首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5种N-P阻燃剂阻燃抑烟性能的CONE分析   总被引:1,自引:0,他引:1  
为进一步研究和改进N-P阻燃剂的性能,采用质量分数10%的APP、BL、MBL、GUPR以及WR等5种木材N-P阻燃剂,60℃真空(-0.5MPa)浸渍处理速生杨木,对其进行极限氧指数、烟密度以及锥形量热分析。结果表明,无机型阻燃剂APP、BL、MBL的载药率均较高,BL和MBL处理试样极限氧指数达40以上,阻燃性能良好;有机型阻燃剂GUPR的载药率最低,但其阻燃效率最高,抑烟效果最优;阻燃剂(除WR)使木材耐热性能降低,木材热解进程提前,HRR峰值出现时间推迟;复合型阻燃剂WR延缓热解进程的能力最强,碳层阻隔能力优良,但抑制热释放速率的能力较差;与BL相比,MBL处理试样燃烧总烟气释放量减少,特别是在前300 s内CO释放量降低26.2%,燃烧反应更为缓和,整体阻燃效果提高。  相似文献   

2.
采用锥形量热仪实验法,在50KW/m^2的热辐射功率下,对不同的FRW质量分数阻燃剂对落叶松木材进行阻燃处理和系统的阻燃性研究,结果表明:当FRW阻燃剂的质量分数为6.87%时,FRW阻燃落叶松木材的热释放速率、总热释放量、烟比率,比光面积,二氧化碳体积分数等燃烧参数均比未处理材降低50%以上,并且,这些燃烧参数随着FRW质量分数的升高而降低。因此,FRW阻燃处理显著地提高了落叶松木材的阻燃性和抑烟性。  相似文献   

3.
以巴沙木(Ochroma pyramidale)木材为研究对象,制备尺寸为(纵向×径向×弦向)100 mm×100 mm×2 mm的试件(天然木材试件);采用“质量分数2%的亚氯酸钠溶液+加冰醋酸”,在85℃蒸煮3 h,脱除木材中大部分木质素,冲洗、蒸煮除去残留的化学物质,真空冷冻干燥后制备脱木质素木材试件;采用质量分数为30%的硅酸钠溶液,浸渍天然木材试件、脱木质素木材试件,85℃水浴高温浸渍1.5 h,浸渍材气干7 d、55℃干燥12 h后,制备阻燃木材试件、阻燃脱木质素木材试件;参照相关标准,测定试件的氧指数、点燃时间、热释放速率、总热释放量、总烟释放量、一氧化碳产量、二氧化碳产量、残余物质量、热稳定性;分析天然木材、脱木质素木材、阻燃木材、阻燃脱木质素木材的燃烧性能。结果表明:与天然木材相比,阻燃木材、阻燃脱木质素木材的氧指数显著提高。脱木质素处理和硅酸钠浸渍,对降低木材的热释放速率、总热释放量、总烟释放量、一氧化碳产量、二氧化碳产量均具有促进作用。热质量分析表明,脱木质素处理对木材残炭量影响较小,阻燃木材、阻燃脱木质素木材的热分解速率明显下降;“脱木质素+硅酸钠浸渍”协同处理...  相似文献   

4.
【目的】为提高木材的阻燃抑烟性能,本研究采用金属有机框架材料(MOF)作为新型阻燃剂,选用MIL-100(Fe)处理木材,制备一种绿色环保的阻燃材料,旨在为木材阻燃提供新思路。【方法】以MIL-100(Fe)为阻燃剂,采用常压浸泡(WJP组)和真空加压浸渍(W-JZ组)两种方法,在木材体内原位合成MIL-100(Fe)。利用扫描电子显微镜、X射线衍射和傅里叶变换红外光谱分析处理材形貌结构;采用氮气吸附法对处理材的孔隙结构进行表征;采用极限氧指数、热重测试、锥形量热测试评估处理材的热稳定性和阻燃抑烟性能;最后采用扫描电子显微镜、傅里叶变换红外光谱对残炭进行形貌结构表征并进行机理分析。【结果】两种处理方法均可在木材内原位合成MIL-100(Fe),其中W-JZ组有更多的MIL-100(Fe)前驱体溶液进入木材内部并完成结晶,质量增长率达24.36%,形成的晶体结构更完整均匀,尺寸更小。MIL-100(Fe)处理材表现出良好的热稳定性,其中W-JZ组残炭率提升了39.99%,热质量损失速率峰值降低了26.47%。MIL-100(Fe)处理材的总热释放量和总烟释放量降低,阻燃抑烟性能良好。MI...  相似文献   

