首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The interaction of vesicular-arbuscular mycorrhizae (VAM) and phosphate-solubilizing bacteria (PSB) on plant growth, soil microbial activities, and the production of organic acids was studied in non-sterile soil containing hydroxyapatite and glucose. Glomus etunicatum (VAM), a fungus, and Enterobacter agglomerans, a bacterium able to solubilize insoluble phosphate, were used as inocula. Three treatments and a control were used: inoculation with E. agglomerans (treatment E), inoculation with G. etunicatum (treatment G), inoculation with E. agglomerans+G. etunicatum (treatment E+G) and the control (C). Inoculation with E, G, or E+G had increased plant growth by days 35, 55, and 75 compared with the control. Microbial biomass carbon (C) and alkaline phosphatase activity in the rhizosphere generally increased with time. Alkaline phosphatase activity was higher in treatments G and E+G compared with the control at 35 and 55 days. The highest acid phosphatase activity was observed in treatment E at 35 days; however, this markedly decreased with time. A significantly higher soluble phosphorus (P) concentration was observed in treatments E and E+G on day 55 compared with C. However, there was no significant difference in soluble P concentration in the rhizosphere between treatments with time. The P concentration was greatest in all treatments on day 55. The highest oxalic acid concentration was observed in the rhizosphere of the non-sterile soil in E+G on day 35. Total N and P uptake in plants from treatments E and G were higher compared with the control. However, the highest N and P uptake was observed in treatment E+G. This study suggests a synergistic interaction between E. agglomerans and G. etunicatum. Received: 3 January 1997  相似文献   

2.
With the aim to explore the possible role of mineral phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in iron-rich, acidic soils, we conducted a survey of PSB naturally colonizing a limonitic crust in the south-east region of Venezuela (Bolívar State). A total of 130 heterotrophic bacterial isolates showing different degrees of mineral tri-calcium phosphate (Ca3(PO4)2)-solubilizing activities were isolated from NBRIP plates. In contrast, no isolates showing iron phosphate (FePO4)- or aluminum phosphate (AlPO4)-solubilizing activities were detected by this experimental approach. The 10 best Ca3(PO4)2-solubilizers were selected for further characterization. These isolates were shown to belong to the genera Burkholderia, Serratia, Ralstonia and Pantoea by partial sequencing analysis of their respective 16S rRNA genes. All the PSB isolates were able to mediate almost complete solubilization of Ca3(PO4)2 in liquid cultures; in contrast, the PSB isolates were less effective when solubilizing FePO4. Two groups of PSB isolates were clearly differentiated on the basis of their Ca3(PO4)2 solubilization kinetics. Acidification of culture supernatants seemed to be the main mechanism for P solubilization. Indeed, gluconic acid was shown to be present in the supernatant of five isolates. Furthermore, detection of genes involved in the production of this organic acid was possible in three isolates by means of a PCR protocol.  相似文献   

3.
适应玉米的溶磷细菌筛选及其对玉米生长的影响   总被引:5,自引:0,他引:5  
从石灰性土壤中分离获得4株高效溶磷细菌X5、X6、Z4和Z8,研究其生物学特征,探索其单独及复合的溶磷促生潜能。研究发现菌株X5、X6、Z4和Z8均可以利用玉米根系分泌物作碳源生长。菌株X6和Z4均能产生吲哚乙酸(IAA)和铁载体,菌株Z8可产生IAA不产生铁载体,菌株X5可产生铁载体不产生IAA。盆栽试验结果表明,接种单一溶磷菌及4株菌复合处理均可促进玉米生长,但复合菌群的溶磷促生效果显著高于单一菌株。通过16S r RNA基因序列分析研究菌株的分类地位,初步鉴定X5、X6、Z4、Z8分别为荧光假单孢菌(Pseudomonas fluorescens)、草假单胞菌(Pseudomonas poae)、巨大芽孢杆菌(Bacillus megaterium)和枯草芽孢杆菌(Bacillus subtilis)。  相似文献   

