首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kaya, F., Van Duin, C.T.M. & Van Miert, A.S.J.P.A.M. Food intake and rumen motility in dwarf goats. Effects of some dopamine receptor agonists. J. vet. PharmacolTherap, 17 , 120–126. In ruminants, the dopaminergic regulation of feeding behaviour has not been investigated. Therefore, the effects of dopamine receptor agonists and antagonists on food intake and forestomach motility were studied in dwarf goats Goats treated i.v. with bromocriptine (1 μg or 2.5 μg/kg body wt/min during 10 min) ate less food than when treated with saline. This inhibitory effect on food intake could not be prevented by the peripheral dopamine receptor antagonist domperidone (0.5 mg/kg body wt i.v.). In contrast, dopamine (i.v. 20 μg/kg body wt/min during 15 min), levodopa (i.v. 40 μg/kg body weight during 10 min), apomorphine (i.v. 2 μg/kg body wt/min during 10 min) and lisuride (i.v. 0.2 μg/kg body wt/min during 15 min and 0.5 μg/kg body wt during 10 min) failed to modify food intake. Given in association with benserazide, a decarboxylase inhibitor (i.v. 20 μg/kg body wt/min during 10 min), levodopa was still inactive as an anorectie agent. Levopoda, bromocriptine and lisuride administered at similar dose rates to those which were used in the food intake experiments, induced some clinical signs including inhibition of forestomach contractions. The inhibition of rumen contractions induced by these drugs was completely antagonized by domperidone pretreatment. These results, together with earlier in vivo and in vitro observations, suggest that the inhibitory effects of dopamine receptor agonists on forestomach contractions are due to interactions with peripheral dopaminergic receptors. The change in smooth muscle tension, which leads to a change in the signals transmitted via vagal afferents to the central nervous system, probably does not modify feeding behaviour in dwarf goats. Furthermore, i.v. infusion of lisuride induced rumination when the inhibition of the forestomach contractions was prevented by domperidone; this effect may involve α2-adrenoceptor activation.  相似文献   

2.
In the present study, we investigated the regulatory mechanisms underlying sperm hyperactivation enhanced by 5-hydroxytryptamine (5-HT) in hamsters. First, we examined the types of 5-HT receptors that regulate hyperactivation. Hyperactivation was significantly enhanced by 5-HT2A and 5-HT4 receptor agonists. Moreover, the results of the motility assay revealed that 5-HT2A, 5-HT3, and 5-HT4 receptor agonists significantly decreased the velocity and/or amplitude of sperm. Under 5-HT2 receptor stimulation, hyperactivation was associated with phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor, soluble adenylate cyclase (sAC), and protein kinase A (PKA). In contrast, under 5-HT4 receptor stimulation, hyperactivation was associated with transmembrane adenylate cyclase (tmAC), sAC, PKA, and CatSper channels. Accordingly, under the condition that sperm are hyperactivated, 5-HT likely stimulates PLC/IP3 receptor signals via the 5-HT2A receptor and tmAC/PKA/CatSper channel signals via the 5-HT4 receptor. After sAC and PKA are activated by these stimulations, sperm hyperactivation is enhanced.  相似文献   