5.
利用极限氧指数、水平垂直燃烧测试、热重分析(TGA)和扫描电镜(SEM)比较研究了硼酸铵与磷酸氢二铵复配阻燃杨木单板的阻燃性能及热解特性。结果表明:磷酸氢二铵的阻燃性能优于硼酸铵,两者复配使用时具有明显的协效性;质量浓度为20%的复合阻燃剂溶液处理杨木单板的氧指数和残炭量最高,分别为61%和53.5%,在水平垂直燃烧试验中也显现出优异的阻燃性能;复合阻燃剂降低了热解阶段的初始分解温度、峰值分解温度和各阶段的表观活化能;燃烧后的SEM分析表明,阻燃剂的加入使得杨木单板在燃烧过程中形成了保护层,有效阻止了热和氧气的交换,从而提高了杨木单板的阻燃性能。  相似文献   

6.
采用共沉淀法制备无机氢氧化镁(MH)和氢氧化铝(ATH)复合阻燃剂,并将它和ATH分别用于压制阻燃中密度纤维板,探讨无机金属氢氧化物阻燃剂对中密度纤维板燃烧过程中的热释放性能、质量变化、烟释放性能和烟气毒性的影响。结果表明,添加无机氢氧化物的MDF的点燃时间延长;热释放速率和热释放量减小;MDF燃烧过程中质量损失速率降低,残余物质量增多;烟释放量明显减小,烟气中CO_2和CO的生成速率降低,表现出显著的阻燃抑烟效果。与单一ATH相比,无机氢氧化镁铝复合阻燃剂体系中的MH和ATH具有协同阻燃效果,能更有效地降低热量释放和烟释放,提高阻燃效率,减少阻燃剂的用量。  相似文献   

7.
在纤维板生产过程中添加无机阻燃剂,能显著提高其阻燃性能,这对于人身安全至关重要。通过使用氢氧化铝与硼酸锌复配改性中密度纤维板来研究其阻燃性能,对制备的阻燃纤维板进行热重/差示扫描量热以及锥形量热分析。结果表明,无机复配阻燃剂可以显著提高纤维板的热稳定性(残余物量达45%)和烟释放量(降低60%),均显著高于氢氧化铝或硼酸锌单独处理时的阻燃纤维板。利用无机阻燃剂自身不同的阻燃机制,发挥协同效应,可以实现高性能阻燃剂的配制和阻燃纤维板的制造。  相似文献   

8.
采用不同固体质量分数的苯酚-三聚氰胺-尿素-甲醛(PMUF)树脂和硼酸、硼砂阻燃剂对人工林杉木进行浸渍处理,并对改性材的阻燃性能进行评价。结果表明:与素材相比,硼化物改性材的氧指数提高,热释放速率和总热释放量均大幅降低;随着树脂固体质量分数的增加,树脂改性材的氧指数呈现先升高后略下降的趋势,点燃时间延长,第一热释放速率峰值逐渐减小并且第二热释放速率峰值出现时间延迟,但总热释放量上升;复配改性材的氧指数均达到55%以上,阻燃性比树脂改性材进一步提高,热释放速率和总热释放量降低明显,残炭量增加,热稳定性提高。  相似文献   