4.
Low availability of phosphorus(P) is a major constraint for optimal crop production, as P is mostly present in its insoluble form in soil. Therefore,phosphate-solubilizing bacteria(PSB) from paddy field soils of the Indo-Gangetic Plain, India were isolated, and their abundance was attempted to be correlated with the physicochemical characteristics of the soils. Ninety-four PSB were isolated on Pikovskaya's agar medium, and quantitative phosphate solubilization was evaluated using NBRIP medium. The isolates solubilized P up to a concentration of 1 006 μg mL~(-1) from tricalcium phosphate with the secretion of organic acids. These isolates were identified by 16 S rRNA gene sequence comparison, and they belonged to Gammaproteobacteria(56 isolates),Firmicutes(28 isolates), Actinobacteria(8 isolates), and Alphaproteobacteria(2 isolates). Phylogenetic analysis confirmed the identification by clustering the isolates in the clade of the respective reference organisms. The correlation analysis between PSB abundance and physicochemical characteristics revealed that the PSB population increased with increasing levels of soil organic carbon, insoluble P, K~+, and Mg~(2+). The promising PSB explored in this study can be further evaluated for their biofertilizer potential in the field and for their use as potent bio-inoculants.  相似文献   

5.
Phosphate-solubilizing bacteria (PSB) were isolated and characterized from the rhizosphere and bulk soils of Areca catechu plants. A long history of phosphate fertilizer use has elicited a direct effect on the incidence of soil PSB. Their abundance and ability to solubilize insoluble phosphate were significantly greater (P?<?0.0001) in soils with low available phosphorus (P) content than in other soil types. Three efficient PSB strains, namely, ASL12, ASG34, and ADH302, were identified as Acinetobacter pittii, Escherichia coli, and Enterobacter cloacae by characterizing 16S rRNA sequences and biochemical characteristics; they produced gluconic acid at concentrations of 7862.4, 4306.5, and 2663.8 mg L?1, respectively. The highest amount of solubilized P was determined in Pikovskaya (PVK) medium for the bacterial strain ASL12. The secretion of gluconic acid was related to the available P of rhizosphere soils and P solubilization. Under shaded conditions, the application of these three strains significantly improved plant height, shoot and root dry weight, and nutrient uptake of A. catechu seedlings. A further increase in P solubilization was observed by co-inoculating the three strains and also applying tricalcium phosphate (TCP) or aluminum phosphate (AP). A significant (P?<?0.05) correlation was also observed between P-solubilization activity and A. catechu plant growth in pot experiments. Thus, the three strains can be potentially applied as inoculants in tropical and aluminum-rich soils.  相似文献   

6.
Phosphate-solubilizing microorganisms play an important role in plant nutrition by enhancing phosphorus (P) availability to roots through converting the insoluble phosphates into soluble ions. We isolated phosphate-solubilizing bacteria (PSB) from acidic soil (Ultisols) in the field from the layer of 0–150 mm at a tea garden located at 28°38′26″ N and 116°24′27″ E. The capacity of bacterial isolates to solubilize mineral phosphate was tested on aluminum phosphate (AlPO4) in liquid medium. Among these PSB, isolate B1 (identified as Bacillus thuringiensis) exhibited the maximum P-solubilizing ability and was particularly efficient at solubilizing AlPO4 (up to 321 mg L?1) in vitro. The isolate B1 was inoculated to an acidic soil to study its effect on phosphate solubilization and growth of peanuts (Arachis hypogeae). The Olsen-P in the tested soil increased from 14.7 to 23.4 mg kg?1, with solubilization of 16.4 mg kg?1 soil of Occluded-P after 14-day incubation. The inoculation by B1 significantly increased plant height (from 37.7 to 45.7 cm), number of branches (from 34.0 to 52.7 per plant), hundred-seed weight (from 42.1 to 46.9 g) and crude protein content (from 243.5 to 268.2 g kg?1 dry weight). The phosphate-solubilizing B. thuringiensis strain B1 showed potential as a biological phosphorus fertilizer.  相似文献   

