首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Understanding the spatial pattern of fire is essential for Mediterranean vegetation management. Fire-risk maps are typically constructed at coarse resolutions using vegetation maps with limited capacity for prescribing prevention activities. This paper describes and evaluates a novel approach for fire risk assessment that may produce a decision support system for actual fire management at fine scales. FARSITE, a two-dimensional fire growth and behavior model was activated, using ArcView VBA code, to generate Monte Carlo simulations of fire spread. The study area was 300 km2 of Mt. Carmel, Israel. FARSITE fuel models were adjusted for Mediterranean conditions. The simulation session consisted of 500 runs. For each simulation run, a calendar date, fire length, ignition location, climatic data and other parameters were selected randomly from known distributions of these parameters. Distance from road served as a proxy for the probability of ignition. The resulting 500 maps of fire distribution (the entire area burnt in a specific fire) were overlaid to produce a map of ‘hotspots’ and ‘cold spots’ of fire frequency. The results revealed a clear pattern of fires, with high frequency areas concentrated in the northwestern part. The spatial pattern of the fire frequency map bears partial resemblance to the fuel map, but seems to be affected by several other factors as well, including the location of urban areas, microclimate, topography and the distribution of ignition locations (which is affected by road pattern). These results demonstrate the complexities of fire behavior, showing a very clear pattern of risk level even at fine scales, where neighboring areas have different risk levels due to combinations of vegetation cover, topography, microclimate and other factors.  相似文献   

2.
Understanding the factors driving past fire regimes is crucial in the context of global change as a basis for predicting future changes. In this study, we aimed to identify the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland. We considered forest fires, land use and meteorological data over the period 1904-2008 in the neighboring mountain cantons (states) of Valais and Ticino, which are characterized by distinct climatic regimes.The presence/absence of fire ignitions was analyzed using the Nesterov ignition index (as a proxy for fire weather), road density (for ignition sources), livestock density (for biomass removal), and change in forest area (for fire-prone abandoned agricultural areas).We found that fire weather played a key role in fire occurrence in both regions. Road and livestock densities had similar influences in the two cantons. However, while the increase in forest area was well correlated with fire occurrence in Ticino, no such correlation was evident in Valais, probably because land abandonment and forest cover change have been less extensive there. Our findings emphasize the non-linear nature of the relationships between fire occurrence and anthropogenic drivers, as we found thresholds above which road density was no longer correlated with fire occurrence. This implies that the projected future increase and spatial concentration of the human population may not result in a further increase in fire risk in intermediately to densely populated areas in both cantons.The driving factors behind fire activity differ slightly in the two cantons, in particular with increasing forest area enhancing fire occurrence in Ticino but not in Valais. These differences should be taken into account when assessing future fire risk, especially in Valais where the potential for an increase in the fire-prone area is still high. Fires are likely to become more frequent in a warmer climate, but future fire activity may develop differently in the two cantons. This should be taken into account when planning optimized fire prevention measures. This case study should help to better understand fire activity in highly populated regions where fire activity is still moderate but might markedly increase under a projected more fire-prone climate.  相似文献   

3.
Modeling fire susceptibility in west central Alberta, Canada   总被引:1,自引:0,他引:1  
Strategic modification of forest vegetation has become increasingly popular as one of the few preemptive activities that land managers can undertake to reduce the likelihood that an area will be burned by a wildfire. Directed use of prescribed fire or harvest planning can lead to changes in the type and arrangement of forest vegetation across the landscape that, in turn, may reduce fire susceptibility across large areas. While among the few variables that fire managers can influence, fuel conditions are only one of many factors that determine fire susceptibility. Variations in weather and topography, in combination with fuels, determine which areas are more likely to burn under a given fire regime. An understanding of these combined factors is necessary to identify high fire susceptibility areas for prioritizing and evaluating strategic fuel management activities, as well as informing other fire management activities, such as community protection planning and strategic level allocation of fire suppression resources across a management area. We used repeated fire growth simulations, automated in the Burn-P3 landscape-fire simulation model, to assess spatial variations in fire susceptibility across a 2.4 million ha study area in the province of Alberta, Canada. The results were used to develop a Fire Susceptibility Index (FSI). Multivariate statistical analyses were used to identify the key factors that determine variation in FSI across the study area and to describe the spatial scale at which these variables influence fire susceptibility at a given location. A fuel management scenario was used to assess the impact of prescribed fire treatments on FSI. Results indicated that modeled fire susceptibility was strongly influenced by fuel composition, fuel arrangement, and topography. The likelihood of high or extreme FSI values at a given location was strongly associated with the percent of conifer forest within a 2-km radius, and with elevation and ignition patterns within a 5-km radius. Results indicated that prescribed fire treatments can be effective at reducing forest fire susceptibility in community protection zones and that simulation modeling is an effective means of evaluating spatial variation in landscape fire susceptibility.  相似文献   

