首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planted fallow systems under ‘slash and mulch’ management were compared with natural fallow systems at two farms (BM1 and BM2) in the Colombian Andes. The BM1 site was relatively more fertile than the BM2 site. Planted fallow systems evaluated included Calliandra calothyrsus CIAT 20400 (CAL), Indigofera constricta (IND) or Tithonia diversifola (TTH). During each pruning event slashed biomass was weighed, surface-applied to the soil on the same plot and sub-samples taken for chemical analyses. While Indigofera trees consistently showed significantly greater (p < 0.05) plant height and collar diameter than Calliandra trees at both study sites, only collar diameter in Indigofera was significantly affected at all sampling times by differences between BM1 and BM2. After 27 months, TTH presented the greatest cumulative dry weight biomass (37 t ha–1) and nutrient accumulation in biomass (417.5 kg N ha–1, 85.3 kg P ha–1, 928 kg K ha–1, 299 kg Ca ha–1 and 127.6 kg Mg ha–1) among planted fallow systems studied at BM1. Leaf biomass was significantly greater (P < 0.05) for CAL than IND irrespective of site. However, CAL and IND biomass from other plant parts studied and nutrient accumulation were generally similar at BM1 and BM2. At both sites, NAT consistently presented the lowest biomass production and nutrient accumulation among fallow systems. Planted fallows using Calliandra and Indigofera trees had the additional benefit of producing considerable quantities of firewood for household use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Striga hermonthica (striga) weed is a major threat to crop production in sub-Saharan Africa, and short duration improved fallow species have recently been found to reduce the effects of this weed because of their ability to replenish soil nitrogen. The objective of this study was to compare the efficacy and profitability of coppicing improved fallow species (Gliricidia sepium [gliricidia], Leucaena trichandra [leucaena] and Calliandra calothyrsus [calliandra]) and non-coppicing species (Sesbania sesban [sesbania], Mucuna pruriens [mucuna], and Tephrosia vogelii [tephrosia]), in controlling striga. Natural fallow and a sole maize crop were included as control treatments. The fallow treatments were split into two and either fertilized with N or unfertilized. The results showed that coppicing fallows produced higher biomass than non-coppicing fallows. For example, Callindra (coppicing fallow species) produced 19.5 and 41.4 Mg ha−1 of leafy and woody biomass, respectively after four cumulative harvests as compared with Sesbania (non-coppicing species), which produced only 2.3 and 5.9 Mg ha−1 leaf and woody biomass, respectively. Improved fallows reduced striga population in proportion to the amount of leafy biomass incorporated into the soil (r = 0.87). N application increased cumulative maize yield by between 15–28% in improved fallow systems and by as much as 51–83% in the control treatments. Added total costs of the coppicing fallows did not differ significantly from those of the non-coppicing fallows and control treatments. However, the added net benefits of the coppicing fallows were significantly higher (US$ 527 for +N and 428 for −N subplots; P < 0.01) than those of the non-coppicing fallows (US$ 374 for +N and 278 for −N), and the least for the control treatments. The most profitable fallow system was Tephrosia with net added benefits of US$ 453.5 ha−1 season−1 without N, and US$ 586.7 ha−1 season−1 with added N.  相似文献   

