首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate using strain gauges, a hoof cast with heel wedge, and a therapeutic shoe with unsupported toe for their effectiveness in redistribution of load from the dorsal hoof wall. STUDY DESIGN: In vitro biomechanical study. SAMPLE POPULATION: Twenty forelimb specimens. METHODS: Rosette strain gauges were placed on the dorsal and lateral hoof wall of 20 normal shaped hooves. Limbs were loaded vertically using a tensile testing machine with a 1 Hz sinusoidally cycling load up to 3000 N during 15 seconds. Mean values of principal strain and direction at 2500 N load were calculated for 3 experimental conditions (unshod, therapeutic shoe with unsupported toe, and hoof cast with heel elevation) and tested by ANOVA (P<.05). RESULTS: Vertical limb loading in an unshod hoof leads to a biaxial compression of the dorsal wall with high longitudinal compression (epsilon2 = -1515 microm/m). Principal strain at the dorsal wall (epsilon2) was decreased by 23% with the therapeutic shoe and by 59% with the hoof cast. On the lateral hoof wall principal strain was unchanged with the shoe, but increased by 34% with the cast. CONCLUSIONS: Strain measurements indicate unloading of the dorsal hoof wall by both methods with the cast being more effective than the shoe. CLINICAL RELEVANCE: The hoof cast with wedge offers substantial unloading of the dorsal wall, but increases load on the quarter. Therefore a hoof cast would likely be most helpful in acute laminitis when palmar structures can still bear load. The therapeutic shoe offers rehabilitation and regrowth of the dorsal wall without increased load on the quarter wall.  相似文献   

2.
Finite-element (FE) methods have great potential in equine biomechanics in evaluating mechanical stresses and strains in tissues deep within the hoof. In this study, we critically assessed that potential by comparing results of FE analyses of capsular strain with in vivo data. Nine FE models were developed, corresponding to the shape of hooves for which in vivo principal strain data are available. Each model had the wall, laminar junction, sole and distal phalanx (PIII). In a first loading condition (LC1), force is distributed uniformly to the bearing surface of the wall to determine reaction forces and moment on PIII. These reaction forces were subsequently applied to PIII in loading condition 2 (LC2) to simulate loading via the skeleton. Magnitude of the force resultant was equivalent to the vertical force on the hoof at midstance. Principal compressive strains epsilon2 were calculated at the locations of 5 rosette gauges on the real hooves and are compared with the in vivo strains at midstance. FE strains were from 16 to 221% of comparable in vivo values, averaging 104%. All models in this, and reports by other workers, show predominance of stress and strain at the toe to a greater extent than in the real hoof. The primary conclusion is that FE modelling of strain in the hoof capsule or deeper tissues of individual horses should not be attempted without corroborating experimental data.  相似文献   