7.
A simple method is described for trapping phosphate solubilizing bacteria (PSB) strongly attached to the hyphae of the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis (Ri). Bacteria were isolated from the hyphosphere of mycorrhizal leek plants growing on Turface previously inoculated with soil suspensions, obtained from the mycorrhizosphere of mycorrhizal plants growing in agricultural settings or maple forests in Quebec, Canada. Among the best PSB strongly attached to the hyphae of Ri, 26 isolates belonged to Burkholderia spp. and one was identified as Rhizobium miluonense. Four hyphobacteria exhibiting high potential of inorganic and organic P mobilization were further compared with four equivalent mycorrhizobacteria directly isolated from mycorrhizospheric soils sampled. In general, hyphobacteria were superior in mobilizing P from hydroxyapatite and from a low reactivity igneous phosphate rock from Quebec. Release of gluconic acid or the product of its oxidation 2-ketogluconic acid, are the main mechanisms involved in P solubilization. In a two compartments Petri plate system, Ri extraradical hyphal exudates, supported PSB growth and activity. In the absence of PSB Ri showed a negligible P solubilization activity. In the presence of PSB a substantial increase in P mobilization was observed, and the superiority of hyphobacterial activity was also observed under this system. Our results suggest that in developing a bioinoculant based on selected PSB, their interaction with AMF hyphae should not be overlooked.  相似文献   

8.
Soil phosphorous (P) deficiency is a major constraint to plant production which is overcome by adding inorganic-phosphate as chemical fertilizers. Fluorescent pseudomonads are the diverse group of bacteria able to mobilize sparingly soluble phosphate form. Total three hundred seven fluorescent Pseudomonas isolates were obtained from the Aloe barbadensis (Miller) rhizosphere. These Pseudomonas strains were further evaluated in vitro for their ability to solubilize phosphate and to produce indole acetic acid (IAA), hydrogen cyanide (HCN), siderophore and 1-aminocyclopropane 1- carboxylate (ACC) deaminase. Fifty three (36.8%) isolates produced IAA and 52 (36.1%) isolates produced siderophores whereas 36 (25.0%) and 31 (21.5%) isolates produced HCN and ACC deaminase, respectively. A positive correlation existed between siderophore and ACC deaminase producers. Cluster analysis showed rhizosphere as the major factor influencing the ecological distribution and physiological characterization of phosphate solubilizing bacteria (PSB). Based on partial 16S rRNA gene sequencing PSB were identified as Pseudomonas putida, Pseudomonas sp. and Pseudomonas plecoglossicida with highest phosphate solubilization ability. In conclusion, these phosphate solubilizing fluorescent pseudomonads would help in understanding their role in phosphorus solubilization and identification of potent phosphorus solubilizers from the rhizosphere of commercially grown A. barbadensis.  相似文献   

9.
The phylogenetic diversity of phosphate solubilizing bacteria(PSB)distributed in P-rich soils in the Dianchi Lake drainage area of China was characterized,and the tricalcium phosphate(TCP)solubilizing activities of isolated PSB were determined.Among 1 328 bacteria isolated from 100 P-rich soil samples,377 isolates(28.39%of the total)that exhibited TCP solubilization activity were taken as PSB.These PSB showed different abilities to solubilize TCP,with the concentrations of solubilized P in bacterial cultures varying from 33.48 to 69.63 mg L-1.A total of 123 PSB isolates,with relatively high TCP solubilization activity(>54.00 mg L-1),were submitted for restriction fragment length polymorphism(RFLP)analysis,which revealed 32 unique RFLP patterns.Based on these patterns,62 representative isolates,one to three from each RFLP pattern,were seffected for 16S rRNA sequencing.Phylogenetic analysis placed the 123 PSB into three bacterial phyla,namely Proteobacteria,Actinobacteria and Firmicutes.Members of Proteobacteria were the dominant PSB,where 107 isolates represented by 26 RFLP patterns were associated with the genera of Burkholderia,Pseudomonas,Acinetobacter,Enterobacter,Pantoea,Serratia,Klebsiella,Leclercia,Raoultella and Cedecea.Firmicutes were the subdominant group,in which 13 isolates were affiliated with the genera of Bacillus and Brevibacterium.The remaining 3 isolates were identified as three species of the genus Arthrobacter.This research extends the knowledge on PSB in P-rich soils and broadens the spectrum of PSB for the development of environmentally friendly biophosphate fertilizers.  相似文献   