3.
Fuelwood is the main energy source for households in rural Africa, but its supply is rapidly declining especially in the densely populated areas. Short duration planted tree fallows, an agroforestry technology widely promoted in sub-Sahara Africa for soil fertility improvement may offer some remedy. Our objective was to determine the fuelwood production potential of 6, 12 and 18 months (the common fallow rotation periods) old Crotalaria grahamiana, Crotalaria paulina, Tephrosia vogelli and Tephrosia candida fallows under farmer-managed conditions in western Kenya. Based on plot-level yields, we estimated the extent to which these tree fallows would meet household and sub-national fuelwood needs if farmers planted at least 0.25 hectares, the proportion of land that is typically left under natural fallows by farmers in the region. Fuelwood yield was affected significantly (P < 0.05) by the interaction between species and fallow duration. Among the 6-month-old fallows, T. candida produced the highest fuelwood (8.9 t ha−1), compared with the rest that produced between 5.6 and 6.2 t ha−1. Twelve months old T. candida and C. paulina also produced significantly higher fuelwood yield (average, 9.6 t ha−1) than T. vogelli and C. grahamiana of the same age. Between the fallow durations, the 18-month fallows produced the most fuelwood among the species evaluated, averaging 14.7 t ha−1. This was 2–3 times higher than the average yields of 6 and 12-month-old fallows whose yields were not significantly different. The actual fuelwood harvested from the plots that were planted to improved fallows (which ranged from 0.01 to 0.08 ha) would last a typical household between 11.8 and 124.8 days depending on the species and fallow duration. This would increase to 268.5 (0.7 years) and 1173.7 days (0.7–3.2 years) if farmers were to increase area planted to 0.25 ha. Farmers typically planted the fallows at high stand densities (over 100,000 plants ha−1 on average) in order to maximize their benefits of improving soil fertility and providing fuelwood at the same time. This potential could be increased if more land (which fortunately exists) was planted to the fallows within the farms in the region. The research and development needs for this to happen at the desired scale are highlighted in the paper.  相似文献   

4.
The effect of tree species on the characteristics of the herbaceous stratum, during the first five years of a fallow, was evaluated in the North of Cameroon (average annual temperature 28.2 °C, total annual rainfall 1050 mm). Treatments included a natural grazed herbaceous fallow, a natural ungrazed herbaceous fallow and three planted tree fallows (Acacia polyacantha Willd. ssp. campylacantha (Hochst. ex A. Rich.), Senna siamea Lam. and Eucalyptus camaldulensis Dehnh.), which were protected against grazing. Because tree species influenced light interception in different ways, as well as having different root patterns, they had different effects on the herbaceous stratum in terms of species composition and biomass. The grazed herbaceous fallow maintained the greatest species richness. Protection against grazing or the introduction of tree species associated with the absence of grazing induced both a progressive evolution to a particular species composition. The ungrazed herbaceous fallow consisted mainly of Andropogon gayanus Kunth, which provided the greatest biomass (8 t dry matter ha–1 at the end of the fallow period). E. camaldulensis provided little shade and the lowest fine root mass in the top layer allowing the growth of A. gayanus and thus a greater herbaceous biomass (3.5 t DM ha–1) than that found under the other tree species. Under the heavy shade of A. polyacantha, the herbaceous stratum consisted mainly of annual Pennisetum spp. (2.2 t DM ha–1) and showed the greatest N concentration (1.3%), probably due to N2 fixation by the tree species. After the fourth year, despite the relatively open tree canopy, S. siamea, which showed the highest fine root mass, had a strong depressive effect on the herbaceous stratum. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Shortened fallows have resulted in declining upland rice yields in slash-and-burn upland rice systems in northern Laos. We studied the benefit of planted legume fallows for rice productivity, weeds, and soil nitrogen and phosphorus availability. Four systems were evaluated over a 5-year period: 1-year fallow with native species, 1-year Cajanus cajan fallow, 1-year Leucaena leucocephala fallow, and continuous annual rice cropping. Rice was grown either once each year as continuous annual cropping or in alternate years of 2001, 2003, and 2005. C. cajan and L. leucocephala were sown with rice during the 2001 growing season. In subsequent years, L. leucocephala regenerated from root stock and did not have to be resown, whereas C. cajan was resown in 2003. Establishment of either C. cajan or L. leucocephala had no significant effect on rice yield in 2001, and rice yields ranged from 2.0 to 2.3 t/ha. Rice yields declined rapidly in succeeding years, and rice yields in the four systems ranged from 0.7 to 1.1 t/ha in 2003 and from 0.3 to 0.5 t/ha in 2005. Although two planted fallow systems increased nitrogen input because of greater biomass accumulation in 2003 and 2005 and soil phosphorus availability was higher following L. leucocephala fallow in 2005, there were no significant differences in rice yields among the four systems in either year. Weed biomass during the rice growing season increased each year in all systems and increased more rapidly for continuous annual rice cropping, in which the dominant weed species was Ageratum conyzoides L. Among the other three systems, there were no significant differences in the weed biomass in 2003 and 2005. We conclude that C. cajan and L. leucocephala as 1-year fallows do not offset the negative effects of increased cropping intensity on rice yield in this region.  相似文献   