4.
There is a lack of knowledge to identify and classify forest structures according to the risk of crown fires, especially in Mediterranean regions. In this study, for the first time, we use real information, obtained after a wildfire that burnt under extreme meteorological conditions, to classify forest structures of Pinus halepensis into fuel types as a function of crown fire potential. We identified fourteen forest structures which characterize many forest types in Western Mediterranean areas depending on canopy closure, number of tree layers, percent of each tree layer and overall tree density. By using the pattern of fire types that burnt the most numerous forest structures, we have identified four fire hazard groups of forest structures which are considered different fuel types. The first two had the lowest risk of active crown fires and they differed in the proportion of surface fires and passive crown fires. The third fuel type was the threshold between structures with low and high extreme fire behavior; while the fourth had a high risk of active crown fires. Firefighters and forest managers who are demanding this kind of schema, will test and upgrade this classification of fuel types in function of crown fire potential during future wildfires.  相似文献   

5.
云南松林区的林火与火险等级分区初探   总被引:1,自引:0,他引:1  
云南松林区发生的森林火灾是多种自然因素和人为活动综合作用的结果。通过对四川省云南松分布区不同区域与林火有关的主要气候因子分析及综合值的比较,结合地形地貌、植被状况和人为活动等多种因素,将我省云南松分布区划分成5个不同等级的火险区,并提出了相应的护林防火对策。  相似文献   

6.
Forest fire history can be reconstructed over past centuries across a widevariety of forest types.Fire scars on living tress,and age classes of forest stands,are thetwo sources of information for these reconstructions.Point and area frequencies are usedto reconstruct fire history.Point frequencies are useful in forest types that burn withfrequent,low intensity fire so that many fire-scarred residual trees exist.A true point isa single tree,but more often point estimates are made by combining fire scar records fromseveral adjacent trees.Area frequences are applied where fires are infrequent but ofmoderate to high intensity,so that stand ages are used across wide areas to estimate firereturn interals.Proper selection and application of fire history methods are essential toderiving useful ecological implications from fire history studies.This review evaluates the common methods of determining fire history:what thetechniques are,where they are best applied,and how to interpret them in an ecologicalcontext.E  相似文献   

7.
Understanding both historic and current fire regimes is indispensable to sustainable forest landscape management. In this paper, we use a spatially explicit landscape simulation model, LANDIS, to simulate historic and current fire regimes in the Great Xing’an Mountains, in northeastern China. We analyzed fire frequency, fire size, fire intensity, and spatial pattern of burnt patches. Our simulated results show that fire frequency under the current fire scenario is lower than under the historic fire scenario; total area burnt is larger with lower fire intensity under the historic fire scenario, and smaller with higher fire intensity under the current fire scenario. We also found most areas were burned by high intensity fires under the current fire scenario, but by low to moderate fires under the historic fire scenario. Burnt patches exhibit a different pattern between the two simulation scenarios. Large patches burnt by high intensity class fires dominate the landscape under the current fire scenario, and under historic fire scenario, patches burnt by low to moderate fire intensity fires have relatively larger size than those burnt by high intensity fires. Based on these simulated results, we suggest that prescribed burning or coarse woody debris reduction should be incorporated into forest management plans in this region, especially on north-facing slopes. Tree planting may be a better management option on these severely burned areas whereas prescribed burning after small area selective cutting, retaining dispersed seed trees, may be a sound forest management alternative in areas except for the severely burned patches.  相似文献   

8.
Successful management of forest fire risk in the Northeastern China boreal forest ecosystem often involves trade-offs between fire dynamics, fire hazard reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction strategies on fire dynamics and analyzed cost effectiveness for each fuel reduction strategy based on cost–benefit theory. Five levels of fuel treatment area (2, 4, 6, 8, and 10% for each decade) and two fuel treatment types (prescribed burning [PB] and mechanical treatments in combination with prescribed fire [PR]) under current fire suppression simulated by LANDIS were compared in a 5 × 2 factorial design over a 300-year period. The results showed that PR scenarios are more effective at reducing the occurrence and burn area of catastrophic fires than PB scenarios. In addition, area burned by high intensity fire can be tremendously reduced by increasing low intensity fires with a higher level of treatment area under the various PR scenarios. The cost effectiveness of alternative fuel reduction strategies is strongly dependent on treatment area. In general, PB scenarios will be more cost effective in larger treatment areas and PR scenarios in smaller. We recommend mechanical treatments in combination with prescribed fire, with 4% of landscape treated in each decade (PR04) to be the optimal fuel reduction strategy in the study area based on risk control and cost efficiency analysis. However, the most challenging work in China is to make local forest policy makers and land managers accept the ecological function of fire on forest ecosystems.  相似文献   

