首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), has become an important pest of wheat (Triticum aestivum L.) in the United States. The aphid causes a phytotoxemic reaction in wheat evidenced by local and systemic chlorosis and rolling of infested leaves. Developing resistance in wheat cultivars to D. noxia is an essential factor in controlling the damage caused by this pest. Several sources of genetic resistance to D. noxia have been identified in wheat germplasm. Monosomic analysis of the monogenic resistant T. aestivum accession PI137739 has shown that the gene (Dn1) for resistance is carried on chromosome 7D. It appears that chromosome 7B may carry a second resistance gene for D. noxia that might be a source of minor or complementary gene action for resistance.  相似文献   

2.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

3.
D.R. Porter  J.A. Webster 《Euphytica》2000,111(3):199-203
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a perennial, serious pest of wheat (Triticum aestivum L.) in the western United States. Current methodologies used to enhance RWA resistance in wheat germplasm could benefit from an understanding of the biochemical mechanisms underlying resistance to RWA. This study was initiated to identify specific polypeptides induced by RWA feeding that may be associated with RWA resistance. The effects of RWA feeding on PI 140207 (a RWA-resistant spring wheat) and Pavon (a RWA-susceptible spring wheat) were examined by visualizing, silver-stained denatured leaf proteins separated by two-dimensional polyacrylamide gel electrophoresis. Comparisons of protein profiles of noninfested and RWA-infested Pavon and PI 140207 revealed a 24-kilodalton-protein complex selectively inhibited in Pavon that persisted in PI 140207during RWA attack. No other significant qualitative or quantitative differences were detected in RWA-induced alterations of protein profiles. These results suggest that RWA feeding selectively inhibit synthesis and accumulation of proteins necessary for normal metabolic functions in susceptible plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary The Russian wheat aphid (Diuraphis noxia, Mordvilko) (RWA) is responsible for significant economic damage to cereal crops in arid and semi-arid environments. In this research 20 red winter wheats originating from Iran were evaluated for resistance to RWA. Leaf rolling, leaf folding, and leaf chlorosis were measured using 0 to 3 scales. An overall mean damage score was calculated as the average of the three measured damage symptoms. Plants from seven central Asian accessions (PI222666, PI222668, PI225226, PI225267, PI225271, PI243630, and PI243642) had mean damage scores significantly lower (p < 0.001) than Stephens wheat (RWA susceptible) and not significantly different from Border oat (RWA resistant). These results are consistent with previous studies which found a high frequency of resistant wheats collected from the central Asian region.  相似文献   

5.
M.T. Assad  H.R. Dorry 《Euphytica》2001,117(3):229-232
Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is a serious pest of small grains in many countries. A previous study screened 70 genotypes, collected from different parts of Iran, for RWA resistance. Four crosses were made between two resistant lines (Shz.W-102 and Shz.W-104) and two susceptible lines (Shz.W-101 and Shz.W-103). Parents, F1, F2, and BCF1 seedlings were screened for RWA resistance in the greenhouse by artificial infection. To determine allelism, the two resistant lines were intercrossed and F1, and F2 seedlings were evaluated. Resistance in Shz.W-102 and Shz.W-104, when crossed with Shz.W-101, was controlled by one dominant gene. However, resistance in Shz.W-102 and Shz.W-104, when crossed with Shz.W-103, was controlled by two dominant genes. Genes in two resistant lines segregated independently of each other. A three-gene system was proposed to govern resistance in the lines under study . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Identification of new sources of resistance to Russian wheat aphid (RWA) (Diuraphis noxia (Kurdjumov) in wheat (Triticum aestivum L.) has become very important with the identification of several new biotypes since 2003. Our objective was to characterize inheritance and expression of resistance to RWA biotype 2 from three tetraploid wheat landraces (Triticum turgidum L. subsp. dicoccon) during transfer to hexaploid wheat. Resistant tetraploid accessions PI 624903, PI 624904, and PI 624908 were crossed to the susceptible hexaploid cultivars ‘Len’ and ‘Coteau’. Resistant F1 progeny were advanced to the F2:3 by self-pollination and to the BC1F2 and BC2F1 by backcrossing. Leaf rolling and chlorosis were recorded in standard seedling screening tests on F1 and F2:3 individuals while the F2, BC1F1, BC1F2, and BC2F1 were scored as resistant or susceptible. Segregation in the BC1F1 and BC2F1 fit a 1:1 resistant:susceptible ratio, indicative of control by a single dominant gene. Segregation for resistance in the F2 did not fit 3:1, 13:3, or 15:1 ratios for any of the resistant accessions. Expression of resistance in homogeneous resistant F2:3 lines was greater than susceptible checks, similar to the resistant tetraploid accessions, and less than a line carrying the Dn7 resistance gene. Resistance derived from these tetraploid accessions will be useful to broaden the base of RWA resistance available for use in wheat breeding.  相似文献   