6.
Managed short-duration fallows may have the potential to replace longer fallows in regions where population density no longer permits slow natural fallow successions. The purpose of fallows is not only to improve subsequent crop performance but also to restore soil fertility and organic matter content for the long term. We therefore evaluated the soil organic matter and nutrient flows and fractions in a short fallow experiment managed in the western Kenya highlands, and also compared the experimental area with a 9–12-yr-oldadjacent natural bush fallow. The factorial agroforestry field experiment with four land-use and two P fertilizer treatments on a Kandiudalfic Eutrudox showed that 31-wk managed fallows with Tithonia diversifolia(Hemsley) A. Gray and Crotalaria grahamiana Wight &Arn. improved soil fertility and organic matter content above those of a natural weed fallow and continuous maize (Zea mays L.). Post-fallow maize yields were also improved, although cumulative three-season increases in yield were small (0–1.2 Mg ha−1) when the yield foregone during the fallow season was accounted for. Improvements in yield and soil quality could be traced to quantity or quality of biomass recycled by the managed fallows. The non-woody recycled biomass produced by the continuous maize, weed fallow, and tithonia treatments was near 2Mg ha−1, whereas crotalaria produced three times more recyclable biomass and associated N and P. Increases in topsoil N due to the fallows may have been attributable in part to deep acquisition and recycling of N by the fallows. Particulate macro-organic matter produced by the fallows contained sufficient N(30–50 kg ha−1) to contribute substantially to maize production. Organic Paccumulation (29 kg ha−1) similarly may play a significant role in crop nutrition upon subsequent mineralization. The effect of the P fertilizer application on soil properties and maize yield was constant for all land-use systems (i.e., no land-use system × P fertilizer interactions occurred). There was an indication that tithonia may have stimulated infestation of Striga hermonthica (Del.) Benth., and care must be taken to evaluate the full effects of managed fallows over several seasons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
To rehabilitate a degraded Alfisol at Ibadan, southwestern Nigeria, Senna siamea (non-N-fixing legume tree), Leucaena leucocephala, and Acacia leptocarpa (N-fixing legume trees) were planted in 1989, and Acacia auriculiformis (N-fixing legume tree) in 1990. Pueraria phaseoloides (a cover crop) and natural fallow were included as treatments. Litterfall and climatic variables were measured in 1992/1993 and 1996/1997 while biomass production and nutrient concentrations were measured in 1993 and 1995. Total litter production from the natural and planted fallows was similar, with means ranging from 10.0 (L. leucocephala) to 13.6 t ha−1 y−1 (natural fallow) during the 1996/1997 collection. Leaves constituted 73% (L. leucocephala) to 96% (A. auriculiformis) of total litterfall. Acacia auriculiformis grew most quickly but S. siamea produced the highest aboveground biomass which was 127 t ha−1 accumulated over four years, and 156 t ha−1 accumulated over six years of establishment. The aboveground biomass of P. phaseoloides and natural fallow was only 6 to 9 t ha−1 at six years after planting. Nitrogen concentration in the leaves/twigs of was 2.5% for L. leucocephala, and 2% for other planted species and natural fallow. Pueraria phaseoloides had concentrations of P, K, Ca and Mg comparable to levels in the leaves/twigs of the tree species. Through PATH analysis, it was found that maximum temperature and minimum relative humidity had pronounced direct and indirect effects on litterfall. The effects of these climatic variables in triggering litterfall were enhanced by other variables, such as evaporation, wind, radiation, and minimum temperature. Improvement in chemical properties by fallows was observed in the degraded soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The widespread