9.
Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often designated as areas where only limited management action can take place within a fixed-width zone. These highly productive forests have developed heavy fuel loads capable of supporting stand-replacing crown fires that can alter wildlife habitat and ecosystem function, and contribute to stream channel erosion. Objectives of this study were to determine whether adjacent coniferous riparian and upland forests burned historically with different frequencies and seasonalities, and whether these relationships varied by forest, site, and stream characteristics. We measured dendrochronological fire records in adjacent riparian and upland areas across a variety of forest, site and stream conditions at 36 sites in three sampling areas in the northern Sierra Nevada.  相似文献   

10.
China is not rich in natural forest sources. Owing to natural and historical factors, forest fires have long been frequenting China. Forest fire prevention is the most important of all. Forest fire prevention and controlling have long been held as a very important factor in our ecological plans. Taking china 's special geographical location, topography, climate and the distribution of forest sources into consideration, we have every reason to believe that forest fires in China have their own special environment and occurrence. China suffers forest fire hazards heavily. Forest fires arise occasionally from thunderstruck or self-burning of peat. However, most fires are due to man's fault while inappropriately using fires in production and daily life. Since China is located in the Northern Hemisphere with a vast territory, there is a striking difference in the climate between South China and North China.  相似文献   

11.
A key challenge in modern wildfire mitigation and forest management is accurate mapping of forest fuels in order to determine spatial fire hazard, plan mitigation efforts, and manage active fires. This study quantified forest fuels of the montane zone of Boulder County, CO, USA in an effort to aid wildfire mitigation planning and provide a metric by which LANDFIRE national fuel maps may be compared. Using data from 196 randomly stratified field plots, pre-existing vegetation maps, and derived variables, predictive classification and regression tree models were created for four fuel parameters necessary for spatial fire simulation with FARSITE (surface fuel model, canopy bulk density, canopy base height, and stand height). These predictive models accounted for 56–62% of the variability in forest fuels and produced fuel maps that predicted 91.4% and 88.2% of the burned area of two historic fires simulated in the FARSITE model. Simulations of areas burned based on LANDFIRE national fuel maps were less accurate, burning 77.7% and 40.3% of the historic fire areas. Our results indicate that fuel mapping efforts that utilize local area information and biotic as well as abiotic predictors will more accurately simulate fire spread rates and reflect the inherent variability of forested environments than do current LANDFIRE data products.  相似文献   

12.
13.
凉山州是我省的森林火灾高发区,是四川省乃至全国森林火灾高危地区之一。通过对凉山州冕宁县近14年的森林火灾数据资料和气象数据资料分析,探讨了森林火灾次数与人为因素、气象因素、植被类型等因子的关系。结果表明:冕宁县森林火灾主要影响因素是人为因素,每年1—3月份是森林防火最重要的时段,云南松林区是区域森林火灾防范的重要区域。  相似文献   

14.
Forest fires caused by natural forces or human activities are one of the major natural risks in Northeast China. The incidence and spatial distribution of these fires vary over time and across the forested areas in Jilin Province, Northeast China. In this study, the incidence and distribution of 6519 forest fires from 1969 to 2013 in the province were investigated. The results indicated that the spatiotemporal distribution of the burnt forest area and the fire frequency varied significantly by month, year, and region. Fire occurrence displayed notable temporal patterns in the years after forest fire prevention measures were strictly implemented by the provincial government. Generally, forest fires in Jilin occurred in months when stubble and straw were burned and human activities were intense during traditional Chinese festivals. Baishan city, Jilin city, and Yanbian were defined as fire-prone regions for their high fire frequency. Yanbian had the highest frequency, and the fires tended to be large with the highest burned area per fire. Yanbian should thus be listed as the key target area by the fire management agency in Jilin Province for better fire prevention.  相似文献   

15.
Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This study consid-ers both environmental (altitude,precipitation,forest type,terrain and humidity index) and socioeconomic (popula-tion density,distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires.Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills.The receiver operating characteristic(ROC) curve and the area under the ROC curve (AUC) were used to compare the models.We studied the fire history from 1990 to 2019 to establish the relationship between the prob-ability of forest fire and environmental and socioeconomic changes.Using Maxent,the AUC fire probability values for the 1999s,2009s,and 2019s were 0.532,0.569,and 0.518,respectively;using RF,they were 0.782,0.825,and 0.789,respectively.Fires were mainly distributed in urban areas and their probability of occurrence was related to acces-sibility and human behaviour/activity.AUC principles for validation were greater in the random forest models than in the Maxent models.Our results can be used to establish preventive measures to reduce risks of forest fires by consid-ering socio-economic and environmental conditions.  相似文献   

