.
鸭瘟病理组织学动态观察   总被引:1,自引:1,他引:1  
鸭瘟病毒(DPV)强毒经人工感染和同居感染成年鸭后,采用聚合酶链反应(PCR)检测为鸭瘟后,在不同时间段对各给织器官的病理组织损伤进行了观察.表现为:人工接种后24h被检器官组织显现出病理变化.机体中枢免疫器官法氏囊、胸腺表现为淋巴细胞数量降低,组织间隙加大;脾脏组织病变较为严重,其余器官组织均出现程度较轻的组织损伤。接种后48h,中枢免疫器官的淋巴细胞极度减少、网状细胞增生、器官组织结构模糊不清,充血、出血严重;一些生命重要器官则出现明显细胞肿胀,肠道等器官组织也有细胞变性、出血等不可逆病理变化。居感染组织损伤与人工接种组织相似,只是发生时间偏后约50h。提示:接种DPV强毒的感染鸭和同居鸭的免疫器官严重受损,甚至引超免疫抑制。此外,两组实验鸭的肝细胞、肾小管上皮细胞及脾脏、法氏囊、胸腺的网关细胞中的核内包涵体结构,可在病理组织学上为鸭瘟诊提供依据。  相似文献   

6.
鸭瘟病毒强毒株在急性人工感染成年鸭病例体内分布规律   总被引:7,自引:3,他引:7  
5 6只 3月龄四川麻鸭经皮下接种鸭瘟病毒 (DPV)强毒 SC1株 ,成功建立了 DPV感染的急性病理模型 ,并应用PCR方法检测了不同时间 DPV在感染鸭体各组织器官的分布情况。结果表明 ,接种 2 h后 ,即能够从脑、肝、脾、法氏囊、胸腺中检出 DPV DNA;12 h,可从心脏、肝脏、脾脏、肺脏、肾脏、十二指肠、直肠、法氏囊、胸腺、胰腺、脑、胸肌、食管、腺胃、血液、舌、口腔分泌物、皮肤、骨髓和粪便等检测到 DPV的 DNA。检出时间最早和检出率最高的组织器官为肝脏和脑组织。本试验为阐明 DPV的致病机理和应用 PCR方法检测感染鸭体组织中的 DPV提供了重要的实验数据。  相似文献   

7.
本试验旨在探讨不同毒力的鸭瘟病毒(DPV)感染对雏鸭INF-γ mRNA表达水平的影响,为DPV的感染与免疫机制提供理论依据。应用实时荧光定量PCR技术,对接种了鸭瘟强毒株和疫苗株的雏鸭肝脏及外周血淋巴细胞(PBL)中IFN-γ mRNA的表达水平及鸭瘟病毒(DPV)的荷载量进行动态定量监测。结果表明:①感染鸭瘟强毒后,IFN-γ mRNA 在肝脏中的表达没有明显规律,PBL中IFN-γ mRNA表达水平很高,在此期间(1~12 h),病毒DNA量很少。IFN-γ mRNA表达量在6 h后大幅下降,直到144 h都非常低,而病毒的载量逐渐增大,至144 h时达到峰值。②接种弱毒疫苗后,肝脏中IFN-γ mRNA表达水平较高且稳定,至12 h达到顶峰,约比对照高出8倍。PBL中IFN-γ mRNA表达量较低且不稳定。弱毒DNA荷载量稳定上升,但载量约比强毒低两个数量级。病毒DNA在PBL检测不到。IFN-γ在抵抗鸭瘟强毒中发挥了重要作用;IFN-γ在肝脏中高水平的表达可能是鸭瘟疫苗的免疫机制之一。  相似文献   

8.
用患病雏鹅的肝、脾、肾作病料分离病毒,经致病性试验、被动免疫试验、中和试验证明分离病毒为鸭瘟病毒,并用此病毒研制成油乳剂灭活苗,进行鹅的鸭瘟的预防和治疗,效果十分理想。  相似文献   