planting of Sesbania sesban fallows for replenishing soil fertility in eastern Zambia has the potential of causing pest outbreaks in the future. The pure S. sesban fallows may not produce enough biomass needed for replenishing soil fertility in degraded soils. Therefore, an experiment was conducted at Kagoro in Katete district in the Eastern Province of Zambia from 1997 to 2002 to test whether multi-species fallows, combining non-coppicing with coppicing tree species, are better than mono-species fallows of either species for soil improvement and increasing subsequent maize yields. Mono-species fallows of S. sesban (non-coppicing), Gliricidia sepium, Leucaena leucocephala and Acacia angustissima (all three coppicing), and mixed fallows of G. sepium + S. sesban, L. leucocephala + S. sesban, A. angustissima + S. sesban and natural fallow were compared over a three-year period. Two maize (Zea mays) crops were grown subsequent to the fallows. The results established that S. sesban is poorly adapted and G. sepiumis superior to other species for degraded soils. At the end of three years, sole G. sepium fallow produced the greatest total biomass of 22.1 Mg ha−1 and added 27 kg ha−1 more N to soil than G. sepium + S. sesban mixture. During the first post-fallow year, the mixed fallow at 3.8 Mg ha−1 produced 77% more coppice biomass than sole G. sepium, whereas in the second year both sole G. sepium and the mixture produced similar amounts of biomass (1.6 to 1.8 Mg ha−1). The G. sepium + S. sesban mixture increased water infiltration rate more than sole G. sepium, but both these systems had similar effects in reducing soil resistance to penetration compared with continuous maize without fertilizer. Although sole G. sepium produced high biomass, it was G. sepium + S. sesban mixed fallow which resulted in 33% greater maize yield in the first post-fallow maize. However, both these G. sepium-based fallows had similar effects on the second post-fallow maize. Thus the results are not conclusive on the beneficial effects of G. sepium + S. sesban mixture over sole G. sepium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Throughout the Amazon of Brazil, manioc (Manihot esculenta) is a staple crop produced through slash-and-burn agriculture. Nutrient losses during slash-and-burn can be large and nutrient demand by food crops so great that fields are often abandoned after two years. In recent decades, farmers have reduced the fallow phase from 20 to ~5 years, limiting plant nutrient accumulation to sustain crop yields. Improved fallows through simultaneous planting of trees with food crops may accelerate nutrient re-accumulation. In addition, slash-and-mulch technology may prevent loss of nutrients due to burning and mulch decomposition may serve as a slow-release source of nutrients. This study in Pará, Brazil, in a 7-year-old secondary forest following slashing and mulching of the vegetation, involved two main plot treatments (with and without P and K fertilizers) and two sub-plot treatments (with or without a N2-fixer Inga edulis). A mixed-culture of trees and manioc was planted in all plots. P and K fertilizer increased tree mortality due to weed competition but growth of surviving trees in four of the five tree species tested also increased as did biomass production of manioc. In the N2-fixer treatment trends of greater growth and survival of four of five tree species and manioc biomass were also observed. Fertilization increased the biomass of competing vegetation, but there was a fertilizer by N2-fixer interaction as I. edulis caused a reduction in competing biomass in the fertilized treatment. After one year, fertilization increased decomposition of the mulch such that Ca, Mg, and N contents within the mulch all decreased. In contrast, P and K contents of mulch increased in all treatments. No influence of the N2-fixer on 0–10 cm soil N contents was observed. Two years after establishment, this agroforestry system succeeded in growing a manioc crop and leaving a well-maintained tree fallow after the crop harvest.  相似文献   