3.
Concentrations of enrofloxacin equivalent activity were determined (by microbiological assay) in the serum of normal camels and camels at the end of a 14-day water-deprivation period following single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administrations at 2.5 mg/kg. Also, normal camels were given an oral drench of the drug at 5 mg/kg. Pharmacokinetic variables were determined using compartmental and non-compartmental analytical methods. Camels lost on average 12.5% of body weight at the end of the water-deprivation period. The disposition kinetics of i.v. administered drug in normal and water-deprived camels were very similar. The t1/2β was 3.0–3.5 h; MRT was 4.0–4.5 h; Ve was 0.3 L/kg; V38 was 1.0 L/kg and Cl8 was 4.0–4.6 mL/min/kg. The effect of water deprivation on the rate of drug absorption and elimination after i.m. administration was inconsistent, and there was also a large degree of variability in the normal animals that precluded statistical significance. After s.c. administration, the mean absorption half-life (t1/2she in the water-deprived camels was significantly longer than in the normal camels. Systemic availability (F) was similar in both normal and water-deprived camels after i.m. dosing but was significantly greater (P < 0.05) in normal camels (0.92 compared with 0.65 in water-deprived camels) after s.c. treatment In normal camels, urinary recovery at 12 h after l.v. and s.c. dosing was 25% and 15%, respectively, and the extent of serum protein binding ranged between 1.7% at 1.8 μg/mL and 24% at 0.33 μg/mL. The drug was not detected in serum after oral administration. Serum and milk enrofloxacin equivalent activities were determined after i.v. (one camel) and i.m. (one camel) drug administration. Serum drug concentrations were consistently higher than in the milk. The AUCmilk/AUCserust ratios were 0.27 and 0.39 after i.v. and i.m. drug administration, respectively. An i.m. or s.c. treatment regimen of 2.5 mg/kg q. 12 h is suggested for clinical and bacteriological efficacy trials with enrofloxacin in normally hydrated and dehydrated camels.  相似文献   

4.
Eleven buffalo calves (Bubalus bubalis) of 1-1 1/2 years of age and weighing between 64 and 174 kg were given chloramphenicol at the dose rates of 10 and 20 mg/kg body weight. Pharmacokinetic parameters were determined from the plasma levels. The median elimination half-life was estimated to be 2.95 h and the median volumes of distribution were 1.1667 litres/kg with the 10 mg/kg dose and 0.9699 litres/kg with the 20 mg/kg dose. The median metabolic clearance rates were 288.30 and 234.13 ml/h/kg, respectively. From the average plasma concentrations obtained with the 20 mg/kg i.v. dose, it was considered necessary to repeat the drug by the i.m. route with the same dose (four calves) which resulted in prolonging the therapeutic concentration (> 5 μg/ml) until 18 h. At therapeutic concentrations, about 60% of the drug was bound to plasma proteins. Using the overall elimination rate constant (0.2354 h-1) and the apparent specific volume of distribution (0.97 litres/kg), different dosage regimens were calculated so as to obtain plasma concentrations (Cp min) of 2, 5 and 10 μg/ml.  相似文献   

5.
Perez, R., Cox, J.F., Arrue, R. Probable post-synaptic ot2 adrenergic mediated effect of xylazine on goat uterine motility. J. vet. Pharmacol. Therap. 17 , 59–63. Xylazine has been characterized as a selective α2-adrenoceptor agonist, which has explained its central nervous system depressant and other pharmacological effects. In order to characterize the effect of xylazine on uterine motility during the oestrus cycle in goats intrauterine pressure changes were recorded in cycling goats using balloon-tipped catheters placed in the uterine horns and connected to pressure transducers and a recorder. The effect of xylazine on myometrial activity was studied by giving increasing doses of the drug (1.0, 10.0, 100.0 or 500.0 m̈g/kg) intravenously (i.v.) to animals either in the follicular or the luteal phase of the cycle. To establish the subtype of a adrenergic receptor mediating the action of xylazine, goats were pretreated with either prazosin (1.0 mg/kg, i.v.) or yohimbine (1.0 m̈g/kg, i.v.). To establish whether the effect of xylazine was pre- or post-synaptic, xylazine (100 mg/kg, i.v.) was administered to goats pretreated with reserpine (0.8 mg/kg, i.p.) to deplete presynaptic catecholamine stores. Xylazine induced a significant and dose-dependent increase on uterine motility in cycling goats, apparently mediated by postsynaptic oc2-adrenoceptors.  相似文献   