7.
The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is an important pest of small‐grain cereals, particularly wheat, worldwide. The most efficient strategy against the RWA is to identify sources of resistance and to introduce them into susceptible wheat genotypes. This study was conducted to determine the mode of inheritance of the RWA resistance found in ICARDA accession IG 100695, to identify wheat microsatellite markers closely linked to the gene and to map the chromosomal location of the gene. Simple sequence repeat (SSR) marker scores were identified in a mapping population of 190 F2 individuals and compared, while phenotypic screening for resistance was performed in F2 : 3 families derived from a cross between ‘Basribey’ (susceptible) and IG 100695 (resistant). Phenotypic segregation of leaf chlorosis and rolling displayed the effect of a single dominant gene, temporarily denoted Dn100695, in IG 100695. Dn100695 was mapped on the short arm of chromosome 7D with four linked SSR markers, Xgwm44, Xcfd14, Xcfd46 and Xbarc126. Dn100695 and linked SSR markers may be useful for improving resistance for RWA in wheat breeding.  相似文献   

8.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

9.
M. T. Assad 《Plant Breeding》2002,121(2):180-181
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a major economic pest of small grains in many countries. An experiment was therefore conducted to determine the inheritance of gene(s) controlling resistance to RWA in a resistant tetraploid durum wheat line. This resistant line,‘1881′, was crossed to a susceptible line, ‘Orejy‐e‐Kazeroon’, and then F1 F2 and BCF1 (backcross to susceptible line) seedlings were screened in a greenhouse for RWA resistance following artificial infection. Resistance in ‘1881’ was apparently controlled by one dominant gene. Since Dnl, Dn2, dn3, Dn4 and Dn5 have been reported to be located on genome D, it was reasoned that the resistance gene in ‘1881’ is not allelic to them.  相似文献   

10.
K. K. Nkongolo 《Euphytica》1996,90(3):337-344
Summary The Barley Yellow Dwarf Virus disease (BYDV) and the Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) have caused significant losses to wheat and barley in several areas of the world. Important sources of resistance to both BYDV and RWA have been found in Triticale. Different generations of interspecific wheat x Triticale crosses were produced and the progenies were screened for BYDV and RWA tolerance. Plants with equal chromosome numbers showed different levels of fertility. A significant correlation was observed between pollen fertility and seed set in primary florets (r=0.57). In generaL, pollen fertility, seed set and the number of euploid plants (2n=42) increased from one generation to the next. The expression of BYDV tolerance varied from population to population. Additive effects were predominant in F1 and some backcross populations. A dominant effect of rye tolerance genes was also observed in few populations. A monogenic trait or a quantitative (polygenic) character would not agree with the observed segregation patterns. The heritability of this oligogenic tolerance was quite different between populations and in many populations the tolerance genes were only partially expressed. Some transgressive segregation for tolerance and sensitivity was demonstrated. The genes controlling tolerance to RWA in Triticale lines, Muskox 658 and Nord Kivu were not expressed in advanced lines resistant to BYDV. This indicates that tolerance genes for BYDV and RWA in these lines are located on different chromosomes.  相似文献   