10.
This study quantified tree and soil C stocks and their response to different tree species and clay contents in improved fallows in eastern Zambia. From 2002 to 2003, soil, and destructively harvested two-year old tree, samples were analysed for C. There were significant differences (P < 0.05) in aboveground tree C stocks, and in net organic C (NOC) intake rates across coppicing tree species at Msekera and Kalunga. Aboveground C stocks ranged from 2.9 to 9.8 t ha-1, equivalent to NOC intakes of 0.8–4.9 t ha-1 year-1. SOC stocks in non-coppiced fallows at Kalichero and Msekera significantly differed (P < 0.05) across treatments. SOC stocks to 200 cm depth ranged from 64.7 t C ha-1 under non-coppicing fallows at Kalunga to 184.0 t ha-1 in 10-year-old coppicing fallows at Msekera. Therefore, tree and soil C stocks in improved fallows can be increased by planting selected tree species on soils with high clay content.  相似文献   

11.
Imperata is shade-intolerant, although little is known of the relative roles of competition for light, water and nutrients in suppressing its growth. Shading of Imperata results in reduced carbohydrate storage, reduced rhizome and tuber-bulb production, reduced shoot dry weight, increased susceptibility to competition, increased susceptibility to herbicides and decreased vigor/regeneration. Herbaceous cover crops in the genera Calapogonium, Crotoleria, Mucuna and Pueraria have been shown to effectively suppress Imperata growth and can be used to prevent and in some cases eradicate Imperata. Tree fallows with fast-growing species such as Sesbania sesban, Acacia nilotica and Leucaena leucocephala can improve soil physical and chemical properties and suppress weed growth. Forest plantations have been successfully used, particularly with the use of moderate to high tillage, weeding and fertilizer inputs to suppress Imperata growth. These plantations produce marketable wood and reclaim the site for other uses. Additional research is needed to evaluate the specific nature of competition and allelopathic effects from Imperata. Continued evaluation of tree species and provenances for Imperata suppression, forms of tillage after woody fallow crops and the constraints to adoption of cover crops and trees as Imperata control measures are also needed.  相似文献   

12.
A field study was carried out on a six-year-old on-farm field trial during long-rains season (April–August) 2003 to investigate the effect of improved fallow systems and phosphorus application on arbuscular mycorrhiza fungi (AMF) symbiosis in maize. The trial comprised of maize rotated with a fast growing leguminous Crotalaria grahamiana fallow and a non-leguminous Tithonia diversifolia fallow for 3 years followed by continuous maize. The experiment was randomized complete block design with three cropping (continuous maize, Crotalaria fallow and Tithonia fallow) systems and two phosphorus levels (0 and 50 kg P/ha). AMF colonization in maize roots, maize yield and macro-nutrients uptake were recorded. Phosphorus applications improved (P < 0.05) early (<8 weeks old maize) AMF colonization, nutrient uptake and maize yield in improved fallow systems. Greater differences due to phosphorus application were noted in maize in Tithonia fallow than in Crotalaria fallow. Following phosphorus application, a positive relationship existed between early AMF colonization and maize yield (r = 0.38), and phosphorus and nitrogen uptake (r = 0.40 and r = 0.43, respectively), demonstrating the importance of phosphorus fertilization in enhancing low-input technologies (improved fallows systems) in phosphorus deficient and acidic soils of western Kenya.  相似文献   

13.
This paper presents allometric functions for estimation of C stocks in aboveground tree biomass in 2-year-old improved fallows in eastern Zambia. A total of 222 individual trees representing 12 tree species were destructively harvested for C analysis by LECO CHN-1000 analyzer. Allometric models relating collar diameter (D10) and total tree height (H) to stem and total aboveground C stocks were developed using data from tree fallows. Logarithmically transformed power functions displayed a good ability to stabilize variance of aboveground C stocks and showed a good fit (84 < R 2 < 99) with a bias of 0.7–3.6%. D10 alone and in combination with H explained most of the variability in total aboveground C stocks. Validation of the species-specific and generalized models with field data indicated that they accurately predicted aboveground tree C stocks. Generalized C estimation functions were also validated and described 73–97% of variability in aboveground C stocks with an average unsigned deviation of 1.5–4.9%. The C functions will serve as a vital tool for predicting and monitoring C pool sizes in long-term studies and agroforestry projects, especially where destructive sampling is not possible.  相似文献   

14.
Eucalyptus camaldulensis × globulus and E. camaldulensis × grandis hybrids have been developed to combine the salt–waterlogging tolerance and high-quality wood fibre of their respective parents. The aim is to develop trees that will grow in relatively dry and/or saline environments and provide commercial wood products. Previous studies indicate that the hybrids exhibit faster growth than either of their pure species parents, and that there are significant differences in growth rates between them. We undertook a comparative study of the partitioning of above-ground biomass (AGB) to examine biomass and chloride (Cl) allocation of trees growing on two saline-irrigated sites in south-eastern Australia. Eucalyptus camaldulensis × globulus had a higher proportion of AGB in leaves (20–29% cf. 15–16%), and lower proportion in live branches (3–10% cf. 6–14%) than E. camaldulensis × grandis. The concentration of Cl was highest in the stembark (4.2–9.6 g kg−1) and lowest in the stemwood (0.6–2.0 g kg−1), suggesting that trees can export Cl through bark shedding. Total Cl content was strongly related to volume under bark (R2 = 0.99), and differences in partitioning of Cl into tree components differed between the hybrids in the same way as AGB. Preferential partitioning of Cl to live branches rather than foliage in E. camaldulensis × grandis suggests that this hybrid may be compartmentalising Cl to reduce the risk of Cl toxicity in the leaves.  相似文献   