6.
The minimal inhibitory concentration (MIC) of tilmicosin for 90% of 112 Staphylococcus aureus isolates from the bovine udder was 0.78 μg/mL and 149 of 164 (90.8%) other gram-positive udder pathogens were inhibited by tilmicosin concentrations < 3.12 μg/mL. The MIC of the drug for 19 of 22 S. aureus isolates was < 0.78 μg/mL when the test was conducted using Mueller-Hinton (MH) agar or MH agar containing 7.5% skimmed milk. Acute cardiac toxicity followed intravenous (i.v.) injection of the drug at 10 mg/kg to 3 cows, but animals appeared clinically normal within 30 min after treatment. The pharmacokinetics of i.v.-administered tilmicosin is typical for the macrolide class of antibiotics, i.e. low serum drug concentrations and a large volume of distribution (> 2.0 L/kg). The elimination half-life (t1/2β values for 3 cows were 46.4. 56.0 and 72.8 min. The drug was administered subcutaneously (s.c.) to 5 cows at 10 mg/kg; the elimination half-life (t1/2el) was 4.18 ± 0.55 h and the mean s.c. bioavailability was 22%. Rapid and extensive penetration of tilmicosin from blood into milk, and slow elimination from the milk were among the characteristic kinetic features of the drug after i.v. and s.c. administration. Tilmicosin was injected s.c. at 10 mg/kg once to 9 cows after the last milking of lactation; dry udder secretion samples were collected daily for 11 consecutive days and assayed microbiologically. Concentrations of drug > 0.78 μg/mL were found in the secretion for 8–9 days after dosing. Systemic side-effects were not observed after s.c. drug administration.  相似文献   

7.
Azithromycin is the first of a class of antibiotics classified as azalides. In an initial experiment four cats were given a single dose of azithromycin 5 mg/kg orally (p.o.), followed 2 weeks later by a single intravenous bolus (i.v.) dose of 5 mg/kg. Subsequently, six cats were given [14C]azithromycin p.o. in a single dose of 5.4 mg/kg for the study of tissue distribution and metabolism. In both experiments, serial blood samples were collected and the plasma assayed for unchanged azithromycin to determine various pharmacokinetic parameters. After p.o. administration, bioavailability was 58% and absorption rapid with a tmax of 0.85±0.72 h and a Cmax of 0.97 ± 0.65 μg/mL The harmonic mean terminal t1/2 after i.v. administration was 35 h. Tissue half-lives varied from 13 h in fat to 72 h in cardiac muscle. Three metabolites were identified in bile. Unchanged azithromycin accounted for 100% of the total radioactivity in lung and skin tissues when assayed. In comparison with other species, the bioavailability in cats is higher than in humans but lower than in dogs. As in the dog, > 50% of the azithromycin-related material in feline bile was unchanged azithromycin.  相似文献   

8.
Yamarik, T. A., Wilson, W. D., Wiebe, V. J., Pusterla, N., Edman, J., Papich, M. G. Pharmacokinetics and toxicity of ciprofloxacin in adult horses. J. vet. Pharmacol. Therap. 33 , 587–594. Using a randomized, cross‐over study design, ciprofloxacin was administered i.g. to eight adult mares at a dose of 20 mg/kg, and to seven of the eight horses at a dose of 5 mg/kg by bolus i.v. injection. The mean C0 was 20.5 μg/mL (±8.8) immediately after i.v. administration. The Cmax was 0.6 μg/mL (±0.36) at Tmax 1.46 (±0.66) h after the administration of oral ciprofloxacin. The mean elimination half‐life after i.v. administration was 5.8 (±1.6) h, and after oral administration the terminal half‐life was 3.6 (±1.7) h. The overall mean systemic availability of the oral dose was 10.5 (±2.8)%. Transient adverse effects of mild to moderate severity included agitation, excitement and muscle fasciculation, followed by lethargy, cutaneous edema and loss of appetite developed in all seven horses after i.v. administration. All seven horses developed mild transient diarrhea at 36–48 after i.v. dosing. All eight horses dosed intragastrically experienced adverse events attributable to ciprofloxacin administration. Adverse events included mild transient diarrhea to severe colitis, endotoxemia and laminitis necessitating euthanasia of three horses on humane grounds. The high incidences of adverse events preclude oral and rapid i.v. push administration of ciprofloxacin.  相似文献   

