首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Very little is known about the biochemical origin of cattle feedlot odors and the environmental factors controlling their production. The tie between diet and manure composition is well established, but the effect of different manure compositions on odorous chemical production is unknown. This study describes the effect of starch, casein, and cellulose substrate additions to slurries of fresh (< 24 h) and aged cattle manure (> 1 d) on the anaerobic production of fermentation products and the consumption of substrates relative to no addition treatments. Aged cattle manure accumulated more VFA (245 to 290 mM) than the fresh manure (91 to 181 mM) irrespective of substrate additions (P < 0.001). In fresh manures, VFA concentrations were increased (P < 0.01) over no addition treatments when carbohydrate (starch or cellulose) was added, whereas starch and protein treatments to aged manure increased VFA content relative to no addition treatments (P < 0.001). Branched-chain VFA and aromatic compounds accumulated only in the aged manure (no addition and protein treatments), indicating that some protein fermentation occurred in those treatments. Based upon substrate loss, starch fermentation was the dominant process in both manures and all treatments with losses exceeding 18.6 g/L. Protein fermentation occurred only in the aged manure, specifically the no addition and protein treatments, when starch was no longer available. The production of odorous compounds from manure was controlled by substrate availability and pH, with pH related to lactate accumulation. We believe that calcareous soil and lactate-consuming microorganisms in the aged manure slurries minimized slurry acidification and resulted in greater accumulations of odorous products. Substrate additions had little effect on the overall accumulation of odor compounds in manure but had profound effects on odor compound composition. We propose that modifying cattle diets to limit starch and protein excretion would profoundly affect the production and accumulation of odor compounds in feedlots.  相似文献   

2.
Livestock odors are closely correlated to airborne concentrations of volatile organic compounds (VOC), which are a complex mixture of carbon-, sulfur-, and nitrogen-containing compounds produced primarily during the incomplete anaerobic fermentation of animal manure by microorganisms. Volatile fatty acids, alcohols, and aromatic ring compounds comprise a substantial fraction of VOC, yet very little is known about their biochemical origin and environmental factors controlling their production. The anaerobic production of fermentation products and consumption of substrates (CP, starch, and nonstarch carbohydrate) were analyzed in slurries of fresh (< 24 h) and aged (> 1 d) cattle manure over several weeks. Ethanol, acetate, propionate, butyrate, lactate, and H2 were the major products of fermentation. Aged cattle manure produced twice the concentration of VFA during incubation produced by the fresh manure (P < 0.001). Aromatic compounds (phenols, indoles, and benzoates) remained unchanged in both manures. Production of VFA from fresh manure was inhibited when the pH fell below 4.5. It is likely that the presence of calcareous soil, which has a high buffering capacity, and lactate-consuming microorganisms minimized acidification in the aged manure slurries. Low starch content limited VFA production in the aged manure. Starch was the likely biochemical source for fermentation products in both manures based on the strong negative correlations between fermentation product and starch content (r = -0.944 and -0.773) and ratio of fermentation products produced to starch consumed (r = 0.64 and 0.72) for fresh and aged manure, respectively. Nonstarch carbohydrate served an indeterminate role in the production of fermentation products. Nonstarch carbohydrate decreased by 4.7 and 23.4 g/L in the fresh and aged manure, respectively, whereas the starch content decreased by 18.6 and 22.4 g/L in the fresh and aged manure, respectively. The concentration of CP did not change, which suggests a balance between protein consumption and new bacterial biomass production. We conclude that the types of substrates in cattle manure and the feedlot soils where they are deposited are significant factors in the production of odors.  相似文献   