9.
木质素结构中含有丰富的羟基与芳香官能团,具备大分子阻燃成炭剂的结构要求且成本低廉,绿色无污染。焦磷酸哌嗪(PPAP)是一种氮-磷协同的新型环保阻燃剂,具有优异的阻燃性能。将木质素与焦磷酸哌嗪按质量比1∶1复配得到一种木质素和焦磷酸哌嗪复合膨胀型阻燃剂,并将其用于阻燃改性环氧树脂(EP)。采用锥形量热分析(CONE)、极限氧指数测试(LOI)、垂直燃烧试验(UL-94)对所制备的“(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的燃烧行为与阻燃性能进行探究。采用热质量分析(TGA)、力学性能测试分析了阻燃材料的热稳定性与力学性能。采用傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM),对环氧树脂复合材料燃烧后所得残炭层的化学结构、表面各元素的原子百分比、微观形貌进行分析表征。结果表明:木质素和焦磷酸哌嗪复合膨胀型阻燃剂(L+P)的引入提高了环氧树脂的阻燃性能与热稳定性。与纯环氧树脂相比,“质量分数20%的(木质素+焦磷酸哌嗪)复合膨胀型阻燃剂+环氧树脂”阻燃材料的极限氧指数由22.2%提高至27.5%,最大热释放速率、总烟释放量分别降低了60.11...  相似文献   

10.
采用硼酸熔融法合成了一种锌硼磷酸铵盐化合物(ZBP),利用X射线衍射、扫描电镜、X射线光电子能谱、红外光谱分析、热失重等对合成产物的结构、形貌、组成及热稳定性进行表征。将ZBP作为阻燃剂加入到木粉/聚氯乙烯复合材料(WF/PVC)中,通过热压工艺制得阻燃木粉/聚氯乙烯复合材料(ZBP-WF/PVC),利用热失重(TG)和锥形量热仪(CONE)对阻燃ZBP-WF/PVC复合材料的热解成炭和燃烧性能进行分析,通过万能力学试验机和组合冲击试验机对其进行力学性能测试。结果表明:阻燃剂的加入提高了复合材料的热稳定性,增加了残炭量;阻燃剂的加入对复合材料的热释放影响较小,但显著降低了材料的烟释放速率,具有一定的阻燃抑烟效果;添加量为10%的阻燃剂对复合材料的力学性能影响较小。  相似文献   

11.
为了研究硅溶胶和聚磷酸铵(APP)复配后的阻燃性能,真空常压方法下分别用APP、硅溶胶以及两者复配后的阻燃剂浸渍辐射松木材,分析各改性材的增重、增容率以及热解燃烧性能,并用扫描电镜(SEM)分析改性后的残炭形貌。研究结果表明:氧指数由高到低是APP-硅溶胶、APP、硅溶胶和素材;由APP处理和APP-硅溶胶联合处理材的初始分解温度、最大失重率温度均提前,残炭率提高,硅溶胶处理材的初始分解温度和最大失重率与素材相近。经锥形量热测试结果显示:由APP处理和APP-硅溶胶联合处理材的热释放速率峰值分别比素材降低了232.8和150.3 kW·m-2,总释放热降低29.63和17.98 MJ·m-2,而由硅溶胶处理的效果不明显。与其他3种试材相比,硅溶胶处理材的COP最低,说明硅溶胶对CO的生成有抑制作用。处理材的火灾蔓延指数(FGI)均比素材降低;扫描电镜显示,经浸渍处理过的残炭结构更加致密,表面更加光滑。结果说明了硅溶胶的加入可以降低CO毒气的生成,APP的加入使木材的阻燃性达到了难燃级。  相似文献   

12.
以三聚氰胺改性脲醛树脂(MUF)为基料,添加聚磷酸铵(APP)和4A分子筛制备膨胀型木材阻燃涂料,利用锥形量热仪研究阻燃涂料涂饰杨木Populus spp.的燃烧性能。结果表明:1MUF中加入质量分数为50.00%的APP能延长杨木的点燃时间(TTI),降低杨木的热释放速率(HRR),总热释放速率(THR)和质量损失速率(MLR),提高杨木的火灾性能指数(FPI)(处理2为1.07),但会增大总发烟量(ISR)。2在阻燃涂料中加入少量的4A分子筛即可显著降低木材的热释放速率峰值(pk1-HRR,pk2-HRR),推迟峰值出现时间,降低木材有焰燃烧阶段的热释放速率和质量损失率,提高木材的火灾性能指数(处理3和4分别为1.26,1.38)。加入质量分数为1.00%的分子筛(处理3)可平衡由于50.00%APP存在增加的发烟量,加入质量分数为3.00%的分子筛(处理4)材料燃烧前400 s内基本无烟产生,总发烟量显著降低。  相似文献   