9.
The pharmacokinetics of allopurinol were studied in Dalmatian dogs. Eight dogs were given allopurinol orally at a dose of 10 mg/kg for seven doses prior to sample collection. After a period of at least two weeks, four of these dogs and four additional Dalmatians were later given a single intravenous (i.v.) dose of allopurinol (6 mg/kg) prior to sample collection.Allopurinol was found to follow first-order absorption and elimination kinetics. In the i.v. kinetic study, the elimination constant (Kel) = 0.31±0.03 per h, the half-life (t½) = 2.22±0.20 h, the initial concentration (C0) = 5.26±0.34 μg/mL and the specific volume (Vd) = 1.14±0.07 L/kg. Clearance of allopurinol was estimated to be 0.36±0.03 L/kg·h. In the oral kinetic study, the absorption rate constant (Kab) = 1.06±0.13 per h, the elimination rate constant (Kel) = 0.26±0.01 per h, the absorption half-life (t½ab) = 0.66±0.06 h, and the elimination half-life (t½el) = 2.69±0.14 h. Peak plasma concentrations (Cmax) = 6.43±0.18 μg/mL were obtained within 1 to 3 h (mean time of maximum concentration (Tmax) = 1.9±0.1 h). The volume of distribution corrected by the fraction of dose absorbed (Vd/F) was estimated to be 1.17±0.07 L/kg.Good agreement was obtained between mean kinetic parameters in the oral and i.v. studies. There was little variation between individual dogs in the i.v. study, whereas the rate of absorption and elimination of orally administered allopurinol was more varied among individual dogs. Because of this, and the fact that the magnitude of hyperuricosuria varies among Dalmatians, it is not possible to specify an exact dose of allopurinol that will effectively lower the urinary uric acid concentration to acceptable values in all Dalmatians with hyperuricosuria; rather, the dose must be titrated to the needs of each dog.  相似文献   

10.
Summary

The most common sign of febrile diseases is anorexia, which develops at a time when adequate caloric and micronutrient availability may be critical. In order to study the relationship of fever and anorexia, feed intake in dwarf goats was studied under conditions of fever and antipyresis. Furthermore, experiments were done to establish whether a feed intake stimulant would override the anorexia during febrile conditions. Infection with Ehrlichia phagocytophila and i.v. injection of Escherichia coli endotoxin (0111B4, 0.1 μg/kg body weight) both resulted in increased rectal temperatures and significant reductions in feed intake. Administration of the antipyretic drug flurbiprofen (1 mg/kg) to febrile animals inhibited the temperature responses, but food intake was still suppressed. Diazepam (0.06 mg/kg), a feed intake stimulant, did not override the anorexia associated with fever. Blocking the febrile response of E. coli LPS‐injected goats with flurbiprofen plus diazepam or with flurbiprofen plus naloxone (0.1 mg/kg) did not antagonise their reduced feed intake either.

The effects of these drugs and of endotoxin on rumen motility adds an interesting aspect to their activities in the CNS, since the CNS has been shown to regulate various aspects of forestomach motility, which in turn could alter feeding behaviour. Moreover, our findings are consistent with the hypothesis that the suppression of feed intake might depend on the release of interleukin‐1.  相似文献   