3.
OBJECTIVE: To evaluate changes in strain patterns in normal equine hooves following 4-point trimming, using photoelastic stress analysis. SAMPLE POPULATION: 15 equine front limbs with normal hoof configuration. PROCEDURE: Limbs were disarticulated at the carpometacarpal joint. Weight-bearing surfaces of each hoof were trimmed level to ensure 100% ground contact. Hoof walls were coated with a custom-made strain-sensitive plastic, and limbs were loaded to a third of body weight. Using a polariscope, strain distribution, magnitudes, and directions were evaluated in level hooves as well as before and after standardized 4-point trimming. Repeated-measures ANOVA was used to compare strain magnitudes and directions before and after trimming. RESULTS: In leveled specimens, strain fields were symmetrically distributed above the heels and at quarter-toe junctions along a line between the middle and distal thirds of the hoof wall. After 4-point trimming, strain epicenters localized above the contact points, whereas strain magnitudes significantly increased by approximately 50%. Decreasing contact area by 50% resulted in an additional significant increase (32%) in strain magnitude. Trimming did not have a significant effect on strain orientations. CONCLUSION AND CLINICAL RELEVANCE: This study documents that 4-point trimming results in strain concentration above the hoof contact points and that strain magnitude is dependent on contact area.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Strains during stance on the hoof wall surface have been measured by a number of authors in vitro and in vivo. Histological structure and mechanical properties vary through the wall thickness (radially); radial strain measurements may therefore aid the understanding of mechanical function of the capsule and adjacent tissues. OBJECTIVES: To develop instrumentation capable of measuring internal hoof strain, and to carry out a preliminary comparison of normal and laminitic hooves. METHODS: Six forelimbs from 4 horses, including 2 with laminitis from the same horse, were tested using an Instron test rig designed to simulate the walk at impact, midstance and breakover. Internal strains were measured at a dorsal site using strain gauges moulded into a plug made of 007 fast-set structural adhesive. In addition, kinetic and kinematic data were collected from each specimen. RESULTS: When simulating the walk, a significant (P<0.0001) increase in gradient of radial tensile strain was found in a normal hoof wall, from 5.6 +/- 73.9 microepsilon at the outer gauge to 418.5 +/- 170.6 microepsilon at the inner gauge. However, radial strains measured at the inner gauge site in limbs with laminitis were found to be significantly (P<0.0001) compressive, with values of -406.7 +/- 156.3 and -109.9 +/- 72.4 microepsilon for Specimens 1 and 2, respectively. CONCLUSIONS AND POTENTIAL RELEVANCE: These preliminary data indicate that a marked redistribution may well occur in the wall of laminitic hooves. With a larger sample size, the results should have relevance to the treatment and management of laminitis.  相似文献   

5.
A shoe was designed to combine the advantages of a reverse shoe and an adjustable heart bar shoe in the treatment of chronic laminitis. This reverse even frog pressure (REFP) shoe applies pressure uniformly over a large area of the frog solar surface. Pressure is applied vertically upward parallel to the solar surface of the frog and can be increased or decreased as required. Five clinically healthy horses were humanely euthanased and their dismembered forelimbs used in an in vitro study. Frog pressure was measured by strain gauges applied to the ground surface of the carrying tab portion of the shoe. A linear variable distance transducer (LVDT) was inserted into a hole drilled in the dorsal hoof wall. The LVDT measured movement of the third phalanx (P3) in a dorsopalmar plane relative to the dorsal hoof wall. The vertical component of hoof wall compression was measured by means of unidirectional strain gauges attached to the toe, quarter and heel of the medial hoof wall of each specimen. The entire limb was mounted vertically in a tensile testing machine and submitted to vertical downward compressive forces of 0 to 2,500 N at a rate of 5 cm/minute. The effects of increasing frog pressure on hoof wall weight-bearing and third phalanx movement within the hoof were determined. Each specimen was tested with the shoe under the following conditions: zero frog pressure; frog pressure used to treat clinical cases of chronic laminitis (7 N-cm); frog pressure clinically painful to the horse as determined prior to euthanasia; frog pressure just alleviating this pain. The specimens were also tested after shoe removal. Total weight-bearing on the hoof wall at zero frog pressure was used as the basis for comparison. Pain-causing and pain-alleviating frog pressures decreased total weight-bearing on the hoof wall (P < 0.05). Frog pressure of 7 N-cm had no statistically significant effect on hoof wall weight-bearing although there was a trend for it to decrease as load increased. Before loading, the pain-causing and pain-alleviating frog pressures resulted in a palmar movement of P3 relative to the dorsal hoof wall compared to the position of P3 at zero frog pressure (P < 0.05). This difference remained statistically significant up to 1300 N load. At higher loads, the position of P3 did not differ significantly for the different frog pressures applied. It is concluded that increased frogpressure using the REFP shoe decreases total hoof wall weight-bearing and causes palmar movement of P3 at low weight-bearing loads. Without a shoe the toe and quarter hoof wall compression remained more constant and less in magnitude, than with a shoe.  相似文献   