3.
Three beef cattle diets were assessed for their potential to produce odorous compounds from cattle feces excreted during the growing and finishing periods. Eight pens containing 51 steers of varying proportions of Brahman and MARC III genotypes were fed either a chopped bromegrass hay diet or a corn silage diet for a 119-d growing period. After the growing period, all steers were switched to the same high-corn finishing diet (high corn) and fed to a target weight of 560 kg (finishing period). Fecal slurries were prepared from a composite of fresh fecal pats collected in each pen during both periods and incubated anaerobically. In additional flasks, starch, protein, or cellulose was added to the composite fecal subsamples to determine the preferred substrates for fermentation and odorous compound production. The content and composition of the fermentation products varied both initially and during the incubation, depending on the diet fed to the steers. The corn silage and high corn feces had the greater initial content of VFA (381.0 and 524.4 micromol/g of DM, respectively) compared with the bromegrass feces (139.3 micromol/g of DM) and accumulated more VFA than the bromegrass feces during the incubation. l-Lactic acid and VFA accumulation in the high corn and corn silage feces was at the expense of starch, based on starch loss and the production of straight-chain VFA. In the bromegrass feces, accumulation of branched-chain VFA and aromatic compounds and the low starch availability indicated that the protein in the feces was the primary source for odorous compound production. Substrate additions confirmed these conclusions. We conclude that starch availability was the primary factor determining accumulation and composition of malodorous fermentation products, and when starch was unavailable, fecal microorganisms utilized protein.  相似文献   

4.
Agricultural odors present an increasingly difficult challenge to livestock producers, yet very little information is available on the microbiology of odor production or microbial factors that regulate the emission of odors. This study examined the microbial potential for odor production and odor consumption in two soils from a cattle production facility in central Nebraska. The two soils tested were collected from a feedlot pen and a runoff ditch below the pen and contained high- and low-fecal matter content, respectively. These soils were tested for their ability to produce and consume a mixture of VFA and aromatic compounds (phenols and indoles) under aerobic, fermentative, and anaerobic respiratory conditions, with NO3-, Fe(III), Mn(IV), and SO4(2-) serving as anaerobic terminal electron acceptors, over a 6-wk incubation. The pen soil had greater (P < 0.05) initial total VFA content (40 micromol/g soil) and produced more VFA during incubation than the feedlot ditch soil, whereas total aromatic compound concentrations were not significantly different between soils. The general pattern of odor compound accumulation and consumption did not differ between soils. Oxygen and nitrate treatments produced very little VFA and consumed acetate more rapidly than the other treatments, which produced large quantities of short-chain VFA and consumed acetate only after all other VFA were consumed. When VFA and aromatic compound consumption was compared across all the treatments, aerobic incubation proved most effective, and all compounds were rapidly consumed by the second day of incubation. Of the anaerobic treatments examined, nitrate proved most effective, followed by Fe, with VFA consumed by d 5 and 21, respectively. Anaerobic incubation with sulfate produced more VFA than the fermentative incubation, and anaerobic incubation with oxidized Mn produced the largest quantities of VFA, which remained high throughout the six-wk incubation. Aromatic compounds were more easily consumed aerobically and were only slowly consumed in the anaerobic treatments. We conclude from this study that cattle feedlot soils possessed a varying, potentially exploitable capacity for odor consumption when alternate electron acceptors were available.  相似文献   

5.
We hypothesized that feeding steers ground high-moisture ensiled corn (HMC) in lieu of dry-rolled corn (DRC) would reduce the amount of starch being excreted in the manure and the associated odorous compound production. One hundred forty-eight crossbred steers (363 +/- 33 kg of BW) were fed a DRC-or HMC-based diet in a feeding trial, and 8 Charolais-sired steers (447 +/- 22 kg of BW) were used in a nutrient balance study. Steers fed HMC tended to have a slightly lower DMI (P = 0.09), ADG (P = 0.06), and yield grade, but G:F, final HCW, and quality grade did not differ (P > or = 0.23) between treatments. Compared with feeding DRC, feeding HMC decreased (P = 0.02) starch intake from 5,407 to 4,846 g/d, decreased (P < 0.01) fecal excretion of starch from 448 to 292 g/d, and increased (P = 0.03) starch digestibility from 91.7 to 94.1%. Nitrogen intake was greater (P < 0.01) for steers fed DRC than HMC in both studies, but N retention did not differ (P = 0.55). Heat production and energy retention did not differ between the 2 treatments (P > or = 0.55). In manure slurries incubated for 35 d with soil and water, total VFA concentration was lower (P < 0.01) in manure from steers fed HMC (1,625 micromol/g of DM) compared with steers fed DRC (3,041 micromol/g of DM). Lower initial (d 0) starch concentrations and greater initial pH was also observed in the slurries from the HMC manure. By d 3 of slurry incubation, there was an increase (P < 0.01) in free glucose and l-lactic acid in the DRC slurries but not in the HMC slurries. During manure incubation, alcohol and VFA content increased (P < 0.01) and pH declined, but to a lesser extent (P < 0.01) in the HMC slurries. However, branched-chain VFA increased more (P < 0.01) in the HMC slurries than in the DRC slurries. These data suggest that feeding HMC instead of DRC decreased fecal starch and production of some potentially odorous compounds in a finishing cattle system but had little impact on animal productivity.  相似文献   