11.
Two sets of intervarietal chromosome substitution lines in the recipient,susceptible cultivar ‘Chinese Spring’ were screened to identify the wheat chromosomes involved with antixenosis, antibiosis and tolerance resistance to greenbug and Russian wheat aphid. The amphiploid ‘Synthetic’ and the cultivar ‘Hope’ were the donor parents. Antixenosis, antibiosis and tolerance were evaluated with conventional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Antixenosis against greenbug was accounted for by several chromosomes in both sets of substitution lines with chromosome 2B contributing the highest level of this type of resistance. The highest levels of antixenosis against RWA were associated with the group of chromosomes 7 of the substitutions CS/Syn set and the chromosome substitutions 2B, 6A and 7D of the CS/Hope set. Antibiosis against both aphids species was accounted for by several different chromosomes. The highest levels of antibiosis for most of RWA resistance traits were recorded from the 1B substitution line of the CS/Hope set. More than one gene appears to determine antibiosis. Tolerance to both greenbug and the RWA was significantly associated with chromosomes 1A,1D, and 6D in the CS/Syn set of substitutions. These lines showed enhanced plant growth under aphid infestation. The highest levels of antixenosis, antibiosis and tolerance against the two aphid species occurred mostly in different substitution lines. Consequently, the different types of resistance for both pests seem to be partially independent. Since different genes seem to be involved in at least several traits of the resistance categories against the two aphid species, such genes could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is an important insect pest which causes severe economic losses in wheat (Triticum spp.). Among the various U.S. RWA biotypes, biotype 1 (RWA1) and biotype 2 (RWA2) are the most prevalent and most virulent on cultivated genotypes. Although many sources of resistance to these biotypes are available among landraces, their relatedness should be characterized to permit their more efficient use in breeding programs. In this study, 38 hexaploid accessions resistant to biotype 1 and/or biotype 2 were evaluated for genetic diversity based on amplified fragment length polymorphisms (AFLP). Fifteen AFLP selective primer combinations were used to genotype these accessions, resulting in 893 amplicons. Of these, 274 (30.6%) informative polymorphic bands were used for genetic diversity analysis. Genetic similarity coefficients ranged from 0.47 to 0.87 among the resistant accessions, indicating high genetic diversity among them. Cluster analysis grouped the 38 accessions into two major clusters, I and II, including resistant lines for RWA1 and RWA2. The study indicated that accessions in the National Small Grains Collection conferring RWA1 or RWA2 resistance comprise a diversified population which should support introgression efforts and provide genetic diversity for future breeding for RWA resistance.  相似文献   

13.
A. M. Castro    A. Vasicek    S. Ramos    A. Worland    E. Suárez    M. Muñoz    D. Giménez  A. A. Clúa 《Plant Breeding》1999,118(2):131-137
A collection of 26 cultivars of wheat Triticum aestivum were screened for resistance against the two main aphid pests of cereals, the greenbug Schizaphis graminum Rond. and the Russian wheat aphid (RWA) Diuraphis noxia Mordvilko. Since genetic variability has been found in Argentinean populations of both aphid species, this work was aimed at determining the response of different types of resistance in wheat cultivars when infested with aphids. Antixenosis, antibiosis and tolerance were evaluated with traditional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Genetic resistance was found against one or both aphid species in several wheats. Most of the highest levels of antixenosis, antibiosis and tolerance against the two aphids occurred in different cultivars; as a consequence the resistance mechanisms for both pests appear to be partly independent. Antibiosis against greenbug or RWA appears to be determined by two different sets of genes, one affecting development time and the other reducing fecundity and longevity. The antibiosis against both aphid species in terms of their development time and the intrinsic rate of population increase resulted in a partial cross effect of these aphid traits against the alternative insect species. Nonetheless, the same cultivars affected the total fertility and the longevity of both aphids. Since the highest plant performance levels and the least plant damage were recorded in different wheats, different patterns of tolerance were displayed against the greenbug and the RWA. Consequently, different genes appear to be involved in several traits of the resistance mechanisms against the two aphids. The genes that independently conferred resistance to aphids could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA.  相似文献   