11.
The in-vitro activity of enrofloxacin against 117 strains of bacteria isolated from bustards was determined. Minimum inhibitory concentrations for 72% of the Proteus spp., E. coli, Salmonella spp. and Klebsiella spp. (n = 61) and for 48% of the Streptococci spp. and Staphylococci spp. (n = 31) were 0.5 μ g/mL. The minimum inhibitory concentration (MIC) of 76% of Pseudomonas spp. (n = 25) was 2 μg/mL. Fourteen strains were resistant to concentrations 128 μg/mL. The elimination half-lives (t½ elim β) (mean± SEM) of 10 mg/kg enrofloxacin in eight houbara bustards (Chlamydotis undulata) were 6.80± 0.79, 6.39± 1.49 and 5.63± 0.54 h after oral (p.o.), intramuscular (i.m.) and intravenous (i.v.) administration, respectively. Enrofloxacin was rapidly absorbed from the bustard gastro-intestinal tract and maximum plasma concentrations of 1.84± 0.16 μg/mL were achieved after 0.66± 0.05 h. Maximum plasma concentration after i.m. administration of 10 mg/kg was 2.75± 0.11 μg/mL at 1.72± 0.19 h. Maximum plasma concentration after i.m. administration of 15 mg/kg in two birds was 4.86 μg/mL. Bioavailability was 97.3± 13.7% and 62.7± 11.1% after i.m. and oral administration, respectively. Plasma concentrations of enrofloxacin 0.5 μg/mL were maintained for at least 12 h for all routes at 10 mg/kg and for 24 h after i.m. administration at 15 mg/kg. Plasma enrofloxacin concentrations were monitored during the first 3 days of treatment in five houbara bustards and kori bustards (Ardeotis kori) with bacterial infections receiving a single daily i.m. injection of 10 mg/kg for 3 days. The mean plasma enrofloxacin concentrations in the clinical cases at 27 and 51 h (3.69 and 3.86 μg/mL) and at 48 h (0.70 μg/mL) were significantly higher compared with the 3 h and 24 h time intervals from clinically normal birds. The maximum plasma concentration (Cmax)/MIC ratio was ranked i.v. (10/mg/kg) > i.m. (15 mg/kg) > i.m. (10 mg/kg) > oral (10 mg/kg), but it was only higher than 8:1 for i.v and i.m. administrations of enrofloxacin at 10 mg/kg and 15 mg/kg, respectively, against a low MIC (0.5 μg/mL). A dosage regimen of 10 mg/kg repeated every 12 h, or 15 mg/kg repeated every 24 h, would be expected to give blood concentrations above 0.5 μg/mL and hence provide therapeutic response in the bustard against a wide range of bacterial infections.  相似文献   

12.
The target of the present study was to investigate the plasma disposition kinetics of levofloxacin in stallions (n = 6) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injection at a dose rate of 4 mg/kg bwt, using a two‐phase crossover design with 15 days as an interval period. Plasma samples were collected at appropriate times during a 48‐h administration interval, and were analyzed using a microbiological assay method. The plasma levofloxacin disposition was best fitted to a two‐compartment open model after i.v. dosing. The half‐lives of distribution and elimination were 0.21 ± 0.13 and 2.58 ± 0.51 h, respectively. The volume of distribution at steady‐state was 0.81 ± 0.26 L/kg, the total body clearance (Cltot) was 0.21 ± 0.18 L/h/kg, and the areas under the concentration–time curves (AUCs) were 18.79 ± 4.57 μg.h/mL. Following i.m. administration, the mean t1/2el and AUC values were 2.94 ± 0.78 h and 17.21 ± 4.36 μg.h/mL. The bioavailability was high (91.76% ± 12.68%), with a peak plasma mean concentration (Cmax) of 2.85 ± 0.89 μg/mL attained at 1.56 ± 0.71 h (Tmax). The in vitro protein binding percentage was 27.84%. Calculation of efficacy predictors showed that levofloxacin might have a good therapeutic profile against Gram‐negative and Gram‐positive bacteria, with an MIC ≤ 0.1 μg/mL.  相似文献   