13.
采用热重分析仪分析阻燃木粉鄄聚丙烯复合材料的热解特性,并研究不同升温速率对添加聚磷酸铵(APP)、 改性聚磷酸铵(M-APP)的阻燃木塑复合材料热解行为的影响,通过热重曲线建立热解动力学方程和分布活化能模 型,揭示了阻燃木粉鄄聚丙烯复合材料的热稳定性、热解反应活化能。结果表明:APP 和M-APP 2 种阻燃剂相比,M- APP 降低了复合材料的起始分解温度,并提高了木塑复合材料的残炭量;M=APP 使木粉最高分解温度由344.8 c 降低到334.1 c,使聚丙烯的最高分解温度由518郾5 益提高到525.6 c,残炭量由19.4% 提高到21.7%;添加 M鄄APP木塑复合材料的活化能比添加APP 的低。所以作为木粉鄄聚丙烯木塑复合材料的阻燃剂,M-APP 的阻燃效 果优于APP。   相似文献   

14.
复合NP阻燃剂处理杨木的热解特性与动力学分析   总被引:1,自引:0,他引:1  
为研究复合NP阻燃剂处理杨木的热解特性与阻燃机理,利用热分析法对蒸馏水、聚硅酸磷酸二氢铝(Al-Si)、NP阻燃剂(N-P)、聚硅酸磷酸二氢铝复合NP阻燃剂(N-P-Al-Si)处理杨木(编号为A、B、C、D)的燃烧性能进行探讨,分别运用Ozawa-Flynn-Wall法和修正Coats-Redfern法计算阻燃杨木活化能。结果表明:A仅有1个热解阶段,此阶段的活化能值为65~70 kJ/mol。阻燃处理材的热解大致分为2个阶段,D的主要热解阶段介于B、C之间,其热释放速率缓慢,失重速率和失重量最小。并且在不同的升温速率下D的失重趋势一致,随着升温速率的增大,失重曲线向高温方向移动。D第1、2阶段的活化能分别为120、240 kJ/mol,均显著大于C(115 kJ/mol),表明Al-Si与N-P复配后的阻燃效率得到提高。   相似文献   

15.
3种阻燃剂对重组竹燃烧性能和物理力学性能的影响   总被引:1,自引:0,他引:1  
以慈竹(Bambusa emeiensis)竹束为原料,选用磷酸二氢铵、聚磷酸铵和硼硼合剂3种阻燃剂处理竹束并制备阻燃重组竹,采用锥形量热仪测试了阻燃重组竹的燃烧性能,并分析了阻燃处理对重组竹物理力学性能的影响。结果表明,3种阻燃剂均能有效降低重组竹的热释放速率和热释放总量,延长点燃时间,其中SBX和APP能够大幅度降低发烟量和产烟速率。但是阻燃处理对重组竹的物理力学性能有不同程度的劣化,特别是吸水厚度膨胀率显著增加。3种阻燃剂中,MAP处理材抑制燃烧效果最好,对材料力学性质影响最小,热释放总量比未处理材下降了62.38%,MOE下降了0.78%,MOR下降了6.14%;SBX处理材的抑烟效果最好,发烟总量比未处理材降低了88%;APP处理材的引燃时间最长,为未处理材的3倍。  相似文献   

16.
利用氧指数测定仪和锥形量热仪,研究不同质量分数FRW阻燃剂浸渍杨木素板和饰面炭化杨木单板的阻燃性能。结果表明,质量分数8%以上FRW阻燃剂浸渍处理的炭化杨木单板阻燃性可达到日本标准JISD1322-77中规定的难燃一级品标准;随着FRW阻燃剂浸渍质量分数的增加,阻燃炭化杨木单板的热释放速率、总热释放量、烟比率和总烟释放量均呈降低趋势,说明阻燃炭化杨木单板具有较佳的阻燃和抑烟性能。  相似文献   