6.
The objective of this study was to investigate whether reducing dietary CP concentration decreases fecal VFA, manure ammonia (NH3) emission and odor, and urinary phenolic metabolites. Six barrows were allotted to one of six dietary treatments in a Latin square design. Treatments consisted of four corn-soybean meal based diets containing 15, 12, 9, and 6% CP, a casein-based diet containing 15% CP, and a protein-free diet (0% protein). Crystalline AA were included in the 12, 9, and 6% CP diets. The casein-based and protein-free diets were used to determine basal endogenous contribution of VFA, phenolics, NH3, and manure odor. Pigs were housed individually in metabolism cages to allow total collection of feces and urine. Feces and urine were collected and pooled within pig and period. Feces and urine were analyzed for VFA and phenolic metabolite concentrations, respectively. Feces and urine were then mixed, stored, and fermented at room temperature for 30 d. For NH3 determination, headspace air was sampled from manure slurries at 24, 48, and 72 h after fermentation. Slurry samples were placed into vials, capped, and randomized before odor panel evaluation. Odor offensiveness was classified on severity: 1 = non-offensive; 2 = mildly offensive; 3 = moderately offensive; 4 = strongly offensive; and 5 = extremely offensive. Reducing dietary CP increased (P < 0.05) fecal VFA concentrations but did not affect phenolic concentrations in urine. Manure NH3 emission was reduced (P < 0.05) as dietary CP concentration decreased from 15 to 0%. The 15% diet had the least offensive manure slurry with odor qualitative ranking of 2.58 (i.e., mild-moderately offensive). Compared with the 15% CP diet, manure from the 9 and 6% CP diets was found to be more offensive (P < 0.05), with qualitative rankings of 2.92 and 3.10, respectively. Odor qualitative rank for the 12% CP, protein-free diet, and casein-based diet did not differ from that of the 15% CP diet. These results indicate that reduction in dietary CP concentrations decreases manure NH3 emission, but it does not diminish manure odor offensiveness and fecal VFA concentrations.  相似文献   

7.
Confined animal feeding operations can be a source of odor emissions, global warming gases, water pollution, and food contamination. Laboratory studies have indicated that plant oils with antimicrobial activity can be used to control pathogens and odor emissions from cattle and swine wastes. However, these oils are aromatic and may volatilize when applied topically. Our objectives were to evaluate the volatility of thymol from a feedlot surface and the effectiveness of topically applying thyme oil (2.5% thymol), incorporated into corncob granules and added once per week, to control odor emissions and total coliforms in feedlot manure. In the first study, thymol either volatilized or was degraded within 28 d after topical application. In a second study, thyme oil (2.5% thymol) was incorporated into corncobs and applied to pen surfaces weekly. Manure samples from 6 locations in each pen were collected from 3 untreated and 3 thymol-corncob-treated pens (15 x 150 m; fifty 400-kg cattle/pen), 3 times per week for 8 wk. Samples were analyzed for thymol concentration, total VFA, branched-chain VFA, aromatic compounds, and the number of Escherichia coli and total coliform bacteria. Over the 8 wk, with the exception of wk 7, the desired thymol concentration of 15 to 20 micromol/g DM was maintained in the manure. Concentrations of VFA and branched chain-VFA increased over time in untreated and treated pens. However, the rate of VFA accumulation in treated pens (7.5 +/- 1.3 micromol.g DM(-1).wk(-1)) was less (P < 0.01) than the rate of accumulation in untreated pens (18.0 +/- 2.1 micromol.g DM(-1).wk(-1)). Likewise, the rate of branched-chain VFA accumulation in treated pens (0.31 +/- 0.04 micromol.g DM(-1).wk(-1)) was less (P < 0.01) than in untreated pens (0.55 +/- 0.06 micromol.g DM(-1).wk(1)). The concentrations of E. coli in treated pens (2.9 +/- 1.2 x 10(5) cfu.g DM(-1)) were 91% less (P < 0.04) than in untreated pens (31.1 +/- 4.0 x 10(5) cfu.g DM(-1)). Similarly, concentrations of coliforms in treated pens (3.7 +/- 1.3 x 10(5) cfu.g DM(-1)) were 89% less (P < 0.04) than those of untreated pens (35.3 +/- 4.2 x 10(5) cfu.g DM(-1)). These results indicate that odor emissions and total coliforms can be reduced in feedlot manure with a once per week application of thymol incorporated in a granular form. However, corncobs are bulky, and other granular carriers with a greater carrying capacity for thyme oil should be explored.  相似文献   