6.
Reasons for performing study: Radial strain in normal hooves has been found to vary with strain gauge location, limb posture and sample limb but reported magnitudes were considered to be low. More accurate measurement of radial strain may enhance the understanding of hoof function. Objectives: To explore in vitro radial hoof strain in relation other kinetic and kinematic variables that may be related. Methods: Five normal forelimbs were removed at the proximal articular surface of the third metacarpal bone (McIII). The limbs were loaded using a modified Instron test machine. Six calibrated infrared cameras captured movement from markers on the hoof and bone fixed markers on the second and first phalanxes and McIII, whilst radial hoof strain was measured using a calibrated instrumented plug. Change in strain, joint angle and load were found at simulated walking postures and bivariate correlations were used to compare the relationships between them. Results: Radial strain was moderately correlated with proximal interphalangeal joint (PIPJ) rotation (r =?0.519). Large reductions in radial strain were found in loading and midstance with 10° of heel lift postures. Conclusions and potential relevance: PIPJ rotation has previously been linked to the magnitude of deep digital flexor tendon (DDFT) loads and it is therefore suspected that these loads may have the greatest influence on radial strain magnitudes. Further investigation of radial strain is needed to describe the patterns fully during the stance phase in vivo.  相似文献   

7.
A lightweight bracelet that provides tactile stimulation to the horse's pastern and coronet induces a higher flight arc of the hoof. This study addresses the pattern of habituation to these devices. OBJECTIVE: To evaluate short-term habituation to tactile stimulation of the pastern and coronet in trotting horses. METHODS: Tactile stimulation was provided by a lightweight (55 g) device consisting of a strap with seven chains that was attached loosely around the pastern. Reflective markers were fixed to the dorsal hoof wall, the forehead and over the tenth thoracic vertebra of eight sound horses. The horses trotted in hand 10 times at a consistent velocity along a 30 m runway under three conditions applied in random order at two-hour intervals: no stimulators, stimulators on both front hooves or stimulators on both hind hooves. One stride per trial was analyzed to determine peak hoof heights in the swing phase. Sequential trials with stimulators were compared with unstimulated trials using a nested ANCOVA and Bonferronni's post hoc test (P < 0.005). RESULTS: Peak hind hoof height increased significantly for all 10 trials when wearing hind stimulators, whereas peak fore hoof height increased during the first six trials only when wearing fore stimulators. The first trial with stimulators showed the greatest elevation, followed by a rapid decrease over the next three trials and then a more gradual decrease. CONCLUSIONS: If the goal is to facilitate a generalized muscular response, a short burst of tactile stimulation is likely to be most effective, whereas longer periods of stimulation will be more effective for strength training.  相似文献   

8.
Racehorses in New Zealand predominantly train counter clockwise. This training pattern has been associated with between forelimb differences in bone mineral density profile and asymmetrical limb loading after training. At present, there is limited data on the hoof conformation of these racehorses. Distal forelimb and digital hoof conformation data were collected from 75 Thoroughbred racehorses (2–5 years old) from two training yards. Digital conformation was subjectively graded, and multiple hoof measurements were made with a modified tire gauge (sole and sulci depth) and from digital photographs. All the horses were shod by two registered master farriers within a median of 15 (interquartile range [IQR], 1–25) days before measurement. There were few distal limb conformation abnormalities scored. Most (62/75) horses presented with some deviation from normal hoof parameters, with 2 (IQR, 1–3) abnormalities reported per horse. The most common hoof abnormality was uneven sulci, which was identified in 43 horses and 59 affected hooves, followed by higher medial hoof wall height in 38 horses and 53 affected hooves. Many of the linear and hoof angle measurements and their ratios were within the bounds reported within the literature and indicative of a balanced foot. The length and width measurements increased with horse age. The dorsal hoof wall (DHW) length:heel length ratios were consistently less than 3:1, and the absolute difference between toe and heel angle was generally greater than 5°. Between limb hoof variation was identified for a number of the morphologic measurements including frog length and sole length and the ratio of sole width:sole length. Flat feet (lack of concave solar surface) were identified in 21/75 (28%) horses and in 28/150 (19%) forelimb hoofs. More horses had a flat left foot (10/75) than right foot (4/75), but seven horses had both feet classified as being flat. Flat feet had 2.4 (1.1–5.6, P = .036) greater odds of presenting with uneven sulci. These data indicate that uneven sulci depth and flatter hooves with may be a typical presentation of Thoroughbred feet. Asymmetry in measurements between limb may reflect the greater loading of the left forelimb when race training counter clockwise.  相似文献   

