首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidemiology of the anthracnose pathogen of mango, Colletotrichum gloeosporioides, was studied over two growing seasons in the Philippines. This pathogen spreads within tree canopies as water-borne conidia during rainfall, and causes symptoms on young flush leaves, flowers and fruit. Infection studies with leaves and fruit incubated at different temperatures and humidities led to the derivation of a logistic regression model of the percentage of conidia forming appressoria. This model was compared with a similarly derived model from work in Australia; it appeared that the Philippine isolates of C. gloeosporioides were adapted to the higher mean temperatures of the Philippines. Conidia were observed to germinate and form appressoria at relative humidities (RH) between 95 and 100%, even though free surface moisture was only visible at 100% RH. This model was used retrospectively to estimate infection levels in two field trials which had been established to compare pre- and post-harvest practices in the control of the disease. Using this information to plan applications of a curative fungicide might have resulted in four fewer sprays in the first trial and one less in the second, compared with the standard protective spray programme employed.  相似文献   

2.
Lee MH  Bostock RM 《Phytopathology》2006,96(10):1072-1080
ABSTRACT Monilinia fructicola, which causes brown rot in stone fruit, forms appressoria on plant and artificial surfaces. On nectarine, the frequency of appressoria produced by conidial germlings depends to a large degree on the stage of fruit development, with numerous appressoria formed on immature (stage II) nectarine fruit, and no appressoria observed on fully mature fruit (late stage III). On polystyrene surfaces, appressorium formation was increased from <10% of germinated conidia to >95% of germinated conidia when the conidia were washed to remove residual nutrients and self-inhibitors. M. fructicola appressorium formation also appears to be regulated by the topography of the plant surface. On fruit, appressoria formed on stomatal guard cell lips, on the grooves of lateral cells adjacent to stomata or between two epidermal cells, and on the convex surfaces of epidermal cells. Pharmacological effectors indicate that cyclic AMP-, MAP kinase-, and calcium/calmodulin-dependent signaling pathways are involved in the induction and development of appressoria. KN-93, an inhibitor of calmodulin-dependent protein kinase II, did not inhibit conidial germination but did inhibit appressorium formation and brown rot development on flower petals, suggesting that appressoria are required for full symptom development on Prunus spp. petals.  相似文献   

3.
4.
为了解橡胶树2种炭疽病菌的侵染结构发育分化过程,采用平板菌落生长速率法测定了3株胶孢炭疽菌Colletotrichum gloeosporioides和3株尖孢炭疽菌C.acutatum的菌丝生长速率,测量其分生孢子大小,显微观察2种炭疽菌在疏水表面诱导下侵染结构的发育分化过程。结果表明,胶孢炭疽菌菌丝生长速率为0.96~1.36 cm/d,显著高于尖孢炭疽菌的菌丝生长速率0.72~0.89 cm/d,但二者分生孢子大小无显著差异。在疏水表面诱导下,2种炭疽菌分生孢子在接种2~6 h后开始萌发,12 h孢子萌发率为71.70%~88.05%,13~16 h开始分化附着胞,24 h附着胞形成率为48.99%~70.74%,36 h菌丝诱发形成大量附着枝,48 h后分生孢子产生的次生菌丝也可诱发形成附着枝,附着枝呈圆形、姜瓣形、梨形或不规则形。分生孢子极易产生,可在菌丝顶端成簇或菌丝侧面排列产生,也可由分生孢子形成的芽管产生,或在芽管分化附着胞过程分枝形成分生孢子;附着胞多着生于芽管顶端,少数附着胞顶端可继续萌发类似短芽管结构,再次分化形成可黑色化的次级附着胞。表明橡胶树2种炭疽菌不同菌株间分生孢子萌发时间、孢子萌发率、附着胞形成时间和形成率有一定差异,但种间无明显差异;橡胶树炭疽菌分生孢子极易形成,在疏水表面容易分化形成附着胞和附着枝,说明具有极强的适生性。  相似文献   