8.
Corn ethanol production removes starch and concentrates the remaining nutrients, including CP and minerals. When wet distillers grains with solubles (WDGS) are fed to cattle in place of corn, CP and minerals often exceed dietary needs. This may increase N emission, P run-off, and odor production. These variables are evaluated in this study. Crossbred steers (n = 160; 434 +/- 8 kg) were assigned in a completely randomized block design to 9 x 9 m pens with concrete floor (10 animals/pen; 4 pens/treatment). Steers were fed a finishing diet that contained 0, 20, 40, or 60% WDGS on a DM basis, and provided 13.3, 15.5, 20.6, or 24.9% CP, respectively. Two kilograms of manure slurry (14 to 23% DM) were collected from each pen monthly (Aug. 20, Sep. 24, and Oct. 22). Samples were analyzed immediately for odorants, DM, pH, NH(3), total alcohol, l-lactate, and concentrations of generic Escherichia coli. After incubation of the samples at 22 degrees C for 2, 4, 7, 10, 15, 21, and 28 d, samples were analyzed for methane production in addition to the above characteristics. Before incubation, NH(3), H(2)S, indole, phenol, isovalerate, isobutyrate, and acetate increased (P < 0.01) with increasing amounts of WDGS in the diet. Other odorants, including skatole, caproate, valerate, butyrate, and propionate, were greater (P < 0.01) in manure slurries from cattle fed 20 or 40% WDGS, compared to 0% WDGS. The l-lactate was greater (P < 0.01) in slurries from cattle fed 0% WDGS (447 mu mol/g of DM) compared with the other treatment slurries (14 to 15 mu mol/g of DM). After incubation, l-lactate contributed to lowered slurry pH (6.3, 7.1, 7.6, and 8.2, respectively, for 0, 20, 40, and 60% WDGS), which inhibited microbial fermentation, E. coli persistence, and methane production. Because of the favorable, more neutral pH in the 40 and 60% WDGS slurries, many of the odorant compounds were rapidly converted to methane during a 28-d static incubation. Escherichia coli O157:H7 inoculated into subsamples of the manure slurries exhibited behavior similar to that of naturally present generic E. coli, surviving in greater numbers longer (P < 0.05) in 20 and 40% WDGS slurries than in 0% WDGS. These data indicate feeding WDGS can increase odorants in manure slurries and extend the persistence of E. coli.  相似文献   

9.
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.  相似文献   

10.
An educational program was developed for extension agents, faculty, and graduate students to illustrate the effect of diet composition on odor from swine manure. Participants in this program first received a 2-h detailed review on odorous compounds in manure and the effect of diet on odor. For the second portion of the training, nine manure samples were used from pigs fed diets formulated with feed ingredients predicted to have different effects on odor emission or a nutritionally adequate corn-soybean meal diet. Participants were instructed to rate the odor from these samples for pleasantness, irritation, and intensity on a scale of 0 (best) to 8 (worst), using manure from the corn-soybean meal fed pig as the reference with a score defined as 4 for each variable. Results obtained were summarized and discussed before concluding the program. Participants were Cooperative Extension Agents (n = 13) with swine responsibilities and graduate students and faculty (n = 8). The manure from the diet with the worst odor scores (1% garlic) was rated at 70% more odorous across the three odor variables (P < 0.05) than the diet with the least odorous manure (purified diet). Even though a reference sample was used, individual participants differed in their perception of irritation across samples (P < 0.05), ranging in average score across diets from 2.4 (moderately better than reference) to 5.0 (slightly worse than reference). With extension agents, a 1 to 7 scale (very interesting to not at all interesting) was used for evaluation of the training session. Participants found the material to be interesting (mean = 1.7, SD = 0.7) and the training exercise to be well organized and coherent in its presentation (mean = 1.8, SD = 0.7). Participants enjoyed this training and learned that differences in odor are achievable through altering diet composition, and that the response to swine odor depends on individual odor perception.  相似文献   