10.
 A strain of Pseudomonas fluorescens, able to solubilize zinc phosphate, was isolated from a forest soil. Colonies of the microorganism produced clear haloes on solid medium incorporating zinc phosphate, but only when glucose was provided as the carbon source. Solubilization of zinc phosphate occurred by both an increase in the H+ concentration of the medium, probably a consequence of ammonia assimilation, and the production of gluconic acid. High concentrations of gluconic acid were produced when P. fluorescens 3a was cultured in the presence of zinc phosphate. Although under some conditions gluconic acid is purportedly able to solubilize metals by the formation of chelates, no evidence of zinc chelation was obtained in our experiments. Furthermore, the increased Zn2+ concentration caused by the solubilization process resulted in the manifestation of toxic effects on the culture. A sample of the culture, sonicated to disrupt cells, still possessed the ability to produce gluconic acid from glucose, in the presence and absence of zinc phosphate. The lack of gluconic acid overproduction in cultures of P. fluorescens 3a which were not amended with zinc phosphate suggests that at least some of the glucose oxidation required for the zinc solubilization occurred as a result of the toxic stress caused by the high Zn2+ concentration. Received: 16 December 1997  相似文献   

11.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

12.
Phosphorus (P) is the second key nutrient for plants and it affects several attributes of plant growth. Identification of a potent phosphate solubilizing microorganism capable of transforming the insoluble P into soluble and plant-accessible forms is considered as the best eco-friendly option for providing inexpensive P to plants. Hence, this study was focused to assess the growth enhancement traits of the phosphate solubilizing bacteria (PSB) isolated from chili rhizosphere. Twelve PSB were isolated by enrichment culture technique and its P solubilization efficiency was checked using Vanadomolybdate phosphoric yellow color method. Among them, two potent strains PS2 and PS3, identified as Pseudomonas aeruginosa KR270346 and KR270347 based on biochemical and molecular characterization, were selected for further study. The Pseudomonas aeruginosa isolates interestingly showed the presence of various potential plant growth-promoting properties including indole acetic acid and siderophore production. The growth enhancement effect of Pseudomonas aeruginosa isolates on chilli showed promising results, and the growth parameters were found to be statistically signi?cant when compared to control. The results demonstrated an eloquent impact on various aspects, namely microbial count and PSB population, phosphatase and dehydrogenase activity, available phosphorous in the soil, plant nutrient uptake, and yield parameters. Inoculation of these two isolates together with the addition of rock phosphate increased comparable amount of available P and these treatments were statistically at par throughout the growth period. The results con?rmed the growth-promoting potential of the isolates to develop as biofertilizers either alone or as components of integrated nutrient management systems.  相似文献   

13.
ABSTRACT

The present investigation indicates the effects of 0 to 8% NaCl stress on plant growth promoting traits such as ACC (1-aminocyclopropane-1-carboxylate) deaminase, phosphate solubilization, IAA (indole acetic acid), ammonia and exopolysaccharide production of Pantoea agglomerans strain KL isolated from salt-stressed soil of Kolhapur, Maharashtra, India. We have studied the effect of encapsulated inoculum (EI) and free inoculum (FI) of P. agglomerans strain KL on the alleviation of salinity stress (100 mM NaCl) and promotion of rice plant growth in the pot experiment. The present study showed significant improvement in plant growth supplemented with EI in terms of increased length, biomass, photosynthetic pigment and decreased level of proline, malondialdehyde. Furthermore, EI supplemented plant exhibited decreased sodium and increased calcium and potassium uptake. Root colonization study revealed the survival of encapsulated organism which was less after 10 days. However, a significant number of colony forming unit were noted after 20 and 30 days. In addition, the scanning electron microscopic analysis of salt-stressed plant root showed tremendous root colonization by EI. Hence, the present study demonstrates the potency of P. agglomerans strain KL in the expression of plant growth promoting traits and amelioration of salt stress by EI.  相似文献   

14.
以对磷酸三钙具有高效溶解作用且对玉米苗生长有促生效果的假单胞菌K3为模式菌株,采用NBRIP液体培养基研究了解磷菌K3的解磷机制及缓冲容量对其解磷量的影响。结果表明,解磷菌K3液体摇瓶培养7 d后,培养液中水溶性磷从6.54 μg/mL增加至655.23 μg/mL,pH从7.00降至3.99。高效液相色谱测定发现,K3菌液中的主要代谢产物为苹果酸、乳酸和草酸,浓度分别为47.39 mmol/L、25.67 mmol/L和1.89 mmol/L。人工模拟K3菌株产生的有机酸及调节培养基不同pH值对磷酸三钙溶解度影响的试验表明,有机酸的螯合作用是解磷细菌K3菌株解磷的主要机理,而调节培养基pH对解磷的作用有限。液体摇瓶和土培试验结果显示,土壤缓冲容量对K3解磷菌的解磷效应有显著的抑制作用。  相似文献   