13.
The biopharmaceutical properties of four fuced trimethoprim/sulfonamide combinations were investigated in the horse. Eight fasted horses were dosed at 1 week intervals in a sequentially designed study with one intravenous (i.v.) and three oral trimethoprim/sulfadiazine (TMP/SDZ) formulations (1, 2 and 3) administered at a dose of 5 mg/kg trimethoprim (TMP) and 25 mg/kg sulfadiazine (SDZ). Plasma concentrations of each compound were monitored for 48 h. Pharmacokinetic parameters (volume of distribution, bioavailability and total body clearance) for TMP and SDZ were calculated and compared. After oral administration plasma concentrations of TMP and SDZ increased rapidly. With all three paste formulations, TMP peak plasma concentrations were attained within 2 h. SDZ mean peak plasma concentrations were reached at 2.59 ± 0.48 h for a commercial paste (l), and at 1.84 ± 0.66 h and 1.95 ± 0.61 h for the two self-made formulations (2 and 3). Mean peak plasma TMP concentrations (± SD) were 1.72 ± 0.36 μg/ml, 1.42 ± 0.37 μg/ml and 1.31 ± 0.36 μ g/d, and mean peak plasma SDZ concentrations 12.11 ± 4.5 5 μg/ml, 12.72 ± 3.47 μg/ml and 15.45 ± 4.74 μg/ml for preparations 1, 2 and 3. The bioavailability of TMP was 67.0 ± 20.3%, 57.7 ±21.6% and 60.9 f 18.9% and of SDZ 57.6 ± 14.8%, 59.3 ± 19.5% and 65.9 ± 5.8% for SDZ for 1, 2 and 3, respectively. Following i.v. administration TMP/SDZ plasma concentration ratios approached the optimal 1:20 ratio (It 10%) for about 5 h, but following the oral administrations this ratio was only achieved for a very short time-span. No adverse effects were seen following i.v. and oral administration. In considering the pharmacokinetic data in combination with in vitro antibacterial sensitivity data, it is concluded that treatment at a dose of 5 mg/kg TMP and 25 mg/kg SDZ with a dosing interval of 12 h can be regarded as therapeutically effective for susceptible bacteria (MIC90 0.25/4.75) for all three oral formulations. It is concluded that neither the formulation nor the addition of different excipients result in significantly different bioavailabilities.  相似文献   

14.
Pharmacokinetic parameters of oxytetracycline were analysed in healthy preruminant veal calves after intravenous, intramuscular and oral administration. The serum half-lives in the β-elimination phase of both 10% and 20% solutions after i.v. injection of 10 mg/kg were similar (7.07 ± 1.36 h and 7.16 ± 1.17 h, mean ± SD), whereas the total body clearance and the apparent volume of distribution were higher for the 20% solution. Serum concentrations above 0.5 μg/ml were maintained with both formulations during 12–24 h but were only above 4 μg/ml to 5 h. Intramuscular administration of the 20% solution gave a complete absorption with two rate constants of absorption, a faster (t1/2a1= 0.27 h) and a slower one (t1/2a2= 10.90 h) responsible for the delayed elimination half-life after this route of application (t1/2β= 9.83 ± 1.35 h). Mean serum concentrations reached a maximum level of 3.01 ± 0.72 μg/ml at 4.01 ± 2.84 h and decreased to 0.5 μg/ml between 12 and 24 h. 50 mg/kg given orally with a milk replacer were found to have a mean bioavailability of 46.35%. A mean serum peak level of 4.99 ± 1.37 μg/ml was achieved at 9.16 ± 1.99 h and the mean concentration was still above 0.5 μg/ml after 48 h. The elimination half-life (t1/2β= 10.66 ± 3.15 h) reflected the slow absorption step (t1/2a2= 10.15 h) following that responsible for the initial faster absorption (t1/2a2= 1.99 h). Comparison of the area under the serum curves gave mean values of 117% for tetracycline and of 53% for chlortetracycline relative to oxytetracycline (arbitrarily fixed at 100%) after identical oral dosage of the three tetracyclines. We also propose and discuss a dosage schedule based on minimal inhibitory concentrations of different susceptible pathogens  相似文献   

15.
The present study was designed to examine the effects of intracerebroventricular (ICV) injection of Dopamine (10, 20 and 40 nmol), L-DOPA (dopamine precursor; 62.5, 125 and 250 nmol), 6-OHDA (dopamine inhibitor; 75, 150 and 300 nmol), SCH 23390 (D1 antagonist; 2.5, 5 and 10 nmol), AMI-193 (D2 antagonist; 2.5, 5 and 10 nmol), NGB2904 (D3 antagonist; 3.2, 6.4 and 12.8 nmol), L-741 T742 (D4 antagonist; 1.5, 3 and 6 nmol) on food intake in FD3 chickens. At following, birds were ICV injected using 8-OH-DPAT (5-HT1A agonist; 15.25 nmol) and SB242084 (5-HT2C antagonist; 1.5 μg) prior dopamine (40 nmol) injection. Cumulative food intake was determined until 3 h post-injection. According to the results, dopamine significantly decreased food intake in chickens (p?<?0.05). The inhibitory effect of dopamine on food intake was decreased by SCH 23390 pretreatment (P?<?0.05), but AMI-193, NGB2904 and L-741, 742 had no effect on food intake induced by dopamine. In addition, hypophagic effect of dopamine was attenuated by SB242084 (P?<?0.05), but 8-OH-DPAT had no effect. These results suggest that dopamine decrease food intake via D1 receptor and there is an interaction between dopaminergic and serotonergic systems via 5-HT2C receptor in chickens.  相似文献   