5.
The infection process of a Colletotrichum species causing latent infection and anthracnose in cowpea ( Vigna unguiculata ) was studied in seedlings by light and confocal microscopy. Leaf surfaces were extensively colonized by an anastomosing network of germ-tubes and conidia. This epiphytic mycelium produced abundant secondary conidia on short conidiophores. Although melanized appressoria were developed, the host surface was not penetrated directly. The fungus only gained ingress into leaves through stomatal openings, by means of undifferentiated germ-tubes, and slowly colonized the mesophyll by intercellular hyphae, without initially producing visible symptoms. Anthracnose lesions with multisetate acervuli appeared on senescent leaves after a prolonged symptomless period of host colonization lasting > 2 weeks. Analysis of the nucleotide sequences of the amplified D2 and ITS-2 regions of rDNA revealed close similarities (95–96%) between this cowpea pathogen and isolates of C . gloeosporioides from Aeschynomene virginica, Stylosanthes scabra and Mangifera indica. These results, in addition to other morphological and growth attributes, identify this endophytic anthracnose pathogen of cowpea as a Colletotrichum species distinct from C. capsici and C. destructivum .  相似文献   

6.
Ulvan is an algal polysaccharide known for its ability to induce resistance to plant diseases such as the Glomerella leaf spot of apple caused by Colletotrichum gloeosporiodes. This study was aimed at investigating microscopically, in tests in vitro and in vivo, whether ulvan interferes in the development of pre-infective structures of C. gloeosporioides. Conidial germination and appressoria formation were monitored hourly on agar and cellophane, and at 48 h on water- and ulvan-treated susceptible as well as resistant apple leaves. Amendment of agar with ulvan (10 mg ml?1) enhanced the germination and resulted in longer germ tubes at 7 h of incubation. On cellophane it significantly delayed appressoria formation up to 8 h, but later after 14 h increased the number of appressoria per conidium. Spraying of susceptible leaves with ulvan 6 days before inoculation decreased disease severity by 50%. This was associated with inhibition of appressoria formation and stimulus in growth of germ tubes, without interfering with conidial germination, when compared with both water-treated control and resistant plants. Appressorium formation occurred preferentially on anticlinal walls of epidermal cells and its location was not influenced by host resistance or by ulvan treatment. This study suggests a new mode of action for ulvan interfering with appressorium formation that could protect apple plants against C. gloeosporioides infection.  相似文献   

7.
The effect of isoprothiolanea (di-isopropyl 1,3-dithiolan-2-ylidenemalonate), a systemic fungicide used for rice blast control, on the infection process of Pyriculuria oryzae was studied by micromanipulation in a scanning electron microscope. Whether or not infection pegs emerged from the appressoria was examined by inverting each appressorium contact surface. Infection pegs were observed on more than 80% of the appressoria, 48 h after inoculation, on both untreated rice leaves and cellophane film. Isoprothiolane, approximately 10 μg ml?1 in the ambient water of inoculated conidia, reduced the emergence of infection pegs on rice leaves and cellophane film by 96 and 100%, respectively.  相似文献   

8.
ABSTRACT The germination and sporulation of Colletotrichum acutatum were characterized over time on strawberry leaves (cv. Tristar) and plastic coverslips incubated at 26 degrees C under continuous wetness. Conidia germinated within 3 h after inoculation and formed melanized appressoria with pores by 9 h after inoculation. Host penetration was not observed up to 7 days after inoculation. Production of secondary conidia on conidial and hyphal phialides began within 6 h after inoculation. Secondary conidiation was responsible for up to a threefold increase in the total number of conidia within 7 days after inoculation. Primary conidia and hyphae began to collapse 48 h after inoculation, whereas melanized appressoria remained intact. These findings suggest that appressoria and secondary conidia of C. acutatum produced on symptomless strawberry foliage may be significant sources of inoculum for fruit infections.  相似文献   

9.
Steiner U  Oerke EC 《Phytopathology》2007,97(10):1222-1230
ABSTRACT During formation of appressoria produced from conidia and ascospores of Venturia inaequalis, a dark brown ring structure was detected at the base of appressoria. This melanized appressorial ring structure (MARS) was attached to the leaf surface like a sealing ring and formed the fungus-plant interface; it is believed to be required for pathogen penetration of the cuticle. Neither germ tubes nor infection structures beneath the cuticle were found to be visibly melanized. MARS were formed not only on apple leaves but also on leaves of nonhost plants and artificial surfaces differing in hydrophobicity; the formation of appressoria and MARS was confined to hard surfaces. The melanin nature of the ring was confirmed by using melanin biosynthesis inhibitors. Applications prior to inoculation largely inhibited the melanization and reduced infection rate by 45 to 80%; curative applications were not effective. Transmission electron microscopy verified a localized melanization of the cell wall around the penetration pore, and melanin was incorporated into all layers of the fungal cell wall. Appressoria without MARS were not able to infect the plant, suggesting that this structure can be considered to be a pathogenicity factor in V. inaequalis.  相似文献   