15.
The objectives of this work were to isolate and characterize walnut phosphate-solubilizing bacteria (PSB) and to evaluate the effect of inoculation with the selected PSB stains to walnut seedlings fertilized with or without insoluble phosphate. Thirty-four PSB strains were isolated and identified under the genera Pseudomonas, Stenotrophomonas, Bacillus, Cupriavidus, Agrobacterium, Acinetobacter, Arthrobacter, Pantoea, and Rhodococcus through a comparison of the 16S ribosomal DNA sequences. All isolated PSB strains could solubilize tricalcium phosphate (TCP) in solid and liquid media. Phosphate-solubilizing activity of these strains was associated with a drop in the pH of medium. A significantly negative linear correlation was found between culture pH and phosphorus (P) solubilized from inorganic phosphate. Three isolates Pseudomonas chlororaphis (W24), Bacillus cereus (W9), and Pseudomonas fluorescens (W12) were selected for shade house assays because of their higher phosphate-solubilizing abilities. Under shade house conditions, application of W24 or W12 remarkably improved plant height, shoot and root dry weight, and P and nitrogen (N) uptake of walnut seedlings. These increases were higher on combined inoculation of PSB with TCP addition. The most pronounced beneficial effect on growth of walnut plants was observed in the co-inoculation of the three PSB strains with TCP addition. In comparison, the isolate of W9 failed to increase available soil P, nutrient levels in plants, or to promote plant growth, suggesting that more insoluble phosphate compounds than tricalcium phosphate should be used as substrates to assess the phosphate-solubilizing ability of PSB under greenhouse conditions. The present results indicated that strains P. chlororaphis or P. fluorescens could be considered for the formulation of new inoculants of walnut, even of more woody plants.  相似文献   

16.
In this study we found that Penicillium spp. exhibiting P-solubilizing activity are common both on and in the roots of wheat plants grown in southern Australian agricultural soils. From 2,500 segments of washed and surface-disinfested root pieces, 608 and 223 fungi were isolated on a selective medium, respectively. All isolates were screened for P solubilization on solid medium containing hydroxyapatite (HA); 47 isolates (5.7%) solubilized HA and were identified as isolates of Penicillium or its teleomorphs. These isolates were evaluated for solubilization of Idaho rock phosphate (RP) in liquid culture. Penicillium bilaiae strain RS7B-SD1 was the most effective, mobilizing 101.7 mg P l–1 after 7 days. Other effective isolates included Penicillium simplicissimum (58.8 mg P l–1), five strains of Penicillium griseofulvum (56.1–47.6 mg P l–1), Talaromyces flavus (48.6 mg P l–1) and two unidentified Penicillium spp. (50.7 and 50 mg P l–1). A newly isolated strain of Penicillium radicum (KC1-SD1) mobilized 43.3 mg P l–1. RP solubilization, biomass production and solution pH for P. bilaiae RS7B-SD1, P. radicum FRR4718 or Penicillium sp. 1 KC6-W2 was determined over time. P. bilaiae RS7B-SD1 solubilized the greatest amount of RP (112.7 mg P l–1) and had the highest RP-solubilizing activity per unit of biomass produced (up to 603.2 g P l–1 mg biomass–1 at 7 days growth). This study has identified new isolates of Penicillium fungi with high mineral phosphate solubilizing activity. These fungi are being investigated for the ability to increase crop production on strong P-retaining soils in Australia.  相似文献   

17.
Phosphorus availability is a major limiting factor for yield of most crop species. The objective of this study was to compare the solubilization of three sources of phosphorus (P) by different fungal isolates and to determine the possible mechanisms involved in the process. Talaromyces flavus (S73), T. flavus var flavus (TM), Talaromyces helicus (L7b) and T. helicus (N24), Penicillium janthinellum (PJ), and Penicillium purpurogenum (POP), fungal strains isolated from the rhizosphere of crops, are known to be biocontrol agents against pathogenic fungi. The P solubilization efficiency of these fungal strains in liquid media supplemented either with tricalcium phosphate (Ca3(PO4)2; PC), aluminum phosphate (AlPO4; AP), or phosphorite (PP) depended on the source of P and the fungal species. The type and concentration of organic acids produced by each species varied according to the source of available P. In the medium supplemented with PC, the highest proportion was that of gluconic acid, whereas in the media supplemented with the other P sources, the highest proportion was that of citric and valeric acids. This suggests that the release of these organic compounds in the rhizosphere by these microorganisms may be important in the solubilization of various inorganic P compounds. Results also support the hypothesis that the simultaneous production of different organic acids by fungi may enhance their potential for solubilizing insoluble phosphate.  相似文献   