9.
REASONS FOR PERFORMING STUDY: The transmission of shockwaves following hoof impact is proposed to be one major source of stress to the limb. In the forelimb, there are indications that the period of horizontal deceleration of the hoof is related to the attenuation of shockwaves. In the hindlimb, information about the hoof deceleration has been lacking. OBJECTIVE: To compare hoof deceleration patterns between the fore- and hindlimbs. METHODS: Seven Standardbreds were trotted by hand over a force plate covered with sand, with triaxial accelerometers mounted on the fore and hind hooves. Variables representative of decelerations (first 2 main vertical deceleration peaks; characteristic minimum and maximum values in the craniocaudal deceleration; hoof braking time) and ground reaction forces (vertical loading rates; maximum and the following local minimum of the craniocaudal force) of the initial part of the stance phase, and the differences between individual fore- and hindlimb time and amplitude variables were used for statistical analyses. RESULTS: Force plate data showed significantly greater vertical loading rate (mean +/- s.d. 6.5 +/- 5.9 N/sec) and horizontal loads (190.4 +/- 110.2 N) in the forelimb than the hindlimb, but the parameters from accelerometer data showed no significant differences. CONCLUSIONS: No significant difference was found in the hoof deceleration, but the deceleration curves displayed a common pattern that described in detail the kinematics of the fore and hind hooves during the initial period of hoof braking. POTENTIAL RELEVANCE: These results contribute to further knowledge about the characteristics of these potential risk factors in the development of subchondral bone damage in the horse. Further studies are required on the influence of hoof braking pattern at higher speed, different shoeing and ground surfaces with different properties.  相似文献   

10.
11.
OBJECTIVE: To define a 3-dimensional (3-D) coordinate system with clear definitions of origins and axes relative to hoof anatomic features and determine whether solar surfaces of Thoroughbred racehorse hooves have geometric asymmetry in the mediolateral and dorsopalmar directions. SAMPLE POPULATION: Left forelimb hooves from 20 Thoroughbred racehorse cadavers. PROCEDURE: A right-handed 3-D coordinate axes system centered on the collateral sulci was defined for the left front hoof. Orthogonal distances of anatomic features from the dorsopalmar axis and the plane coincident with the ground were measured and compared between medial and lateral sides and between dorsal and palmar regions of the hoof. RESULTS: The hoof was wider and had a greater radius laterally than medially. The most distal part of the lateral bar of the frog was further from the dorsopalmar axis than that of the medial bar. Overall, mediolateral asymmetries in depth were not observed. The sole at the perimeter was deeper medially in the dorsal part of the hoof and laterally in the palmar part, with depth overall being greater palmarly than dorsally. Most features had dorsopalmar asymmetry. CONCLUSIONS AND CLINICAL RELEVANCE: When the angle bisected by the collateral sulci is used to determine the dorsopalmar axis of the hoof, most central structures (bars and collateral sulci) have mediolateral symmetry. However, the hoof wall and sole have some mediolateral asymmetries and most structures have dorsopalmar asymmetry. These findings may assist the development of devices for attachment to hooves and studies of the interaction of hooves with bearing surfaces.  相似文献   