10.
Quantitative changes in the antifungal compound, 1-acetoxy-2-hydroxy-4-oxo-heneicosa-12.15-diene, in freshly harvested avocado fruits during the initial stages of fungal development were investigated to determine the possible involvement of the compound in quiescent infections of Colletotrichum gloeosporioides. The concentration of the antifungal compound in the peel decreased to subfungitoxic concentrations 16 h after harvest. Fifty-six hours later the antifungal diene had increased to c . 3800 μg/g fresh weight. At this stage, germinated appressoria had penetrated the cuticle to the epidermal cells but no fungal development was observed until 7 days later when the concentration of the diene had decreased to 100-110μg/g fresh weight. Following a dip treatment at 55°C for 5 or 10 min, the antifungal diene concentration decreased as in the controls, but it remained at subfungitoxic concentrations for a longer period enabling fungal development and early symptom expression.
The concentration of the diene in the flesh of freshly harvested fruit decreased to 120 μg/g fresh weight 24 h after harvest. Inoculation of peeled fruits with spores of C. gloeosporioides showed germination without appressoria formation and symptom expression occurred 24-48 h later. Symptom expression was delayed if fruits were inoculated after coating the flesh with epicuticular wax extracts or if the flesh was inoculated 3 days after harvest when the antifungal diene had regained a fungitoxic concentration. Disease symptoms were expressed in soft fruits containing subfungitoxic concentrations of the diene.
We conclude that the diene in unripe avocado fruits inhibits fungal development of germinated appressoria or conidia. The quiescent structure of C. gloeosporioides in unripe avocado fruit is a subcuticular hypha.  相似文献   

11.
Uhm KH  Ahn IP  Kim S  Lee YH 《Phytopathology》2003,93(1):82-87
ABSTRACT Colletotrichum gloeosporioides forms a specialized infection structure, an appressorium, for host infection. Contacting hard surface induces appressorium formation in C. gloeosporioides, whereas hydrophobicity of the contact surface does not affect this infection-related differentiation. To determine if the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper, effects of calcium chelator (EGTA), phospholipase C inhibitor (neomycin), intracellular calcium modulators (TMB-8 and methoxy verampamil), and calmodulin antagonists (chloroproma-zine, phenoxy benzamine, and W-7) were tested on conidial germination and appressorium formation. Exogenous addition of Ca(2+), regardless of concentration, augmented conidial germination, while appressorial differentiation decreased at higher concentrations. Inhibition of appressorium formation by EGTA was partly restored by the addition of calcium ionophore A23187 or CaCl(2). Calcium channel blockers and calmodulin antagonists specifically reduced appressorium formation at micromolar levels. These results suggest that biochemical processes controlled by the calcium/calmodulin signaling system are involved in the induction of prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper.  相似文献   

12.
Colletotrichum acutatum causes anthracnose on peppers (Capsicum spp.), resulting in severe yield losses in Taiwan. Fungal isolates Coll-153, Coll-365 and Coll-524 collected from diseased peppers were found to differ in pathogenicity. Pathogenicity assays on various index plants revealed that Coll-524 was highly virulent and Coll-153 was moderately virulent to three commercially available pepper cultivars. Both isolates induced anthracnose lesions and produced abundant conidia. Coll-365 was only weakly virulent on pepper fruit, where it caused small lesions and hardly produced conidia on pepper fruit. However, Coll-365 was highly pathogenic to tomato fruit and mango leaves, where it caused anthracnose lesions and formed acervuli and conidia. All three isolates showed similar abilities in the attachment and germination of conidia, formation of highly branched hyphae and appressoria, penetration of cuticles, and infection of epidermal cells on chili peppers. Coll-365 accumulated less turgor pressure in appressoria but produced higher levels of cutinase and protease activity than Coll-153 and Coll-524 did. All three isolates invaded the neighbouring cells through plasmodesmata in chili peppers and showed similar pectinase or cellulase activities in culture. However, the most virulent strain Coll-524 expressed stronger laccase activity and was more resistant to capsaicin compared to Coll-153 and Coll-365. The three isolates are different in numbers and sizes of double-stranded RNAs. Depending on the cultivar genotypes, cellular resistance of chili pepper to C. acutatum might rely on the ability to restrict penetration, colonization, or conidiation of the pathogen. We conclude that the differences in pathogenicity among the three C. acutatum isolates of pepper are attributed to their ability to colonize the host plant.  相似文献   