11.
The objective of this study was to determine the effects of specific crystalline AA supplementation to a diet on odor emission, odor intensity, odor hedonic tone, and ammonia emission from pig manure, and on manure characteristics (pH; ammonia N; total nitrogen; sulfurous, indolic, and phenolic compounds; and VFA concentrations). An experiment was conducted with growing pigs (n = 18) in a randomized complete block design, with 3 treatments in 6 blocks. Treatment groups were (1) a 15%-CP basal diet with 3 times the requirement of sulfur-containing AA (14.2 g/kg of diet, as-fed basis); (2) the basal diet with 2 times the requirement of Trp and Phe+Tyr (2.9 and 20.4 g/kg of diet, respectively, as-fed basis); and (3) the basal diet with AA supplementation to levels sufficient for maximum protein gain. Pigs with an initial BW of 41.2 +/- 0.8 kg were individually penned in partly slatted floor pens and offered a daily feed allowance of 2.8 times the maintenance requirement for NE (293 kJ/kg of BW(0.75)). Feed was mixed with water at 1:2.5 (wt/wt). Feces and urine of each pig was allowed to accumulate in separate manure pits under the slatted floor. After an adaptation period of 2 wk, and after cleaning the manure pits, manure was subsequently collected. In wk 5 of the collection period, separate samples were collected directly from each manure pit for odor, ammonia, and manure composition analyses. Air samples were analyzed for odor concentration and for hedonic tone and odor intensity above the odor detection threshold. Results showed that supplementing crystalline S-containing AA in surplus of the requirement increased odor emission (P < 0.001) and odor intensity (P < 0.05) and reduced odor hedonic tone (P < 0.05) from the air above the manure pits. Supplementing crystalline Trp, Tyr, and Phe in surplus of the recommended requirements did not affect odor emission, odor intensity, or odor hedonic tone. Regardless of dietary treatment, all pigs had similar performance levels. No differences were observed in ammonia emission from manure of pigs fed different levels of AA supplementation (P = 0.20). To reduce odor from pig manure, dietary S-containing AA should be minimized to just meet the recommended requirements.  相似文献   

12.
The objective was to determine the effects of fermentable carbohydrates on phosphorus (P) metabolism, the chemical composition of the faecal mixed bacterial mass (MBM) and the microbial activity in the large intestine (LI) of pigs. Eight barrows (mean BW 35.9 ± 0.9 kg), fitted with simple T‐cannulas at the terminal ileum, were either fed a low‐P corn–soybean meal‐based control diet or 75% of the control diet supplemented with 25% cellulose, starch or pectin according to a 4 × 3 Latin Square design. Both pectin and cellulose caused higher faecal than ileal P recoveries. Ileal volatile fatty acids (VFA) levels were more pronounced for the starch (p < 0.05) rather than the cellulose and pectin treatments, whereas pectin resulted in a higher faecal VFA concentration in comparison to starch and cellulose (p < 0.05). The differences in faecal VFA concentrations corresponded to the pH values obtained in faeces. The N content of MBM was higher (p < 0.05) when cellulose was supplemented. Pectin caused a decrease in the P content of the MBM compared to the control (p < 0.05). As a result, the N:P ratio was significantly higher for the pectin (N:P = 4.33) than for the control treatment (N:P = 2.63), while the Ca:P ratio remained constant for all treatments, suggesting changes in the accumulation of N, P and Ca in MBM, probably due to changes in the species composition and activity of the microflora.  相似文献   