18.
The efficiency of 13 phosphate-solubilizing bacteria (PSB; four Burkholderia sp., five Enterobacter sp., and four Bradyrhizobium sp.) was assessed in a soil plate assay by evaluating soil phosphorus (P) availability. A commercial argentine strain, Pseudomonas fluorescens, was used for comparing solubilizing activity. Burkholderia sp. PER2F, Enterobacter sp. PER3G, and Bradyrhizobium sp. PER2H strains solubilized the largest quantities of P in the soil plate assay after 60 days as compared with the other strains, including the commercial one. The effect of PSB inoculation on growth and nutrient uptake of soybean plants was also studied under greenhouse conditions. Plants inoculated with Burkholderia sp. PER2F had the highest aerial height and showed an appropriate N/P ratio. However, none of the PSB increased P uptake by plants. This suggests that PSB inoculation does not necessarily improve P nutrition in soybean, nor was there any relationship between P availability in the soil plate assay and P content in the soybean shoot in the greenhouse. We concluded that the selection of efficient PSB strains as possible inoculation tools for P-deficient soils should focus on the integral interpretation of soil assays, greenhouse experiments, and field trials.  相似文献   

19.
Chilean volcanic soils contain large amounts of total and organic phosphorus, but P availability is low. Phosphobacteria [phytate-mineralizing bacteria (PMB) and phosphate-solubilizing bacteria (PSB)] were isolated from the rhizosphere of perennial ryegrass (Lolium perenne), white clover (Trifolium repens), wheat (Triticum aestivum), oat (Avena sativa), and yellow lupin (Lupinus luteus) growing in volcanic soil. Six phosphobacteria were selected, based on their capacity to utilize both Na-phytate and Ca-phosphate on agar media (denoted as PMPSB), and characterized. The capacity of selected PMPSB to release inorganic P (Pi) from Na-phytate in broth was also assayed. The results showed that from 300 colonies randomly chosen on Luria–Bertani agar, phosphobacteria represented from 44% to 54% in perennial ryegrass, white clover, oat, and wheat rhizospheres. In contrast, phosphobacteria represented only 17% of colonies chosen from yellow lupin rhizosphere. This study also revealed that pasture plants (perennial ryegrass and white clover) have predominantly PMB in their rhizosphere, whereas PSB dominated in the rhizosphere of crops (oat and wheat). Selected PMPSB were genetically characterized as Pseudomonas, Enterobacter, and Pantoea; all showed the production of phosphoric hydrolases (alkaline phosphatase, acid phosphatase, and naphthol phosphohydrolase). Assays with PMPSB resulted in a higher Pi liberation compared with uninoculated controls and revealed also that the addition of glucose influenced the Pi-liberation capacity of some of the PMPSB assayed.  相似文献   

20.
The effects of phosphate solubilizing bacteria (Bacillus megateriumi) (PSB) and earthworms (Pheretima guillelmi and Eisenia fetida) on phosphorus (P) turnover and transformation in soil were investigated in a laboratory experiment lasting for 21 days. The treatments included soil + P. guillelmi (SW1), soil + E. fetida (SW2), soil + B. megaterium (SB), soil + P. guillelmi + B. megaterium (SBW1), soil + E. fetida + B. megaterium (SBW2), and the control with sterilized soil (control) only. The results showed that the number of B. megaterium. was enhanced in all treatments especially those with earthworms added when compared with the control. Activities of acid phosphatase (pH = 6.5) increased in all treatments, especially in the presence of P. guillelmi with or without PSB (64 % and 38 %, respectively). Significant increases in both inorganic P and water‐soluble P were observed in treatments involving B. megaterium. and earthworms when compared with the control. Inoculation of both earthworms and PSB had significant effects on microbial growth, enzymatic activity, and thus enhanced the release of available P. The dual inoculation of earthworms and bacteria further accelerated P transformation. Different performances observed for the earthworm species were probably due to their different feeding habits and physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号