12.
Reasons for performing the study: Hoof health is a major concern of horse owners as well as the equine industry. However, many questions remain concerning regional variations of laminar junction and its potential to remodel. Hypothesis: To examine regional variations in the morphology of the laminar junction and thickness of the hoof wall in Thoroughbred horses. Methods: The forefeet of 25 Thoroughbred cadavers were examined. Each hoof was divided into 20 blocks through 4 proximodistal slices (below the coronary band, each 1 cm apart) and 5 circumferential positions (toe, medial and lateral quarters and heels). In each block, 25 central primary epidermal laminae (PEL) were considered. Orientation of each lamina in relation to the hoof wall (LO), degree of bending (IA) and the spaces between the adjacent laminae (LS) were measured. Thickness of the hoof wall and number of branched PEL were also measured. Data were analysed using a split‐block design in ANOVA. Results: There were significant differences between the 2 proximal and 2 distal slices in LO and IA data, but not in LS data. Circumferentially, toe blocks were different from heel and quarters blocks. Lateral and medial heels as well as the quarters were mostly different. The hoof wall was slightly thicker laterally than medially. There were more branched PEL on the lateral side of the left hooves and on the medial side of the right hooves. Conclusions: These data add to the circumstantial evidence supporting the hypothesis of adaptive remodelling in the laminar junction. Results of this study signify the capability of PEL to remodel in response to applied stress to the regions of the hoof. Potential relevance: A deeper understanding of the gross and cellular processes of laminar remodelling may well prove to be complementary to an understanding of their failure in laminitis.  相似文献   

13.
Reason for performing study: The relationship between mechanical behaviour and microscopic structure of the laminar junction of equine hooves under testing conditions requires elucidation. Objectives: To determine mechanical parameters and 2D length density of profiles of secondary lamellae of the laminar junction in the dermal region and to assess possible correlations. Methods: Specimens (25 samples in total) of the laminar junction were taken from front, quarter and heel parts from 3 equine hooves and exposed to a uniaxial tensile test until rupture to obtain Young's moduli of elasticity, ultimate stress and strain. Neighbouring specimens to those used for the biomechanical experiment were processed histologically to assess the length density of laminar junction basement membrane using stereological grids. Results: The estimated median (interquartile range) length density of the laminar junction basement membrane was 0.024 (0.020–0.027)/µm. Young's modulus of elasticity was 0.15 (0.11–0.35) MPa in the small deformation region, and 7.58 (6.14–8.68) MPa in the linear region was. The ultimate stress was 1.67 (1.41–2.67) MPa, and the ultimate strain was 0.50 (0.38–0.70). The Young's modulus of elasticity in the region of small deformations has a moderate correlation with the length density of the laminar junction basement membrane. Conclusions: As with most soft biological tissues, the laminar junction has a nonlinear mechanical behaviour. Within the range of small deformations, which correspond to physiological loading of the laminar junction, a higher length density of the laminar junction basement membrane is correlated with a higher resistance of the laminar junction against high stresses transmitted from the distal phalanx to the hoof wall. Potential relevance: The condition of the laminar junction apparatus may be easily quantified as the length density of profiles of secondary dermal lamellae. This quantification provides a simple tool that could be used for comparing the proneness of the various parts of the laminar junction to initial stages of laminitis.  相似文献   