13.
Incubations were carried out with batch cultures of ruminal micro‐organisms from sheep to analyse the influence of the N source on in vitro CH4 production. The two substrates were mixtures of maize starch and cellulose in proportions of 75:25 and 25:75 (STAR and CEL substrates, respectively), and the three nitrogen (N) sources were ammonia (NH4Cl), casein (CA) and isolated soya bean protein (SP). Five isonitrogenous treatments were made by replacing non‐protein‐N (NPN) with CA or SP at levels of 0 (NPN), 50 (CA50 and SP50, respectively) and 100% (CA100 and SP100) of total N. All N treatments were applied at a rate of 35 mg of N/g of substrate organic matter and incubations lasted 16.5 h. With both proteins, N source × substrate interactions (p = 0.065 to 0.002) were detected for CH4 production and CH4/total VFA ratio. The increases in CH4 production observed by replacing the NPN with protein‐N were higher (p < 0.05) for STAR than for CEL substrate, but the opposite was observed for the increases in volatile fatty acid (VFA) production. As a consequence, replacing the NPN by increased levels of CA or SP led to linear increases (p < 0.05) in CH4/total VFA ratio with STAR, whereas CH4/total VFA ratio tended (p < 0.10) to be decreased with CEL substrate. Increasing the amount of both proteins decreased linearly (p < 0.05) ammonia‐N concentrations, which may indicate an incorporation of amino acids and peptides into microbial protein without being first deaminated into ammonia‐N. In incubations with the tested N sources as the only substrate, the fermentation of 1 mg of CA or SP produced 1.24 and 0.60 μmol of CH4 respectively. The results indicate the generation of CH4 from protein fermentation, and that the response of CH4 production to protein‐N supply may differ with the basal substrate.  相似文献   

14.
Previous studies have indicated that reducing dietary CP may improve N utilization and effectively diminish manure ammonia emissions; however, the response of manure odor emissions to such dietary modifications has been inconsistent. The objective of the current experiment was to induce decreased lactobacilli (DL) numbers in the distal gastrointestinal tract (dGIT; cecum + colon) of finishing pigs offered both high- and low-CP diets through consumption of chitosan, and examine the influence of this model on manure ammonia and odor emissions when compared with a positive control diet. It was hypothesized that an DL population would be accompanied by an increase in markers of protein fermentation. When compared with normal lactobacilli populations in the dGIT, generation of an DL population would result in increased manure odor emissions from pigs offered both dietary CP concentrations. A 2 × 2 factorial arrangement of treatments was conducted to investigate the effect of including chitosan [0 (positive control) vs. 20 g/kg of feed] and high or low dietary CP concentration (200 vs. 150 g/kg of feed) on nutrient digestibility, N utilization, selected bacterial populations, and metabolite composition of the dGIT and manure emissions from finisher pigs (60.3 kg). Consumption of chitosan had no influence (P > 0.05) on nutrient digestibility or N utilization. In both high- and low-CP diets, consumption of chitosan decreased the lactobacilli-to-Enterobacteriaceae ratio (P < 0.01), generating an DL population, and increased pH (P < 0.01) in the dGIT and ammonia (P = 0.02) in the cecum compared with diets that supported normal lactobacilli populations. Consumption of chitosan decreased molar proportions of butyric acid (P < 0.01) and increased valeric acid (P < 0.01) in the dGIT compared with unsupplemented diets. Furthermore, consumption of chitosan increased manure odor emissions (P = 0.05) compared with unsupplemented diets. There was no effect (P > 0.05) of chitosan consumption on manure ammonia emissions from 0 to 240 h. The current study demonstrates that dietary chitosan suppressed populations of lactobacilli in the dGIT. In response, a considerable increase in Enterobacteriaceae, markers of protein fermentation, and manure odor emissions was observed compared with the positive control diet. These effects were observed in pigs offered both high-and low-CP diets. The current study indicates a possible role for lactic-acid bacteria in modulating manure odor emissions relatively independent of the proportions of dietary CP available for fermentation in the dGIT.  相似文献   

15.
本试验以常规玉米品种农大108(CAU108)、优质蛋白玉米9409(HQPC9409)和高油玉米(HOC)为材料,采用化学成分分析、活体外人工瘤胃消化试验和产气量试验,研究玉米品种对化学成分、淀粉糊化度和活体外瘤胃发酵特性的影响。结果表明,3个不同玉米品种的蛋白质、脂肪、淀粉含量、淀粉糊化度、48 h产气量、产气速度、理论最大产气量、12和24 h干物质及淀粉消化率均存在显著差异(P<0.05),在3个品种中,CAU108品种的各项能量指标均优于HQPC9409和HOC,但不同品种玉米的活体外瘤胃发酵参数(pH、NH3-N、VFA)差异不显著(P>0.05)。由本试验得出,CAU108玉米较其他2个品种具有提高反刍动物生产性能和饲料转化效率的潜力。  相似文献   