9.
为构建含有Ⅰ型鸭病毒性肝炎病毒3D基因的重组鸭瘟病毒,本研究将已建立的鸭瘟病毒TK基因缺失转移载体(pBlueSK-TK-EGFP)进行改造,在其荧光表达盒内插入Ⅰ型鸭病毒性肝炎病毒3D基因,将重组后的转移载体(pBlueSK-TK-EGFP-30)转染已感染鸭瘟病毒的鸭胚成纤维细胞,转染细胞盲传2代后仍能观察到绿色荧...  相似文献   

10.
鸭瘟的实验室诊断技术   总被引:1,自引:0,他引:1  
鸭瘟(duck plague)又称鸭病毒性肠炎(duck virus enteritis,DVE),是由鸭瘟病毒(duck plague virus)引起的鸭、鹅和天鹅的一种急性接触性传染病.其特征为血管破坏、组织出血、消化道黏膜破溃、淋巴器官损伤和实质器官变性.该病传播迅速,发病率和死亡率都很高,严重威胁养鸭业的发展.主要对鸭瘟病毒的病料采集和保存、分离培养、理化特性及血清学诊断进行了阐述,以期为更好地防控该病提供参考依据.  相似文献   

11.
Latency sites and reactivation of duck enteritis virus   总被引:16,自引:0,他引:16  
Shawky S  Schat KA 《Avian diseases》2002,46(2):308-313
Duck virus enteritis (DVE) is a contagious disease caused by herpesvirus in waterfowl populations. Recovered birds become carriers and shed the virus periodically. Reactivation of latent duck enteritis virus (DEV) has been implicated in outbreaks of DVE in domestic and migrating waterfowl populations. In this study, the sites for virus latency were determined in white Pekin ducks infected with the DEV-97 strain. At 3 wk postinfection, infectious virus was not detectable in tissues or cloacal swabs (CSs). At 7 and 9 weeks postinfection, the viral DNA was detected by polymerase chain reaction in the trigeminal ganglia (TG), suggesting that the virus is latent. Viral DNA was detected in the peripheral blood lymphocytes (PBL), spleen, thymus, bursa, and CSs only after in vitro cocultivation. In vivo virus reactivation was demonstrated when dexamethasone or a combination of dexamethasone and cyclophosphamide was inoculated in latently infected ducks. The reactivation of DEV occurred without any clinical evidence of the disease, but the virus was detected in PBL and CSs. We conclude from this study that DEV establishes latency in TG and lymphoid tissues including PBL.  相似文献   

12.
鸭瘟病毒强毒株在感染鸭实质器官内的增殖与分布   总被引:2,自引:0,他引:2  
鸭瘟病毒(DPV)CHv强毒株经皮下注射、滴鼻和口服3种途径分别感染20日龄天府肉鸭,于攻毒后10、30、60、90min以及4、12、48、72h和9、15d每组分别剖杀2只鸭,采集心、肝、脾、肺、肾、脑、胸腺、法氏囊、哈德氏腺等实质器官,应用TaqMan-MGB探针实时荧光定量PCR对DPV在这些器官的分布和增殖进行检测。结果表明,DPV分布到具体器官的速度与感染的途径、鸭的解剖结构密切相关,其中皮下注射是DPV分布到各实质器官速度最快的途径。30min于皮下感染鸭的肝、脾、胸腺、法氏囊、哈德氏腺、肺、脑、肾,口服感染鸭的肺和法氏囊,滴鼻感染鸭的心脏和哈德氏腺均检测到DPV-DNA;90min所有受检样品中检测到DPV-DNA。鸭抗DPV感染的免疫器官的重要性依次是脾、胸腺、法氏囊和哈德氏腺,30min内DPV-DNA分布到脾、胸腺、法氏囊的速度和数量决定了DPV感染的潜伏期和疾病的严重程度。不同途经感染鸭的相同器官在同一时间内的DPV-DNA拷贝数大多以皮下感染鸭为最高。DPV致死鸭的法氏囊和肾是DPV-DNA含量最高的实质器官。  相似文献   

