首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为进一步解析中国大豆种质水溶性蛋白的遗传基础,为大豆高水溶性蛋白质的分子标记辅助选择育种及品质改良提供理论依据,本研究以224份大豆种质为试验材料,于2017和2018年对大豆水溶性蛋白质含量进行测定,利用1 514个高质量的SNP标记分别对2017、2018年水溶性蛋白质含量及两年均值进行全基因组关联分析,共检测到18个显著关联的SNP标记,这些SNP标记涉及16个位点,有8个位点至少被检测到2次,其余8个位点仅被检测到1次,表明其受环境因素影响较大。16个位点中有7个尚未见报道,分别位于8、11、13、14和15号染色体上,是新发现的控制大豆水溶性蛋白的位点。对表型变异解释率较高且稳定关联的2个位点qWSPC7和qWSPC8-1候选区间内的基因进行预测,共获得25个候选基因,其中有7个基因(Glyma.07g195000、Glyma.08g103100、Glyma.08g108900、Glyma.08g105100、Glyma.08g107800、Glyma.08g107700和Glyma.08G115800)在大豆籽粒、根或根瘤中具有较高的表达水平。这些基因可作为水溶性蛋白质的候选基因,可能具有调控大豆水溶性蛋白质的功能。  相似文献   

2.
为探究多环境下大豆子粒大小性状的分子遗传基础,挖掘与子粒大小性状相关的SNP位点和候选基因,利用150份大豆种质资源在2019年和2020年6个环境条件下对大豆子粒粒长、粒宽、粒厚和百粒重性状进行表型测定,并进行全基因组关联分析。结果表明:在CMLM(压缩混合线性)模型下,在6个环境条件下检测到896个与子粒大小性状显著关联的SNP位点,分布于20条染色体。不同性状检测到72个重叠的SNP位点。检测到39个稳定遗传的SNP位点,贡献率为10.68%~24.93%。通过稳定性与重叠性分析,获得35个稳定表达的SNP位点,贡献率为10.92%~23.16%。在粒宽、粒厚及百粒重性状中同时检测到显著关联的SNP位点最多,位点rs16533609的贡献率最高(16.51%)。根据稳定表达的SNP筛选候选基因,推测Glyma.03G006600、Glyma.04G077100、Glyma.08G203600、Glyma.12G195400、Glyma.17G039800、Glyma.18G202100Glyma.20G215700等7个基因对大豆子粒大小性状有调控作用。  相似文献   

3.
伪响应调节因子(Pesudo-Response Regulators,PRRs)基因是植物光周期开花调控途径中的关键基因。本研究根据前期对GmPRR家族基因单倍型的鉴定结果,筛选出在编码区存在变异的5个GmPRR基因,开发出竞争性等位基因特异性PCR(Kompetitive Allele Specific PCR,KASP)分子标记,即GmPRR4-KASP、GmPRR8-KASP、GmPRR10-KASP、GmPRR13-KASP和GmPRR14-KASP。利用上述5个KASP标记对48份不同生育期组的大豆种质进行分型,并与6个环境的大豆开花时间进行关联分析,发现SNP-Chr05:2178871(GmPRR4)、SNP-Chr10:4326635(GmPRR8)、SNP-Chr12:5520945(GmPRR10)和SNP-Chr17:8022010(GmPRR13)等4个位点与大豆开花时间显著关联。本研究开发的KASP标记可应用于大豆开花期性状的分子辅助选择和种质资源鉴定,对促进大豆生态适应性的遗传改良具有一定利用价值。  相似文献   