14.
Reasons for performing study: In the treatment of laminitis it is believed that reducing tension in the deep digital flexor tendon by raising the palmar angle of the hoof can reduce the load on the dorsal lamellae, allowing them to heal or prevent further damage. Objective: To determine the effect of alterations in hoof angle on the load in the dorsal laminar junction. Methods: Biomechanical finite element models of equine hooves were created with palmar angles of the distal phalanx varying from 0–15°. Tissue material relations accounting for anisotropy and the effect of moisture were used. Loading conditions simulating the stages in the stance where the vertical ground reaction force, midstance joint moment and breakover joint moment were maximal, were applied to the models. The loads were adjusted to account for the reduction in joint moment caused by increasing the palmar angle. Models were compared using the stored elastic energy, an indication of load, which was sampled in the dorsal laminar junction. Results: For all loading cases, increasing the palmar angle increased the stored elastic energy in the dorsal laminar junction. The stored elastic energy near the proximal laminar junction border for a palmar angle of 15° was between 1.3 and 3.8 times that for a palmar angle of 0°. Stored elastic energy at the distal laminar junction border was small in all cases. For the breakover case, stored elastic energy at the proximal border also increased with increasing palmar angle. Conclusions and potential relevance: The models in this study predict that raising the palmar angle increases the load on the dorsal laminar junction. Therefore, hoof care interventions that raise the palmar angle in order to reduce the dorsal lamellae load may not achieve this outcome. See also correspondence by Redden See also correspondence by Curtis  相似文献   

15.
为了确定应用手持式红外线测温仪筛选奶牛蹄部不同部位的温度用于奶牛跛行的诊断价值,本研究在奶牛修蹄前进行跛行评分,修蹄后用手持式红外线测温仪分别测量奶牛右后蹄系部、右后蹄外侧趾远轴侧蹄壁和右后蹄外侧趾蹄底三角区的温度,分析其与奶牛跛行程度的相关性,并绘制不同部位蹄部温度的ROC曲线,确定其诊断作用和最佳临界值.结果显示,...  相似文献   

16.
Custom-designed Hall-effect strain sensors (HES) were implanted surgically onto the superficial digital flexor tendons of the forelimbs of 4 adult Thoroughbreds. Strains were recorded at various gaits, using a portable amplifer and FM cassette recorder. Strain calculations used the original length (L) as the HES position with the forelimb in the relaxed neutral position during anesthesia. A characteristic deflection in the strain cycle recording was confirmed to correspond to initial hoof contact with the ground (heel strike) by simultaneous recording of weight bearing via a footswitch. Heel strike was used as the reference point to determine the magnitude of strain change during weight bearing and nonweight bearing under various conditions. The weight-bearing strains (heel strike to maximal strain) recorded in 2 horses (with a rider) were 3.1% and 7.6% at the walk, 6.5% and 10.1% at the trot, and 11.5% and 16.6% at the gallop. Strain rate during tendon loading at the gallop was approximately 200%/s. The magnitude of strain change during nonweight bearing (minimal strain to heel strike) was smaller than during weight bearing, but also increased with faster gaits. In 3 horses led at the walk and trot, modest increases in hoof angle (baseline 52 degrees) resulted in small increases in the magnitude of strain change during weight bearing at the trot, but the magnitude of strain change at the walk was not affected. Results of the study indicated that the HES can be successfully adapted to provide continuous strain measurement without subjective signs of discomfort or lameness in horses during or after instrumentation.  相似文献   

17.
OBJECTIVE: To quantify the density of primary epidermal laminae (PELs) around the solar circumference and evaluate the relationship between regional PEL density and hoof capsule morphology in horses. SAMPLE POPULATION: Forefeet from nine 3-year-old Quarter Horse cadavers. PROCEDURES: Data pertaining to gross features of hoof morphology and PEL variables, including number, density, and distribution patterns around the perimeter of the hoof wall and number of bar PELs, were collected. Tissues of the laminar junction were examined histologically. RESULTS: No significant differences were found between left and right forefeet with respect to gross hoof morphologic measurements. Mean +/- SD number of PELs, including those at the bars of the hoof, was 551 +/- 30. Primary epidermal laminar density in the toe was significantly higher, compared with that in the quarter and heel regions, and was higher on the lateral aspect of the foot, compared with the medial aspect. Feet were significantly wider on the lateral aspect of the foot, compared with the medial aspect, as measured across the widest point of the solar surface. Histologic examination revealed atypical laminar morphology at the toe. CONCLUSIONS AND CLINICAL RELEVANCE: Variations were detected in PEL density and morphology around the solar circumference of hooves from 3-year-old racing Quarter Horses. A better understanding of relationships between laminar density, laminar morphology, and gross morphology of the hoof capsule in different populations of horses may aid practitioners in diagnosis and treatment of disease involving the hoof wall in horses.  相似文献   