13.
本研究建立了检测鸭瘟病毒(Duck pl ague vi rus,DPV)的PCR方法,并运用建立的检测方法对分离毒株和人工感染样品进行临床应用检测。根据GenBank(登录号为EF643558)中的DPV UL35基因保守区域,设计合成了一对引物,以DPV疫苗株为模板,优化PCR反应条件,建立了一种快速、有效的DPVPCR方法。结果显示:该方法能从DPV中扩增到与预期大小相符,长度为354 bp的特异性片段,而对禽流感病毒(AIV)、番鸭呼肠孤病毒(MDRV)、新城疫病毒(NDV)、番鸭细小病毒(MPV)、鹅细小病毒(GPV)等样品的扩增结果均为阴性;检测灵敏度达到470 ng病毒DNA。应用该方法对3株DPV分离株和6份由DPV BL8毒株人工感染鸭的肝脏和脾脏等组织进行PCR检测均为阳性。表明所建立的DPV PCR方法特异性强、灵敏度高,可用于DPV的临床诊断和流行病学调查。  相似文献   

14.
ABSTRACT: Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne ("arbovirus") and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between "virus replication" and "virus presence". BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/ macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed.  相似文献   

15.
The interferon-inducing ability of infectious bovine rhinotracheitis (IBR) virus was determined in tissue cultures of bovine origin inoculated with untreated and ultraviolet (UV) irradiated IBR viruses. Interferon was assayed by the plaque-reduction method in bovine fetal kidney (BFK) cell cultures, using vesicular stomatitis virus as challenge virus. Highest interferon concentrations were produced by cultures of bovine fetal (BF) spleen cells and aveolar macrophage cultures derived from adult cattle. Moderate interferon concentrations were produced by peripheral blood leukocyte (PBL) suspension cultures from adult cattle with serum-neutralizing antibodies against IBR virus. Cultures of PBL from 1 cow without detectable serum-neutralizing antibodies against IBR virus did not produce detectable interferon in response to IBR virus. Cultures of PBL from cattle with or without detectable serum-neutralizing antibodies against IBR virus produced interferon when stimulated with phytohemagglutinin (PHA). Low levles of viral inhibitors were detected infrequently in monolayer cultures of BFK and BF nasal mucosa inoculated with UV-irradiated IBR virus and in BF tracheal organ cultures inoculated with untreated IBR virus. Interferon was not detected in fluids collected from IBR virus-exposed monolayer cultures of primary and secondary BF lung, secondary BF tracheal mucosa, secondary BF liver, secondary BF adrenal, and PBL in the 4th and 7th passages. The antiviral inhibitors from BF spleen, bovine alveolar macrophage, and PBL cultures induced with IBR virus, as well as inhibitors from PBL cultures induced with PHA, had the usual properties of interferon.  相似文献   

16.
17.
Chang H  Cheng A  Wang M  Xiang J  Xie W  Shen F  Jia R  Zhu D  Luo Q  Zhou Y  Chen X 《Avian diseases》2011,55(1):97-102
To determine the distribution of duck plague virus (DPV) gE protein in paraformaldehyde-fixed, paraffin-embedded tissues of experimentally DPV-infected ducks, an indirect immunoperoxidase assay was established to detect glycoprotein E (gE) protein for the first time. The rabbit anti-His-gE serum, raised against the recombinant His-gE fusion protein expressed in Escherichia coli BL21 (DE3), was prepared and purified. Western blotting and indirect immunofluorescence analysis showed that the anti-His-gE serum had a high level of reactivity and specificity and could be used as the first antibody for further experiments to study the distribution of DPV gE protein in DPV-infected tissues. A number of DPV gE proteins were distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, duodenum, jejunum, ileum, and kidney of DPV-infected ducks and a few DPV gE were distributed in the Harders glands, myocardium, cerebrum, and lung, whereas the gE was not seen in the skin, muscle, and pancreas. Moreover, DPV gE was expressed abundantly in the cytoplasm of lymphocytes, reticulum cells, macrophages, epithelial cells, and hepatocytes. The present study may be useful not only for describing the characteristics of gE expression and distribution in infected ducks but also for understanding the pathogenesis of DPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号