4.
大豆对光周期极为敏感,单一品种的适应范围狭窄。大豆品种在不同纬度间的适应性与开花期密切相关。为了获得更多的大豆开花期相关QTL,了解在豆适应机制,利用开花主效位点E1~E4基因型均相同的滑皮豆和齐黄26(E1e2asE3-HaE4)杂交衍生的重组自交系群体及前期基于特异长度扩增片段测序(Specific Length Amplified Fragment-sequencing, SLAF-seq)构建的高密度遗传图谱,对大豆开花期性状进行了QTL定位。共获得了分布在7条染色体上的11个QTL位点,其中4个位点(qFT8,qFT20-2,qFT14qFT16)为本研究新发现的QTL。同时,研究发现6个QTL(qFT6-1,qFT8,qFT11-1,qFT19,qFT20-1qFT20-2)在2013年和2014年两个环境中稳定存在。对稳定QTL位点间的基因进行生物信息学分析,筛选出4个可能参与开花期调控的候选基因。本研究结果能够为阐明大豆适应性分子机制和广适性分子育种提供一定的理论基础。  相似文献   

5.
为发掘川渝地区耐酸铝大豆抗性资源和相关候选基因,选用201份川渝地区的大豆育成和地方品种,以主根相对伸长率作为耐酸铝的指标,采用水培法进行大豆幼苗期抗性鉴定,结合83 622个SNP标记对该性状进行全基因组关联分析。结果表明,201份川渝大豆资源的主根相对伸长率均值为77.0%,变异幅度在13.0%~98.6%之间,变异系数为17.6%,广义遗传率为93.2%。其中,6份大豆资源的主根相对伸长率在95.0%以上,表现出极高的耐酸铝抗性。2份资源的主根相对伸长率小于20.0%,对酸铝环境极敏感。以0.000 1作为显著关联位点的阈值,采用GLM和MLM两种模型同时检测到了4个SNP位点,分别位于2号、11号、20号染色体上的4个单倍型块内。同时,在4个单倍型块内检索出7个候选基因,参考区间内基因的功能注释和转录组表达水平,预测Glyma.02g211800Glyma.20g185500是大豆耐酸铝应答和生理调控的候选基因。  相似文献   

6.
GmGBP1 基因是植物开花途径中的重要基因,其启动子也受到短日照条件的强烈诱导。但是目前大豆 GmGBP1基因的启动子序列的多态性变异以及其与开花期的关系还不清楚。本试验对开花习性不同的36份大豆种质资源的GmGBP1基因的启动子序列进行了克隆测序,发掘了GmGBP1基因的启动子序列的自然等位变异,探讨了GmGBP1基因的启动子序列的自然变异与开花期的关系。研究结果表明,多态性位点SNP -796与开花期密切相关,其中SNP -796G为缩短大豆生育时期的优异等位变异。主要的3个单倍型与开花期也表现出极显著(P<0.01)的相关性,单倍型2和单倍型3为缩短大豆花期的优异单倍型。  相似文献   

7.
为了进一步解析大豆中重要植物开花和花器官发育调控转录因子AP2的编码基因TOE的进化规律及其对开花功能的调控作用,为大豆TOE基因的功能解析和大豆纬度适应性研究提供基础,本研究利用生物信息学手段对大豆TOE基因进行聚类分析、序列特征分析、染色体区段共线性分析和组织特异性表达分析,预测关键开花基因启动子区段AP2结合位点,并验证不同单倍型大豆开花时间.结果 显示:从PlantTFDB数据库检索到12个大豆TOE基因,GmTOE6b(Glyma.02G087400)为新发现的大豆TOE基因.GmTOE6a和GmTOE6b均只有1个AP2结构域,其余大豆TOE基因均有两个AP2结构域.6个大豆TOE基因与拟南芥TOE1基因聚为一类;2个与拟南芥TOE2基因聚为一类;4个与拟南芥TOE3、AP2聚为一类.12个大豆TOE基因都有且仅有1个miR172靶位点,且该靶位点序列与拟南芥TOE的miR172靶位点序列高度一致.染色体区段共线性分析显示,大豆12个TOE基因按起源方式可以分为3类,6个随大豆基因组复制而产生;4个起源于大豆物种形成之前且与拟南芥TOE基因有共同祖先;2个起源于大豆物种形成之前且与拟南芥TOE基因无共同祖先.大豆开花关键基因GmFT2a和GmFT5a启动子序列中均含有多个AP2结合位点,GmTOE4b和GmTOE5b两个基因均可影响大豆的开花时间.研究结果说明大豆中12个TOE基因极有可能均是miR172的靶基因,虽然其编码蛋白的氨基酸组成非常相似,但它们的进化规律和组织特异性表达规律存在不同,它们在进化过程中可能存在功能分化.GmTOE4b和GmTOE5b可能通过结合GmFT2a和GmFT5a启动子上的顺式元件来调控其基因转录,从而调控开花.  相似文献   