18.
Mineral and amino acid composition of beef cattle hooves   总被引:1,自引:0,他引:1  
Twenty-three Hereford X Shorthorn cattle were used to evaluate the effects of seasonal and dietary changes on the mineral composition (Ca, Mg, Cu, Zn, and S) of hooves. A seasonal pattern was found in the Ca, Mg, and Zn composition of hooves in the 12 cattle evaluated in 1982 and in the 11 cattle evaluated in 1983, with the concentrations of 3 minerals decreasing in winter when dietary change did not occur. Copper concentrations significantly decreased during the 1st year (1982) and had a tendency to decrease during the 2nd year. During the 1983 pasturing season, when effects of seasonal vs dietary change could not be distinguishable, hoof concentrations of Ca and Mg decreased, whereas the inverse trend was observed for Cu and Zn. Seasonal patterns for hoof concentrations of S were not found. Results of mineral analysis of hooves indicated strong correlations between calcium and the other minerals (except S), and between Zn and Cu. Amino acid analyses of hooves of the 11 cattle in 1983 indicated differences in their composition related to dietary changes (winter feeding vs pasture) or to management.  相似文献   

19.
The effects of toe angle on the growth of the unshod hooves of mature horses were measured over 126 days. The hooves of 4 horses were trimmed long in the toe and short in the heel (“LT”), with toe angles of 40° for the forelimb and 50° for the hind limb hooves; 4 others were trimmed short in the toe and long in the heel (“ST”), with toe angles of 50° for the forelimb and 55° for the hind limb hooves. Growth of the hoof wall at the toe ranged between .19 and .28 mm/day, and was slowest in the forelimb hooves trimmed ST. After 126 days, the hooves trimmed LT were 7% smaller in width than they had been at day 0. Narrowing of the hoof walls and frogs was accompanied by deformation of the angles of the walls (bending outward of their weightbearing surfaces). Frog lengths and sole areas were not affected by toe angle. Regardless of trimming method, all forelimb hooves tended to return to a toe angle of 45° between trimmings, while all hind limb hooves tended toward toe angles of 52° to 53°. The soles of all hooves were basically circular in shape, although the hooves trimmed LT tended to be skewed to the left, as viewed from above, after 126 days.  相似文献   

20.
OBJECTIVE: To evaluate the safety of sodium bisulfate for use in horse barn environments by determining its irritant effect on skin and hooves. ANIMALS: 6 female mixed-breed ponies. PROCEDURE: Sodium bisulfate was applied to clipped intact skin of 6 ponies to evaluate its irritant effect after single (48 hours) and repetitive (6 h/d for 10 days) applications; similar areas of skin were used as untreated control sites. In addition, sodium bisulfate was applied to the sole of both front hooves of each pony and covered with wet gauze, and the entire hoof was covered with adhesive tape for 48 hours. RESULTS: Contact with moistened sodium bisulfate for 48 hours had no effect on pony skin. Contact with sodium bisulfate for 6 hours on 10 consecutive days did not cause gross changes but did cause mild to moderate microscopic changes including epidermal necrosis, hyperkeratosis, capillary congestion, edema, and diffuse mixed inflammatory cell infiltrate. All changes were limited to the epidermis and superficial dermis. Gross changes in hoof sole, signs of lameness, and increase in digital pulse pressure or pulse intensity were not detected. CONCLUSIONS AND CLINICAL RELEVANCE: Duration of contact with sodium bisulfate in this study was in excess of that expected under typical husbandry conditions. Despite this fact, gross changes in skin and hooves were not detected. Microscopic lesions were confined to the epidermis and superficial dermis. Results suggest that contact with sodium bisulfate under these conditions is safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号