14.
H. Dong    J. S. Quick  Y. Zhang 《Plant Breeding》1997,116(5):449-453
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) has caused serious reduction in wheat production in 17 Western states of the United States since 1986. Inheritance of resistance to RWA in seven wheat lines and the allelism of the resistance genes in these lines with three known resistance genes Dn4, Dn5, and Dn6 were studied. The seven resistant lines were crossed to a susceptible wheat cultivar ‘Carson’ and three resistant wheats: CORWA1 (Dn4), PI 294994 (Dn5), and PI 243781 (Dn6). Seedlings of the parents, F1, and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21–28 days after the infestation using a 1–9 scale. The resistance level of all the F1 hybrids was similar to that of the resistant parent, indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 population, suggesting qualitative, nonadditive gene action, in which the presence of any one of the dominant alleles confers complete resistance to RWA. Resistance in CI 2401 is controlled by two dominant genes. Resistance in CI 6501 and PI 94365 is governed by one dominant gene. Resistance in PI 94355 and PI 151918 may be conditioned by either one dominant gene or one dominant and one recessive gene. No conclusion can be made on how many resistance genes are in AUSVA1-F3, since the parent population was not a pure line. Allelic analyses showed that one of resistance genes in CI 2401 and PI 151918 was the same allele as Dn4, the resistance gene in CI 6501 was the same allele as Dn6, and AUS-VA1-F3 had one resistance gene which was the same allele as one of the resistance genes in PI 294994. One non-allelic resistance gene different from the Dn4, Dn5, and Dn6 genes in CI 2401, PI 94355, PI 94365, and PI 222668 was identified and should be very useful in diversifying gene sources in wheat breeding.  相似文献   

15.
Summary The effect of an autumn Russian wheat aphid, Diuraphis noxia (Mordvilko), infestation on winter wheat, Triticum aestivum L., was investigated using osmotic potential, fructan content and field survival measurements to estimate coldhardiness. An average infestation of 147 aphids per plant, under simulated hardening conditions, increased the osmotic potential of Froid and Brawny (more or less coldhardy varieties, respectively) seedlings by 0.236 and 0.345 MPa, respectively. A natural field infestation averaging 9.7 aphids per plant reduced fructan contents of Froid and Brawny seedlings by 22.60 and 59.10 g kg-1 dry wt., respectively. Similar trends occurred after a natural freeze period. Field survival and yield results indicate that the autumn infestation reduced the winter survivability of Brawny by 54% and reduced grain yields by 1217 kg ha-1; survival and yield of infested Froid were not significantly affected. PI 372129, a D. noxia resistant winter wheat genotype was not affected by an infestation in regard to these parameters. These studies suggest that coldhardiness in Froid and Brawny was reduced by D. noxia though only the less hardy Brawny had a significantly reduced winter survivability and grain yield. Therefore, the effects of an autumn D. noxia infestation on some winter wheat genotypes may interact with a winter climate and increase the potential for winterkill.  相似文献   

16.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), poses a serious threat to wheat (Triticum aestivum L.) production in many parts of the world. This research was initiated to evaluate wheat accessions for detection of resistance to the RWA. Over 12,000 wheat cultivars and plant introductions (PIs) from the USDA-ARS National Small Grains Collection were evaluated for reaction to RWA feeding damage. Twenty-nine PIs from Iran, Afghanistan, and the former Soviet Union, of various agronomic backgrounds were identified as having moderate to high levels of RWA resistance. This information is useful to wheat breeders searching for sources of resistance to the RWA to incorporate into their breeding programmes.  相似文献   