8.
以32份大刍草、68份玉米地方品种和来源广泛的294份玉米自交系为材料,在对294份玉米自交系进行简化基因组测序的基础上,采用GWAS方法对11个玉米穗型和粒型性状进行关联分析。结果表明,11个性状共检测到44个关联的SNP位点,其中,28个位点与6个穗型性状相关联,16个位点与3个粒型性状相关联。进一步整合32份大刍草和68份地方品种相应位点的序列数据,44个关联位点中共发现29个SNP在3类群体间共有。通过Fisher的精确检验发现,7个SNP的等位基因频率在大刍草到地方品种中发生了显著变化,14个SNP的等位基因频率在地方品种到自交系中发生了显著变化,3个SNP的等位基因频率则在大刍草到地方品种以及地方品种到自交系中均发生了显著变化,表明这些位点可能经历了驯化或/和人工改良。  相似文献   

9.
为了从分子水平上研究大豆幼苗对低钾胁迫的耐性机理,本研究首先依据生物量指标从25份大豆材料中筛选出耐低钾品种Lee 68,并对低钾胁迫下大豆Lee 68幼苗进行转录组测序和分析。通过对转录组Solexa/Illumina高通量测序数据的分析,共得到160 211 759个reads,将获得的数据与大豆Williams 82基因组序列比对,比对率达到92.83%以上。比较组LK_VS_CK中差异表达基因为3 521个,其中下调和上调基因分别为2 393和1 128个。GO功能聚类分析显示LK_VS_CK比较组的差异表达基因主要富集于植物的代谢过程、胁迫响应及信号转导;KEGG pathway分析中,LK_VS_CK比较组有390个差异表达基因显著富集在19个pathway途径中,其中富集最为显著的是代谢途径,包括氨基酸代谢、脂肪酸和类脂代谢以及碳水化合物代谢等;COG分类统计结果表明LK_VS_CK比较组除649个差异表达基因具有一般性功能之外,377个基因被划分到转录因子功能类,343个基因被划分到信号转导机制功能中。结合差异表达基因的功能分析及茉莉酸信号转导调控机制,筛选到了茉莉酸信号途径上可能参与钾离子吸收转运过程的8个关键候选基因,分别是Glyma09g08290、Glyma09g33730、Glyma03g32890、Glyma04g39010、Glyma 08g09720、Glyma12g36310、Glyma16g32821、Glyma19g45260。研究结果对深入研究大豆钾胁迫下与钾离子高效吸收相关基因的调控及克隆研究具有重要的参考价值。  相似文献   