16.
Characterization of forest fires in Catalonia (north-east Spain)   总被引:1,自引:0,他引:1  
The present study analyses the temporal variation in the distribution of the number of fires, area burned and fire sizes in Catalonia using fire data from 1942 to 2002. The study shows variations in the distribution of fire size over recent decades, with a significant increase in the number of very large fires. The study also analyses relationships between characteristics of the forest (altitude, slope, aspect, living fuels and species composition) and the probability of the fire occurrence. The analysis is based on the overlay of forest cover data and perimeters of forest fires during the period (1986–2002). Of the analysed variables, altitude affects most the probability of fire occurrence, with higher proportions of burned forest area at lower altitudes. Stand’s vertical structure is also relevant, with lower proportions of burned area in stands with mature tree cover without understory. The study helps to analyse the strengths and weaknesses of forest and fire management policies, especially those related to forest and fuel management at the landscape level.  相似文献   

17.
Forest fire management practices are highly dependent on the proper monitoring of the spatial distribution of the natural and man-made fuel complexes at landscape level. Spatial patterns of fuel types as well as the three-dimensional structure and state of the vegetation are essential for the assessment and prediction of forest fire risk and fire behaviour. A combination of the two remote sensing systems, imaging spectrometry and light detection and ranging (LiDAR), is well suited to map fuel types and properties, especially within the complex wildland–urban interface. LiDAR observations sample the spatial information dimension providing explicit geometric information about the structure of the Earth's surface and super-imposed objects. Imaging spectrometry on the other hand samples the spectral dimension, which is sensitive for discrimination of surface types. As a non-parametric classifier support vector machines (SVM) are particularly well adapted to classify data of high dimensionality and from multiple sources as proposed in this work. The presented approach achieves an improved land cover mapping adapted to forest fire management needs. The map is based on a single SVM classifier combining the spectral and spatial information dimensions provided by imaging spectrometry and LiDAR.  相似文献   

18.
我国大兴安岭呼中林区雷击火发生火环境研究   总被引:19,自引:2,他引:19  
雷击火作为天然火源是一种难以控制的自然现象 ,其形成机理极为复杂。我国大兴安岭林区是雷击火主要发生区 ,对雷击火的研究表明特殊可燃物、干雷暴的天气和较高的地形构成了雷击火发生的火环境。长期干旱 ,可燃物失水严重 ,森林中积累丰富的可燃物 ,雷暴发生后干燥的植被容易引火燃烧 ,起火之后 ,遇上盛行的大风将使火灾迅速蔓延。雷暴 ,特别是干雷暴出现时 ,遇到降水少、地面温度增加 ,相对湿度降低 ,可燃物干燥的情况 ,就很容易引起火灾。森林火灾多发地区 ,雷击火常常也多。大兴安岭纬度越高 ,雷击火越多 ,5 1°N以北海拔 80 0m以上山脉的腹部或山顶的落叶松 -偃松林、樟子松 -偃松林林区为该林区雷击火发生最集中区域。一次干雷暴天气过程 ,可以同时引起多起雷击火 ,它们之间的距离最远可达 1 5 0km。雷击火多发生在 6— 8月 ,雷击火的发生时段主要集中在下午的 1 4时到 1 7时。雷电作为一个随机干扰因子引发森林火灾 ,使得雷击火的预防与扑救变得更加困难。  相似文献   

19.
Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important.  相似文献   

20.
In densely populated areas like the Mediterranean, wildfire extent is mostly limited by fire suppression and fuel fragmentation. Fire is known to spread more easily through high fuel loads and homogenous terrain and it is supposed to reduce fuel amount and continuity, creating a negative feedback. Here we combine information from administration fire records, satellite imagery fire scars and land use/cover maps to asses the effects of fire on landscape structure and vice versa for three areas in Catalonia (NE Spain). We worked with three spatial focuses: the actual fire scar, 1 km2 squares and 10 km2 squares. In these regions agriculture land abandonment has lead to increased fuel continuity, paralleled by an increment of fire size. We confirm that fire spread is facilitated by land use/cover types with high fuel load and by homogeneous terrain and that fire reduces fuel load by transforming forests into shrublands. But we also found that fire increased landscape homogeneity, creating a positive feedback on fire propagation. We argue that this is possible in landscapes with finer grain than fire alone would create. The lack of discontinuities in the fuel bed diminishes the extinction capacity of fire brigades and increases the risk of large fires. We recommend that fire management should focus more on conservation of the traditional rural mosaic in order to prevent further increases in fuel continuity and fire risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号