16.
Pharmacokinetic (PK) parameters of marbofloxacin (MRFX) in Korean cattle, Hanwoo, were determined following its intravenous (i.v.) or intramuscular (i.m.) administration at a dose of 2 mg/kg. Area under the curve (AUC0–24 hr), half-life (t1/2) and total body clearance (CLB) of i.v. MRFX were 6.87 hr∙µg/ml, 2.44 hr and 0.29 l/kg∙hr, respectively, and the corresponding values for i.m. administration of MRFX were 5.07 hr∙µg/ml, 2.44 hr and 0.39 l/kg∙hr. The suggested optimal doses of MRFX in Hanwoo cattle, calculated by integration of PK data obtained in the present study and previously reported minimum inhibitory concentration (MIC) for MRFX against susceptible (MIC ≤1 µg/ml) and intermediate (MIC ≤2 µg/ml) pathogenic bacteria, were 2.1 and 4.2 mg/kg/day by i.v. route and 3.9 and 7.8 mg/kg/day by i.m. route.  相似文献   

17.
The sedative effects in horses of the new α2-agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 mμ/kg bodyweight and 10 μg/kg bodyweight) and with one dose of xylazine (1 μg/kg bodyweight) given by intravenous injection. Medetomidine at 10 μg/kg was similar to 1 mg/kg xylazine in sedative effect but produced greater and more prolonged ataxia. Ataxia was so severe following 10 μg/kg of medetomidine that one animal fell over during the study. Medetomidine (5 μg/kg) produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

18.
The cardiopulmonary effects of an intravenous (iv) medetomidine injection (5 μg/kg) followed 5 min later by its infusion at 3.5 μg/kg/h for 115 rnin were studied in 9 horses and ponies. Five minutes after the end of infusion 60 μg/kg atipamezole were given. Physiological data during infusion were compared with pre-sedation values. Stroke volume was reduced significantly 5 min after initial medetomidine injection. Cardiac index was reduced significantly and systemic vascular resistance increased significantly for the first 20 min, but returned towards pre-sedation values after this time. Arterial blood pressures were reduced significantly from 30 min until the end of the procedure (minimum MAP was 102.4 ± 9.61 mmHg). Mixed venous oxygen tension was reduced significantly during the infusion. Respiratory rate fell and PaCO2- rose significantly from 40 min onward. Other variables showed no significant changes. The horses recovered rapidly after atipamezole was injected. Arterial blood pressures remained significantly lowered, but other cardiovascular variables returned towards pre-sedation values. It is concluded that the infusion of medetomidine at 3.5 μg/kg/h causes minimum cardiopulmonary depression once the effects of an initial 5 μg/kg injection have waned, and so could prove suitable as part of an anaesthetic technique in equidae.  相似文献   