10.
为挖掘控制春小麦主要籽粒性状的关联SNP及候选基因,以国外引进品种、新疆地方品种、新疆自育品种共298份春小麦品种为材料,利用小麦55K SNP芯片,对5个环境下小麦千粒重、粒长、粒宽3个主要籽粒性状进行基于Q+K混合线性模型(mixed linear model,MLM)的全基因组关联分析(genome-wide association study,GWAS)。结果表明,供试小麦品种的3个主要籽粒性状在5个环境下的变异系数为3.89%~19.77%,其中粒宽的变异幅度最小,千粒重的变异幅度最大。不同环境中,新疆育成品种的3个主要籽粒性状的平均值均最高,而新疆地方品种的3个籽粒性状的平均值均最低。GWAS结果表明,共检测到84个与小麦主要籽粒性状显著关联的稳定SNP位点,它们分布在小麦的21条染色体上,单个SNP位点可解释3.74%~11.18%的表型变异。在1B、2B、3B、4B、5A、5D染色体上检测到6个同时关联多个籽粒性状的稳定位点。对84个SNP位点进行候选基因筛选,筛选到6个可能与小麦主要籽粒性状相关的候选基因,可作为小麦籽粒研究的重要基因。  相似文献   

11.
为解析大豆皂苷含量的遗传基础,本研究以包含264份大豆种质的自然群体为研究对象,利用高效液相色谱法(High Performance Liquid Chromatography, HPLC)检测3种大豆皂苷Aa(Soyasaponin Aa)、Ab(Soyasaponin Ab)和Bb(Soyasaponin Bb)的含量,再结合高密度大豆基因型数据进行全基因组关联分析。分析2020和2021年表型数据,结果显示大豆干籽粒中大豆皂苷Ab的平均含量最高,分别为0.311和0.740 mg·g-1,大豆皂苷Aa和Bb的平均含量次之。相关性分析表明大豆皂苷Aa和大豆皂苷Ab显著负相关,大豆皂苷Ab与大豆皂苷Bb显著的正相关。全基因组关联分析发现,两年检测到的与大豆皂苷Aa和大豆皂苷Ab显著关联的SNP位点大多集中在7号染色体上,为主效QTL位点,并挖掘了调控大豆皂苷含量的4个候选基因;大豆皂苷Bb两年无共定位SNP位点,且显著关联的SNP较少,为4个。  相似文献   

12.
鉴定和获取了四种油料作物(油菜、大豆、花生和芝麻)中的细菌型PEPC基因,分析了所编码蛋白的保守结构域(BOX I-IV)和蛋白作用功能位点。基因包括甘蓝型油菜的Bna10093361、Bna1009749和Bna10093360,大豆的Glyma10g34970.1, Glyma01g22840.1和Glyma02g14500.1,芝麻的SIN1018296和花生的AhPPC5。这8个基因含有19~21个内含子,内部插入一个约350~600bp的高度变异区,编码的蛋白在C端形成R/KNTG结构域,在N端缺乏磷酸化作用位点。在种子发育的不同时期,油菜中仅Bna10093360表达,但其表达量不到油菜BnActin表达量的0.1%;大豆中Glyma10g34970.1表达量最高(接近大豆GlymaActin的2%),Glyma02g14500.1次之;花生AhPPC5表达量为花生AhActin的32%~175%,在种子不同发育时期表达量为早期>中期>晚期;芝麻SIN1018296表达量为芝麻SINActin的3%~18%,在种子发育时期的表达趋势和花生AhPPC5相似。8个基因种子中的表达模式差异明显,说明细菌型PEPC基因可能存在着广泛的功能分化。    相似文献   

13.
为指导千粒重遗传改良,挖掘甘蓝型油菜千粒重显著关联单核苷酸多态性(SNP)位点及相关候选基因,以300份甘蓝型油菜种质资源为材料,对千粒重进行一年两地表型考察,结合该群体前期开发的201 817个SNP标记,采用一般线性模型(GLM)和混合线性模型(MLM)进行全基因组关联分析,对性状显著关联SNP位点两侧100kb区域内相关候选基因进行功能预测。结果表明,300份甘蓝型油菜千粒重在两地均表现出广泛的表型变异,筛选出6份千粒重较高的油菜种质资源。基于GLM、MLM模型分别检测到24个和10个与油菜千粒重显著关联的SNP,其中有8个SNP在2个模型中均被检测到,位于第C02号染色体上Bn-C02-22853028的表型贡献率最大。6个位点附近找到HWS、DA1、DA2、CPL3、bZIP、CSPs、PTR2、ARF2、TRM61等9个拟南芥已报道粒重基因的同源基因。  相似文献   