16.
This study was carried out aiming to evaluate the effects of yeast or monensin supplementation on dry matter intake, nutrients digestibility, ruminal volatile fatty acids profile, ruminal pH and ammonia concentration, microbial protein synthesis, and the balance of nitrogen compounds of cattle fed high concentrate diet (80 % dry matter (DM) basis) with two different levels of starch. Eight crossbred beef steers fitted with rumen cannula were assigned to two simultaneous 4?×?4 Latin squares arranged in a 4?×?2 factorial design. Two different starch levels (23 and 38 % of DM) were assigned to each Latin square, independently. Within each Latin square, four treatments were randomly assigned to the experimental animals (control; monensin; 1-g yeast [1 g/100 kg body weight (BW)/day] treatment; and 2.5-g yeast [2.5 g/100 kg BW/day] treatment). Feed additives did not influence ruminal pH (P?>?0.05). Total ruminal volatile fatty acids (VFA) concentration was greater (P?<?0.05) in the diet with the lowest starch level. Similarly, monensin and 1-g yeast treatments resulted in greater (P?<?0.05) VFA concentration in the rumen. Monensin inclusion in the diet with the highest starch level led to a decrease (P?<?0.05) in lactate concentration in the rumen. However, acetate levels were increased (P?<?0.05) by the inclusion of 1 g of yeast in the diet with lowest starch level. Ruminal concentrations of propionate and butyrate, and ammonia-N were not influenced (P?>?0.05) by none of the additives evaluated. However, propionate concentration was greater (P?<?0.05) in the low-starch diets. Low-starch diets resulted in lower ruminal ammonia-N concentration and greater neutral detergent fiber digestibility (P?<?0.05). The excretion of urinary nitrogenous compounds, purine derivatives, synthesis of microbial protein, microbial efficiency, and balance of nitrogenous compounds were not affected by treatments evaluated (P?>?0.05). Monensin or yeast inclusion in high concentrate beef cattle diets in tropical regions as in Brazil is not justified by do not alter nutrient digestibility, nitrogen balance, and main ruminal parameters.  相似文献   

17.
现代规模化牛场发展迅速,为市民提供大量优良奶源和畜肉,但同时牛场产生粪便、污水等废弃物排泄量增加,大部分牛场不能规范化处理,粪污堆积在生产区域,不光对周围土壤、空气和水体造成污染,还影响牛场的正常养殖生产秩序,对生态环境危害严重,影响养牛业绿色可持续发展,因此牛粪的处理和资源化利用问题急需解决。为了稳定、无害的处理粪污,将规模化牛场粪污作资源化处理利用,不仅可以解决牛场粪污污染问题,还能实现粪污资源最大化利用,具有重要意义。本文分析了牛粪的营养成分以及规模化牛场粪污造成的环境污染问题,简述了粪污资源化利用的目的、原则和预期效果,介绍了牛粪资源化利用的现有途径和方式,其中主要包括能源化、基质化、饲料化、燃料化、肥料化、氧化塘发酵后再利用等方法,以期通过分析多种资源化处理技术,将其根据具体情况应用,或者多种技术搭配实施,避免单一技术存在的局限性,为不同养殖环境情况下的粪污处理提供参考,为现代化养牛业低碳可持续发展提供借鉴。在未来应继续加大规模化牛场粪污资源化利用力度,科学合理制定各地区养殖场的粪污处理规划和资源化利用模式,监测周围环境质量并作出有效控制,促进畜牧业健康发展,为畜牧业循环经济...  相似文献   