15.
Indigenous and exotic leguminous shrubs that are promising for planted fallow for soil fertility replenishment in east and southern Africa have been found to harbour many herbivorous insects, giving suspicion that widespread adoption of fallow systems may aggravate insect pests. Studies were conducted on farms in western Kenya from 1999 to 2001 to monitor the abundance of herbivorous insects and assess their effects on biomass yields of pure and mixed fallows. The treatments tested were single and two-species mixtures of Tephrosia vogelii, Sesbania sesban and Crotalaria grahamiana and a natural fallow in a split plot design, with the fallow systems in the main plots and protection vs. no protection against insects in sub-plots spread over six farms. Eighteen insect species belonging to seven orders and 14 families were identified as pests of␣the fallows with varied abundance and infestation level across the sites. While Hilda patruelis and Amphicallia pactolicus were most damaging to C. grahamiana, Mesoplatys ochroptera was detrimental to S.␣sesban. T. vogelii hosted fewer insects than others. Nevertheless the pest infestation did not cause significant biomass yield reduction during the study period. Pest attack was generally greater in villages that had been testing the planted fallows for some years compared with villages that took up the fallows recently. This indicates the potential for increased pest infestation with increased adoption of the system by farmers. Multi-species fallows did not indicate any advantage over single species fallows in terms of either reduced pest incidence or increased biomass production.  相似文献   

16.
The population changes of early successional forest species, Wendlandia paniculata, Schima wallichii, Camellia tsaii, and Lithocarpus ducampii, were described and analyzed in a chronosequence of 1–30 year-old secondary forests representing regrowth after shifting cultivation in northwestern Vietnam, utilizing 51 temporary plots for stem census. Another five temporary plots were used for stem census in surrounding old-growth forest for comparison. In the first year after land abandonment, seedling stem density (H < 2 m) was 65,800/ha, increasing to 161,200/ha by third year, then sharply decreasing to 2,500/ha in 21–30 year-old forests. The sapling stratum (H ≥ 2 m and DBH < 5 cm) started to be recruited in the fifth year, increasing to reach a peak density of 4,530 stems/ha at year ten, then decreased to 580 stems/ha at year 21–30. The tree stratum (DBH ≥ 5 cm) achieved the maximum density of 600 stems/ha at year ten. Meanwhile, the density of all strata in the old-growth forest was 2,980 stems/ha. Sprouts played an important role, accounting for 34% at the first year then increased gradually to 73% at year 21–30. Total basal area attained a peak at 5.43 m2/ha at year ten; it was 4.9 m2/ha in the old-growth forest. These four species played an important role in providing ecological services for recruitment of other species during the first 10 years of fallow stand development, which increased to 35 species in 21–30 year-old secondary forest.  相似文献   

17.
Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, labour investment increases and returns to labour tend to decrease in successive years as weed pressure intensifies and soil quality declines.Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the labour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades.On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But labour is the scarcest resource on small farms and tree-pruning is usually too labour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize labour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses.The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.  相似文献   