17.
采用硅烷包覆型聚磷酸铵(APP)作为阻燃剂,对竹粉/聚丙烯(PP)复合材料进行阻燃改性,研究APP的用量对复合材料阻燃性能和力学性能的影响;基于APP的最佳用量,以APP、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR),研究APP、PER和MEL的互配比例对复合材料阻燃和力学性能的影响。结果表明,随着APP用量的增加,复合材料的阻燃性能不断增强,但弯曲和拉伸强度下降。当APP用量为复合材料总质量的15%时,其综合性能较佳,与未阻燃复合材料相比,极限氧指数(LOI)由17.1%提高至21.5%,弯曲模量和缺口冲击强度(NIS)分别增强14.8%和32.2%,弯曲强度和拉伸强度分别降低9.3%和28.8%。当APP、PER和MEL的互配比例为3∶1∶1时,添加15% IFR的复合材料的力学性能总体增强,与未阻燃复合材料相比,弯曲强度、弯曲模量和NIS分别增强18.1%、20.0%和23.3%,仅拉伸强度降低10%。锥形量热仪和极限氧指数仪结果显示,IFR阻燃复合材料的热释放速率、热释放速率峰值和总热释放量分别降低56.7%、40.2%和30.5%;LOI提高至25.9%,复合材料的阻燃性能进一步改善,但是,总产烟量增大了16.7%,该IFR的添加对复合材料的持久抑烟效果不佳。  相似文献   

18.
以淀粉和聚磷酸铵为阻燃材料,以薄片为底物采用喷丝和涂载两种方法制备了烟草阻燃复合薄片,研究复合薄片的结构以及阻燃材料对薄片燃烧性能和热稳定性的影响。结果表明,与对照薄片相比,淀粉为1%,聚磷酸铵为3%时复合薄片热释放速率峰值可降低23.2%,复合薄片在热解的前期的热重损失量由56.24%下降至30%左右,而且在850℃残留炭量增加了2倍以上;进一步的热解气相产物分析也表明复合薄片燃烧后生成的大部分气相产物相对含量都得到了不同程度的降低。结论表明薄片经阻燃改性后不仅能在热解过程中形成稳定的焦炭层并延缓了薄片的进一步热解,而且在燃烧过程中了热失重温度向高温区移动,降低了绝大部分气相产物的相对含量,此项研究对于新型薄片和低危害卷烟的开发关键技术研究提供理论指导。  相似文献   

19.
利用复配阻燃剂采用常压浸渍法研究温度、时间、浸渍质量浓度等对竹单板载药量的影响,并测试不同载药量薄竹胶合板的燃烧和力学性能。结果表明:在温度为60℃,时间为8.0 h,浸渍质量浓度为300.0 g·L-1时为最佳浸渍条件;随着载药量的增加薄竹胶合板的热释放速率、总热释放量、烟释放速率和总烟释放量都减小,而残余物质剩余量和点燃时间在逐渐增加;氧指数测试结果表明:经过阻燃处理的薄竹胶合板的氧指数都有较明显的提高,并且随着载药量的增加而增加,当载药量A≥8%,其氧指数已达到GB/T 9846.7-2004中B1级胶合板和日本JISD1322-1977中的难燃一级品的要求;胶合强度测试表明经过阻燃处理的薄竹胶合板其胶合强度随着载药量的增加有所下降。胶合强度和含水率均能满足Ⅱ类普通胶合板的国家标准指标值。  相似文献   

20.
采用锥形量热仪对3种木材不同形态试样的燃烧性能进行对比分析,获得了点燃时间、热释放速率、总热释放量等参数。结果表明:3种木材的粉末样点燃时间远小于其它形态样;颗粒样燃烧持续时间最短,燃烧更剧烈;粉末样时间最长,但热释放速率及热释放速率峰值均最低,同时产烟速率也最低;同种木材不同形态试样的热释放总量相差不大。组拼样燃烧试验的结果与标准样较接近,颗粒样和粉末样与之则有较大差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号