17.
The greenbug, Schizaphis graminum(Rondani), the Russian wheat aphid, Diuraphis noxia (Mordvilko), and the bird cherry oat aphid, Rhopalosiphum padi(L.), annually cause several million dollars worth of wheat production losses in Europe and the United States. In this study, Triticum and Aegilops accessions from the Czech Research Institute of Crop Production and the Kansas State University Wheat Genetic Resources Center were evaluated for resistance to these aphids. Accessions with aphid cross-resistance were examined for expression of the antibiosis, antixenosis, and tolerance categories of resistance. Aegilops neglecta accession 8052 exhibited antibiotic effects toward all three aphids in the form of reduced intrinsic rate of increase (rm). The rm of greenbug (biotype I) on Ae. neglecta 8052 was significantly lower than that of greenbugs on plants of the susceptible U. S. variety Thunder bird. The rm of Russian wheat aphids was significantly lower on foliage of both Ae. neglecta 8052 and T. araraticum accession 168 compared to Thunderbird. The rm values of bird cherry oat aphids fed both Ae. neglecta 8052 and T. araraticum 168 were also significantly lower than those fed the susceptible accession T. dicoccoides 62. Neither Ae. neglecta 8052 or T. araraticum 168 exhibited tolerance to either greenbug biotype I or Russian wheat aphid. Preliminary data suggest that T. araraticum 168 may also possess tolerance to bird cherry oat aphid. New genes from Ae. neglecta 8052 and T. araraticum 168 expressing aphid antibiosis can be used to develop multiple aphid resistant wheat in the U. S. and Central Europe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a significant insect pest of wheat worldwide. Morphological and molecular markers associated with RWA resistance could be used to increase the accuracy and efficiency of selection of resistant germplasm and facilitate transfer to desirable wheat genotypes. The objective of this work was to identify microsatellite (SSR) markers linked to the RWA resistance gene (Dn4) and glume-colour gene (Rg2) using a population of F2-derived F3 families originating from a cross between a susceptible line (synthetic hexaploid-11) and a resistance cultivar (Halt). Two microsatellite markers Xgwm106 and Xgwm337 flanked Dn4 on the short arm of chromosome 1D at 5.9 and 9.2 cM, respectively. Two other microsatellite markers, Xpsp2999 and Xpsp3000, at the distal part of this chromosome arm are linked to Dn4 and to Rg2. The accuracy and efficiency of marker-assisted selection were calculated for homozygous Dn4Dn4 genotypes in the F2 generation. The gene Rg2 for red glume colour can also be used for marker-assisted selection of Dn4 gene individually and in combination with microsatellite markers. When used together, the closest markers Xgwm106 and Xgwm337, provide 100% accuracy and 75% efficiency. One hundred percent accuracy is also achieved when the morphological marker red glume is used in combination with either Xgwm106 or Xgwm337. Using these flanking markers, it may be possible to fix resistance to RWA in the first segregating generation of an F2 population without infestation with aphids.  相似文献   

19.
G. S. Deol    G. E. Wilde  B. S. Gill 《Plant Breeding》1995,114(6):545-546
A total of 259 accessions of wild Triticum species originating from different countries, along with 91 triticale (6×)× bread wheat true-breeding derivatives, two bread wheat, and three triticale cultivars were screened for resistance to the Russian wheat aphid, a serious insect pest of the wheat crop. Twenty-four entries with low damage ratings on the basis of amount of leaf rolling and leaf chlorosis were retested along with resistant and susceptible controls. On the basis of leaf roll damage ratings, eight entries including four Triticum monococcum var. boeoticum (T. boeoticum), one T. monococcum var. monococcum (T. monococcum), two T. timopheevii var. araraticum (T. araraticum), and one triticale cultivar were significantly superior to ‘Karl’ (susceptible control) wheat. Among these, four accessions — three T. boeoticum and one T. araraticum— were significantly superior to all other entries and were equal to the resistant control (PI 372129) in resistance rating based on leaf rolling and leaf chlorosis (except T. boeoticum TA 202). The leaf chlorosis damage rating of all accessions were significantly lower than that of the susceptible check.  相似文献   

20.
A. M. Castro    A. Vasicek    S. Ramos    A. Martin    L. M. Martin  A. F. G. Dixon 《Plant Breeding》1998,117(6):515-522
A collection of tritordeum amphiploids (Hordeum chilense × Triticum turgadum) and their wheat parents were screened for resistance against the two main aphid pesis of cereals, the greenhug. Schizaphis graminum Rond. and ihe Russian wheat aphid (RWA) Diuraphis naxia Mord-vilko. Antixenosis. antibiosis and tolerance were evaluated in controlled environmental conditions using a. clone of greenbug biotypc C and a clone of RWA collected on pasta wheat. Tritordeum amphiploids pos-sess genetic resistance against greenbug and RWA; some of the lines tested were more resistant than the parental wheat line. Four principal components explained the resistance against both aphid species. The antixenosis shown against both pests was mainly contributed by their wheat parents. The antibiosis againsl both aphid species was obviously dependent on diflerent plant traits. The highest levels of antibiosis against the two aphids occurred in different amphiploids. Different genes are involved in the antibiotic reaction against the two aphids. The Tritordeum resistance to RWA is based on anlixenosis and ant-biosis since the tolerance trails were not independent of the other types of resistance. The level of tolerance shown to the greenbug was variable and appears to be controlled by differeni mechanisms. The tolerance to aphids shown by H. chilense is expressed in the amphiploids. but with some genomic interaction. Genes conferring resistance to aphids in H. chilensee could be incorporated into new cultivars of wheat to broaden their genetic base of resistance against greenbug and RWA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号