14.
根据已知油脂相关同源基因分析,选择两个油脂代谢相关基因,分别编码甘油二酯激酶7(diacylglycerol kinase7,DGK7)和TPR蛋白(pentatricopeptide repeat-containing protein,TPR),并根据两个基因内部及非翻译区(untranslated region,UTR)的SNP变异位置和突变类型,选取位于GmDGK7基因5'-UTR区的一个单核苷酸变异(SNP1)及位于Gm TPR基因外显子区的SNP2设计d CAPS标记。对200份育成大豆品种的SNP1和SNP2分型及其与大豆籽粒油脂相关性状的关联分析发现,GmDGK7基因的SNP1与油脂含量显著关联(P=6.21×10-5),GmTPR基因的SNP2与油脂含量、硬脂酸、油酸和亚油酸均显著关联(P值分别为4.9×10-11,1.6×10-6,3.4×10-5,4.09×10-8)。此外还筛选出14份高油脂(23%)和5份高油酸(33%)大豆种质,这些分子标记和种质资源可为改良大豆油脂性状和分子育种提供技术和材料基础。  相似文献   

15.
小麦籽粒大小和形态是决定产量的主要因素之一,挖掘籽粒相关性状的关联位点,筛选相关候选基因为提高小麦产量奠定了重要基础。本研究以337份小麦品种作为研究对象,利用Q+K混合线性模型(MLM)在3个环境(E1:2020年陕西杨凌;E2:2020年陕西斗口;E3:2021年陕西杨凌)下对小麦的千粒重、粒长、粒宽以及籽粒长宽比4个性状进行了全基因组关联分析(GWAS)。在3种环境中,不同小麦品种的4个籽粒性状都表现出了广泛的表型差异,变异系数为5.31%~14.76%,其中粒长的变异幅度最小,千粒重的变异幅度最大。GWAS结果表明,49个显著SNP位点至少在2个环境中被检测到,分布在除1B、4A和7D外的染色体上,解释了3.36%~12.73%的表型变异。检测到一因多效位点31个,在5A染色体上检测到3个环境下与3个籽粒性状(千粒重、粒长、粒宽)稳定相关的位点,表型贡献率为3.51%~7.74%。对稳定关联的SNP位点上下游各200 kb的物理区间内进行候选基因挖掘,筛选到5个(TraesCS2B01G225400、TraesCS4D01G016900、TraesCS5A01G454100、T...  相似文献   

16.
解析小麦耐旱遗传机制,发掘耐旱基因,选育耐旱品种,是减少干旱对中国粮食生产安全威胁最为经济、高效的方式。周8425B是中国黄淮麦区重要的小麦骨干亲本,农艺性状优良,其衍生品种具有较好的耐旱特性。本研究基于68份来自于河南、山东等地的周8425B衍生品种,利用50K SNP芯片对耐旱相关性状进行全基因组关联分析(genome-wide association analysis,GWAS)。结果表明,共检测到252个显著关联的SNP标记,分布于37个位点上,可解释7.9%~21.5%的表型变异。其中,16个位点与已报道的位点位置部分重叠或一致,其余21个为新的位点。周麦16、矮抗58、郑农21、淮麦28、周麦21、郑麦379、浏虎98和偃展4110共8份品种具有较好的耐旱性,且含有较多的优异等位基因,可应用于下一步遗传育种中。本研究对解析小麦耐旱遗传机制,选育耐旱品种具有参考价值。  相似文献   