18.
We hypothesized that oscillation of the dietary CP concentration, which may improve N retention of finishing beef steers, would reduce production of manure odor compounds and total N inputs while yielding comparable performance. Charolais-sired steers (n = 144; 303 +/- 5 kg of initial BW) were used in a completely randomized block design (6 pens/treatment). The steers were fed to 567 kg of BW on the following finishing diets, which were based on dry-rolled corn: 1) low (9.1% CP), 2) medium (11.8% CP), 3) high (14.9% CP), or 4) low and high oscillated on a 48-h interval for each feed (oscillating). Steers fed low tended (P = 0.08) to have less DMI (7.80 kg/d) than steers fed medium (8.60 kg/d) or oscillating (8.67 kg/d), but not less than steers fed high (8.12 kg/d). Daily N intake was greatest (P < 0.01) for steers fed high (189 g), intermediate for medium (160 g) and oscillating (164 g), and least for low (113 g). The ADG was lower (P < 0.01) for steers fed low (1.03 kg) than for those fed medium (1.45 kg), high (1.45 kg), or oscillating (1.43 kg). Similarly, steers fed low had a lower adjusted fat thickness (P < 0.01) and yield grade (P = 0.05) and tended (P = 0.10) to have less marbling than steers fed the other 3 diets. In slurries with feces, urine, soil, and water, incubated for 35 d, nonsoluble CP was similar among slurries from steers fed medium, high, or oscillating, but was less (P < 0.01) in slurries from steers fed low. However, throughout the incubation period, slurries from steers fed high or oscillating had greater (P < 0.01) concentrations of total aromatics and ammonia than those from steers fed low or medium. Also, the slurries from steers fed oscillating had greater (P < 0.01) concentrations of branched-chain VFA than manure slurries from steers fed any of the other diets. These data indicate that although there is no apparent alteration in the performance of finishing steers fed diets with oscillation of the dietary protein, there may be undesirable increases in the production of compounds associated with malodor.  相似文献   

19.
An in vitro experiment was conducted to assess the microbial activity of faeces from unweaned and weaned piglets. Diets of weaned piglets were supplemented with various fructans. Weaned piglets received a corn–soy based basal diet supplemented with either corn starch (control; CON), oligofructose (OF), chicory root (CHR), a mixture of chicory pulp and oligofructose (MIX; 60:40) or corn starch and antibiotic (CONAB). Faecal inocula collected from unweaned (5 kg body weight (BW)) and weaned piglets (15 kg BW) were introduced in airtight 100-mL bottles containing 0.5 g of substrate (basal or mix) in pre-warmed buffered medium. The organic matter cumulative volume (OMCV) was measured for 48 h, and a mono-phasic model was fitted to the data. The concentration of volatile fatty acids (VFA) and ammonia (NH3) was determined after fermentation. Incubation of substrate mix with the different inocula gave a significant higher OMCV compared to substrate basal, except for the inoculum from piglets of the CONAB group. In addition, substrate mix gave a higher Rmax and a lower Tmax compared to substrate basal. With the exception of inoculum obtained from chicory root supplemented animals (CHR) no substrate effects were observed in fermentation end-products (VFA and NH3). However, the proportions of acetic acid were significantly higher and those of butyric acid lower when inocula were incubated with substrate mix. Inocula from weaned pigs tended to show higher proportions of propionic acid when incubated with substrate mix, whilst inocula from unweaned piglets showed the opposite. The differences in fermentation kinetics between substrates after incubation with inocula from weaned and unweaned piglets in combination with an altered composition in VFA, points to a modified faecal microflora following weaning.  相似文献   

20.
An experiment was conducted to examine changes in VFA and ammonia concentrations at different time points using 4 fermentable carbohydrate-rich feed ingredients as substrates and feces of unweaned piglets as inoculum. Fecal inoculum was collected, pooled, and mixed from 9 specially raised (no creep feed or antibiotics) crossbred piglets at 3 wk of age. Inulin, lactulose, molasses-free sugar beet pulp, and wheat starch were used as substrates and were fermented in vitro for 72 h (3 replicates per substrate). Cumulative gas production was measured as an indicator of the kinetics of fermentation. In addition, 3 bottles of substrate per time point with similar contents (amounts of substrate, inoculum, and media) were incubated but were allowed to release their gas throughout incubation. For these latter bottles, fermentation fluid was sampled at incubation time points including every hour between 1 and 24 h and at 48 h, and fermentation end products (VFA, lactate, and ammonia) and OM disappearance were measured. Dry matter and ash were analyzed from the postfermentative samples. The pH of the contents from these bottles was also recorded. The correlation in time between fermentation end products and cumulative gas produced was determined. The results showed that the prolongation of fermentation to 72 h, especially in the case of fast-fermenting inulin and lactulose, may lead to a different end product profile (P < 0.001) compared with the profile observed at the time at which most of the substrate has disappeared. Therefore, we concluded that the fermentation product profile at the end of in vitro fermentation at a specific time point cannot be used to compare fermentability of carbohydrate sources with different fermentation kinetics in terms of gas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号