19.
The purpose of this study was to describe and compare the pharmacokinetic properties of different formulations of erythromycin in dogs. Erythromycin was administered as lactobionate (10 mg/kg, IV), estolate tablets (25 mg/kg p.o.) and ethylsuccinate tablets or suspension (20 mg/kg p.o.). After intravenous (i.v.) administration, the principal pharmacokinetic parameters were (mean ± SD): AUC(0–∞) 4.20 ± 1.66 μg·h/mL; Cmax 6.64 ± 1.38 μg/mL; Vz 4.80 ± 0.91 L/kg; Clt 2.64 ± 0.84 L/h·kg; t½λ 1.35 ± 0.40 h and MRT 1.50 ± 0.47 h. After the administration of estolate tablets and ethylsuccinate suspension, the principal pharmacokinetic parameters were (mean ± SD): Cmax, 0.30 ± 0.17 and 0.17 ± 0.09 μg/mL; tmax, 1.75 ± 0.76 and 0.69 ± 0.30 h; t½λ, 2.92 ± 0.79 and 1.53 ± 1.28 h and MRT, 5.10 ± 1.12 and 2.56 ± 1.77 h, respectively. The administration of erythromycin ethylsuccinate tablets did not produce measurable serum concentrations. Only the i.v. administration rendered serum concentrations above MIC90 = 0.5 μg/mL for 2 h. However, these results should be cautiously interpreted as tissue erythromycin concentrations have not been measured in this study and, it is recognized that they can reach much higher concentrations than in blood, correlating better with clinical efficacy.  相似文献   

20.
Bistoletti, M., Alvarez, L., Lanusse, C., Moreno, L. Disposition kinetics of albendazole and metabolites in laying hens. J. vet. Pharmacol. Therap.  36 , 161–168. An increasing prevalence of roundworm parasites in poultry, particularly in litter‐based housing systems, has been reported. However, few anthelmintic drugs are commercially available for use in avian production systems. The anthelmintic efficacy of albendazole (ABZ) in poultry has been demonstrated well. The goal of this work was to characterize the ABZ and metabolites plasma disposition kinetics after treatment with different administration routes in laying hens. Twenty‐four laying hens Plymouth Rock Barrada were distributed into three groups and treated with ABZ as follows: intravenously at 10 mg/kg (ABZ i.v.); orally at the same dose (ABZ oral); and in medicated feed at 10 mg/kg·day for 7 days (ABZ feed). Blood samples were taken up to 48 h posttreatment (ABZ i.v. and ABZ oral) and up to 10 days poststart feed medication (ABZ feed). The collected plasma samples were analyzed using high‐performance liquid chromatography. ABZ and its albendazole sulphoxide (ABZSO) and ABZSO2 metabolites were recovered in plasma after ABZ i.v. administration. ABZ parent compound showed an initial concentration of 16.4 ± 2.0 μg/mL, being rapidly metabolized into the ABZSO and ABZSO2 metabolites. The ABZSO maximum concentration (Cmax) (3.10 ± 0.78 μg/mL) was higher than that of ABZSO2Cmax (0.34 ± 0.05 μg/mL). The area under the concentration vs time curve (AUC) for ABZSO (21.9 ± 3.6 μg·h/mL) was higher than that observed for ABZSO2 and ABZ (7.80 ± 1.02 and 12.0 ± 1.6 μg·h/mL, respectively). The ABZ body clearance (Cl) was 0.88 ± 0.11 L·h/kg with an elimination half‐life (T1/2el) of 3.47 ± 0.73 h. The T1/2el for ABZSO and ABZSO2 were 6.36 ± 1.50 and 5.40 ± 1.90 h, respectively. After ABZ oral administration, low ABZ plasma concentrations were measured between 0.5 and 3 h posttreatment. ABZ was rapidly metabolized to ABZSO (Cmax, 1.71 ± 0.62 μg/mL) and ABZSO2 (Cmax, 0.43 ± 0.04 μg/mL). The metabolite systemic exposure (AUC) values were 18.6 ± 2.0 and 10.6 ± 0.9 μg·h/mL for ABZSO and ABZSO2, respectively. The half‐life values after ABZ oral were similar (5.91 ± 0.60 and 5.57 ± 1.19 h for ABZSO and ABZSO2, respectively) to those obtained after ABZ i.v. administration. ABZ was not recovered from the bloodstream after ABZ feed administration. AUC values of ABZSO and ABZSO2 were 61.9 and 92.4 μg·h/mL, respectively. The work reported here provides useful information on the pharmacokinetic behavior of ABZ after both i.v. and oral administrations in hens, which is a useful first step to evaluate its potential as an anthelmintic tool for use in poultry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号