13.
The surface of the barley coleoptile is relatively hydrophobic. When the coleoptile surface was treated with water for 20 min, the contact angle of water droplets decreased and the surface became relatively hydrophilic. When conidia ofErysiphe graminis were inoculated on the hydrophobic surface of barley coleoptiles and immersed immediately in water, approximately 70% of the appressoria were normal after 24 h. In contrast, when conidia of E. graminis were inoculated on the hydrophilic surface of pre-wetted coleoptiles, only about 30% of the appressoria were normal. About 76% of the conidia that were strongly adherent developed normal appressoria. In contrast, only 20% of the conidia with weaker adherence developed normal appressoria. Application of a polycation(poly- -ornithine: PLO) solution to the coleoptile surface prior to inoculation served to attach conidia to the surface of coleoptiles immersed in water. After PLO treatment, 70% of the conidia were strongly adherent. Furthermore, in water, 72% of the conidia developed normal appressoria on the surface of coleoptiles pretreated with PLO. These results suggest that normal appressorium development of E. graminis depends greatly on the intensity of adhesion of conidia to the substratum during the process of morphogenesis in water.  相似文献   

14.
Didymella rabiei grew saprophytically on pieces of artificially and naturally infected chickpea stem debris under artificial incubation conditions, and formed pseudothecia and pycnidia. The extent of growth was not significantly affected by temperature of incubation within the range 5–25°C, but was significantly reduced as relative humidity (RH) decreased from 100% to 86%, when no growth occurred. Pseudothecia matured at 10°C and constant 100% RH, or at 5 and 10°C and alternating 100%/34% RH. Under these conditions, pseudothecial maturation, assessed by a pseudothecia maturity index, increased over time according to the logistic model. For temperatures higher than 10°C or RH lower than 100%, pseudothecia either did not form ascospores, or ascopores did not mature and their content degenerated. When pseudothecia that initially developed to a given developmental stage were further incubated at a constant 100% RH, temperature became less limiting for complete pseudothecial development as the developmental stage was more advanced. Pycnidia of the fungus developed and formed viable conidia in all environmental conditions studied, except at 86% RH. However, the density of pycnidia formed and the number of viable conidia per pycnidium were significantly influenced by temperature, RH and the type of debris (artificially or naturally infected) used.  相似文献   

15.
Infection of onion by Alternaria porri and Stemphylium vesicarium was investigated under a range of controlled temperatures (4–25°C) and leaf wetness periods (0–24 h). Conidia of A. porri and S. vesicarium germinated within 2 h when incubated at 4°C. Terminal and intercalary appressoria were produced at similar frequencies at or above 10°C. The maximum number of appressoria was produced after 24 h at 25°C. Penetration of leaves by both pathogens was via the epidermis and stomata, but the frequency of stomatal penetration exceeded that of epidermal penetration. There was a strong correlation ( R 2 > 90%) between appressorium formation and total penetrations at all temperatures. Infection of onion leaves occurred after 16 h of leaf wetness at 15°C and 8 h of leaf wetness at 10–25°C, and infection increased with increasing leaf wetness duration to 24 h at all temperatures. Interruption of a single or double leaf wetness period by a dry period of 4–24 h had little effect on lesion numbers. Conidia of A. porri and S. vesicarium separately or in mixtures caused similar numbers of lesions. Alternaria porri and S. vesicarium are both potentially important pathogens in winter-grown Allium crops and purple leaf blotch symptoms were considered to be a complex caused by both pathogens.  相似文献   

16.
Controlled-environment studies of conidial production by Phaeoisariopsis personata on groundnut are described. With constant relative humidity (RH), conidia were only produced above a threshold (94·5% RH) and there was a linear increase between 94·5% RH and 100% RH. Conidial production was less with continuous leaf wetness (resembling heavy dew) than with continuous 98–99% RH, but it was similar with intermittent leaf wetness and intermittent 98–99% RH (8 h at 70% RH each day). With alternate high (≥97% RH) and low humidity, daily conidial production depended both on the duration of high RH and on the low RH value. With 99% RH at night (12 h), night-time conidial production decreased with the previous daytime RH. After conidial production had started, small numbers of conidia were produced even when the RH was well below the threshold (94·5%). Conidia were produced in continuous light when the photon flux density was 2 μmol/m2/s, but production was completely inhibited with 60 μmol/m2/s. With constant RH, more conidia were produced with a 12 h photoperiod than in continuous darkness. However, more than 75% of the conidia were produced in the dark. With continuous darkness, more conidia were produced during the night (18.00–06.00 h) than during the day, but this biological rhythm was overcome with a (light-night)/(dark-day) regime. With constant 98–99% RH there was a linear increase in conidial production with temperature between 10 and 28°C, and virtually no conidia were produced at 33°C. The daily production of conidia increased with time for 2 to 6 days, depending on the treatment.  相似文献   