18.
In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. The experiment was conducted on a high base status soil (Typic Eutropepts), and in Papua New Guinea such soils are intensively used for agriculture. Soil samples were taken prior to fallow establisment and after one year when the fallows were slashed and above ground biomass and nutrients measured. The above ground and litter biomass of piper was 13.7 Mg dry matter ha-1, compared to 23.3 Mg ha-1 of gliricidia and 14.9 Mg ha-1 of imperata. Gliricidia produced almost 7 Mg ha-1 wood. Total above ground biomass returned to the soil when the fallows were slashed was the same for piper and gliricidia (8 Mg ha-1). Gliricidia accumulated the largest amounts of all major nutrients except for K, which was highest in the above ground piper biomass. Imperata biomass contained the lowest amount of nutrients. The largest stocks of C, N, Ca and Mg were found in the soil, whereas the majority of P was found in the above ground biomass and litter. Almost half of the total K stock of piper and gliricidia was in the biomass. During the fallow period, soil organic C significantly increased under gliricidia fallow whereas no net changes occurred in piper and imperata fallows. The study has shown large differences in biomass and nutrient stocks between the two woody fallows (piper, gliricidia) and between the woody fallows and the non-woody fallow (imperata). Short-term woody fallows are to be preferred above grass (imperata) fallows in the humid lowlands of Papua New Guinea because of higher nutrient stocks.  相似文献   

19.
Research on improved fallows has concentrated on soil fertility benefits neglecting possible benefits to soil and water conservation. The effects of improved fallows on rainfall partitioning and associated soil loss were investigated using simulated rainfall on a kaolinitic soil in Zimbabwe. Simulated rainfall at an intensity of 35 mm h−1 was applied onto plots that were under planted fallows of Acacia angustissima and Sesbania sesban, natural fallow and maize (Zea mays L.) for two years. At the end of 2-years in October 2000, steady state infiltration rates could not be determined in A. angustissima and natural fallow plots, but they were 24 mm h−1 in S. sesban and 5 mm h−1 in continuous maize. The estimated runoff losses after 30 min of rainfall were 44% from continuous maize compared with 22% from S. sesban and none from A. angustissima and natural fallow plots. Infiltration rate decay coefficients were 36 mm and 10 mm for S. sesban and continuous maize, respectively. In October 2001 after one post-fallow crop, it was still not possible to determine the steady state infiltration rates in A. angustissima and natural fallows, but they were 8 and 5 mm h−1 for, S. sesban and continuous maize systems, respectively. The runoff loss, averaged across tilled and no-tilled plots, increased to 30% in the case of S. sesban fallowed plots and 57% for continuous maize; there was still no runoff loss from the other treatments. There were significant differences (P<0.05) in infiltration rate decay coefficients among treatments. The infiltration rate decay coefficient was 25 mm for S. sesban and it remained unchanged at 10 mm for continuous maize. It is concluded that planted tree fallows increase steady state infiltration rates and reduce runoff rates, but these effects markedly decrease after the first year of maize cropping in non-coppicing tree fallows. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Short-term improved fallow technology, which is characterised by deliberate planting of fast growing N2 fixing legumes species in rotation with crops is currently being promoted for soil fertility replenishment in the small holder farms in the tropics. Recent research and extension efforts on this technology have mainly focused on a narrow range of species. There is a need to evaluate more alternative species in order to diversify the options available to farmers and hence reduce the risks of over dependence on fewer species. We evaluated twenty-two shrubby and herbaceous species for their site adaptability, biomass and nutrient accumulation, biomass quality and maize yield response to soil incorporated plant biomass after the fallow (six and twelve months) in three different field experiments on a Kandiudalfic Eutrudox in western Kenya. Species which yielded large amounts ofthe most biomass N adequate for two to three maize crops were Sesbania sesban, Tephrosia vogelii, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii and Macroptilium atropurpureum. Most fallow species tested recycled <22 kg P ha–1 in plant biomass. Significant amounts of K were recycled through plant biomass of Sesbania sesban, Tithonia diversifolia, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii, Macroptilium atropurpureum and natural weed fallows. Recyclable K in plant biomass ranged between 4 and 188 kg ha–1Two methods of establishing S. sesban and T. vogelii fallows did not result in significant differences in biomass and nutrient yields at the end of the fallow period. Shrubby species gave Hhigh lignin (>10%) and polyphenol (>2%) concentrations. were found only in the shrubby species, and the (Ppolyphenol + lignin ): N ratio varied widely (0.3–5) amongst the species. evaluated. Maize yield increased by two-fold in the first season following the fallow phase compared with continuous maize for most species. Results suggest that there are a wide variety of legumes that could be used for use in improved fallow technologies aimed at ameliorating nutrient degraded soils and subsequently enhancing crop yields.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号