17.
大豆(Glycine max(L.)Merill)是植物蛋白质和油脂的重要来源。盐胁迫是造成大豆产量损失的主要非 生物胁迫因素。耐盐基因的挖掘对培育大豆耐盐品种至关重要。本文一方面总结了通过正向遗传学获得的大豆 耐盐相关数量性状位点或基因,如萌发期耐盐性主效基因GmCDF1(Glyma.08g102000)、2个出苗期QTL(分别位于6 号和14号染色体);苗期耐盐性主效基因GmSALT3(Glyma03g32900)以及位于G连锁群的QTL。随着对大豆耐盐性 研究的不断深入,目前认为大豆萌发期、出苗期、苗期的耐盐性无直接相关性。另一方面总结了通过反向遗传学途 径获得的参与离子运输、转录调控等耐盐性基因,以及通过生物工程技术转入外源基因提高大豆耐盐性的研究进 展,期望为解析大豆耐盐分子机制和耐盐育种提供参考。  相似文献   

18.
利用与大豆主茎节数性状相关的54个原始QTL位点,应用Overview方法首次以大豆参考基因组物理图谱为背景进行整合和分析,得到11个重演性较好的置信区间,分布在大豆D1b、C2、B1、F、L和I连锁群上,其中L连锁群重演性较好的置信区间较多。对得到的候选区段进行基因注释得到488个候选基因,其中Glyma.11G087300、Glyma.20G014300、Glyma.13G221400、Glyma.06G243500、Glyma.13G052900、Glyma.13G052700参与植物激素信号转到通路(ID:Ko04075),推测这6个基因通过该通路的赤霉素途径和生长素途径参与大豆主茎节数的遗传调控。本研究所挖掘到的与茎生长发育及主茎节数直接相关的通路和候选基因能够为构建理想株型和大豆分子辅助育种提供新思路。  相似文献   

19.
利用核心SNP位点鉴别玉米自交系的研究   总被引:8,自引:5,他引:3  
根据多态性水平、染色体位置等信息从公共数据库上筛选了48个玉米核心SNP位点。利用48重-SNPLex分型系统对105份玉米自交系进行SNP基因分型分析,探索SNP标记在玉米品种鉴定中的应用前景。结果表明,48个SNP位点中有42个位点峰型正常;PIC值在0.019~0.375之间,平均为0.242;任何两份自交系间的遗传距离均在0.015以上,即42个SNP位点的基因分型数据信息可以将105份自交系材料区分开。  相似文献   

20.
挖掘小麦产量相关性状的稳定关联位点,为相关基因克隆和分子标记辅助选择提供理论依据。本研究以248个中国北部冬麦区育成品种为材料,利用自主研发的Affymetrix BAAFS Wheat 90K SNP芯片对株高、穗长、小穗数、穗粒数、有效分蘖数、粒长、粒宽和千粒重共8个产量相关性状进行全基因组关联分析。共检测到158个与8个性状显著关联(P≤0.00001)的SNP位点,其中45个位点至少在两个环境中稳定表达,解释平均表型变异的3.60%~10.51%。在这45个位点中,有8个稳定关联位点与以往的研究结果一致;37个为新发现稳定位点,其中3个与株高稳定关联的位点,分布在7D染色体上,解释表型变异的3.60%~4.39%;9个与穗长稳定关联的位点,分别分布在1D、3A、5B和7D染色体上,解释表型变异的5.61%~8.42%;1个与穗粒数稳定关联的位点,分布在7D染色体上,解释表型变异的6.06%~7.22%;8个与有效分蘖数稳定关联的位点,分布在1B染色体上,解释表型变异的6.33%~8.73%;6个与粒长稳定关联的位点,分别分布在2A和5B染色体上,解释表型变异的5.45%~6.62%;7个与粒宽稳定关联的位点,分别分布在4B和5A染色体上,解释表型变异的6.90%~10.51%;3个与千粒重稳定关联的位点,分布在3A染色体上,解释表型变异的7.05%~7.69%;对稳定位点进行候选基因分析,筛选到45个候选基因,其中有功能注释的基因41个,其中4个位于基因内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号