17.
Cochliobolus miyabeanus forms a specialized infection structure, an appressorium, to infect rice. Contacting a hard surface induces appressorium formation in C. miyabeanus, while the hydrophobicity of the substratum does not affect this morphogenic infection event. To determine whether the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. miyabeanus, the effects of a calcium chelator (ethylene glycol tetraacetic acid; EGTA), phospholipase C inhibitor (neomycin), intracellular calcium channel blocker (TMB-8), calmodulin antagonists (chlorpromazine, phenoxybenzamine, and W-7), and calcineurin inhibitor (cyclosporin A) on morphogenesis and infection were examined. Addition of Ca2+ and the calcium ionophore A23187 did not affect conidial germination, while the number of appressoria decreased with higher concentrations. EGTA inhibited conidial germination and appressorium formation. The calcium channel blocker did not affect appressorium formation at any concentration; however, calmodulin antagonists and the calcineurin inhibitor specifically reduced appressorium formation at the micromolar level. One of the calmodulin antagonists, W-7, also inhibited accumulation of mRNA of the calmodulin gene within germinating conidia and/or appressorium-forming germ tubes. Thus, biochemical processes controlled by the calcium/calmodulin signaling system seem to be involved in the induction of prepenetration morphogenesis on rice.  相似文献   

18.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

19.
 苹果炭疽叶枯病是由胶孢炭疽菌(Colletotrichum gloeosporioides)引起的苹果重要叶部病害,严重威胁苹果树的生长。CMK1-MAPK途径在植物病原真菌致病过程中具有重要的作用。本研究从苹果炭疽叶枯病菌中克隆了黄瓜炭疽病菌(C. lagenarium)CMK1的同源基因CgCMK1。CgCMK1基因ORF全长1 068 bp,编码355个氨基酸。CgCMK1敲除后不影响苹果炭疽叶枯病菌营养生长、色素沉积以及脂滴的转运。ΔCgCMK1突变体产孢能力显著下降、分生孢子萌发但不产生附着胞,外源添加cAMP不能诱导ΔCgCMK1突变体形成附着胞,在ΔCgCMK1突变体中,过表达cAMP信号途径依赖的蛋白激酶催化亚基基因CgCPK1也不能恢复突变体形成附着胞。CgCMK1基因参与氧化胁迫的应答反应,但不参与离子胁迫的应答反应。ΔCgCMK1突变体对苹果叶片完全丧失致病性,即使有伤接种也不能产生病斑。CgCMK1在苹果炭疽叶枯病菌分生孢子和附着胞中均有表达,定位于细胞质。上述结果表明,CgCMK1参与调控苹果炭疽叶枯病菌的分生孢子产量、附着胞的形成、氧化胁迫应答及致病性。  相似文献   

20.
苹果炭疽叶枯病菌CgCMK1基因的克隆与功能分析   总被引:1,自引:0,他引:1  
 苹果炭疽叶枯病是由胶孢炭疽菌(Colletotrichum gloeosporioides)引起的苹果重要叶部病害,严重威胁苹果树的生长。CMK1-MAPK途径在植物病原真菌致病过程中具有重要的作用。本研究从苹果炭疽叶枯病菌中克隆了黄瓜炭疽病菌(C. lagenarium)CMK1的同源基因CgCMK1。CgCMK1基因ORF全长1 068 bp,编码355个氨基酸。CgCMK1敲除后不影响苹果炭疽叶枯病菌营养生长、色素沉积以及脂滴的转运。ΔCgCMK1突变体产孢能力显著下降、分生孢子萌发但不产生附着胞,外源添加cAMP不能诱导ΔCgCMK1突变体形成附着胞,在ΔCgCMK1突变体中,过表达cAMP信号途径依赖的蛋白激酶催化亚基基因CgCPK1也不能恢复突变体形成附着胞。CgCMK1基因参与氧化胁迫的应答反应,但不参与离子胁迫的应答反应。ΔCgCMK1突变体对苹果叶片完全丧失致病性,即使有伤接种也不能产生病斑。CgCMK1在苹果炭疽叶枯病菌分生孢子和附着胞中均有表达,定位于细胞质。上述结果表明,CgCMK1参与调控苹果炭疽叶枯病菌的分生孢子产量、附着胞的形成、氧化胁迫应答及致病性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号