首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Five pasture treatments were applied to three semi-natural hill grassland communities. The pasture treatments were: (1) controlled grazing, (2) controlled grazing + lime, (3) controlled grazing + lime + phosphate, (4) controlled grazing + lime + phosphate + oversown white clover and (5) controlled grazing + lime + phosphate + oversown white clover + oversown perennial ryegrass. The communities were dominated by Agrostis/Festuca (site 1), Molinia (site 2) and Nardus (site 3). The Nardus at site 3 was substantially reduced by herbicide before treatments were applied. All treatments were grazed simultaneously by mature wether sheep on three occasions each year to a residual herbage mass of 560 kg DM ha?1. There were two grazing periods, each of 4 weeks duration, beginning in mid-May and mid-July respectively and a further grazing period of 3 weeks duration beginning in mid-October. The number of sheep grazing days and liveweight gain of sheep were recorded during each grazing period for 13 years at each site. Organic matter intake (OMI) and digestibility (OMD) of ingested herbage were measured in years 2, 5 and 13. Mean daily OMI per head ranged from 1290 g for treatment 1 to over 1400 g for treatments 4 and 5. OMI values were higher for the Agrostis/Festuca site (mean OMI 1450 g) than for the Molinia and Nardus sites (1310 g and 1370 g respectively) largely owing to differences in the values for treatments 1, 2 and 3. OMI values for each treatment decreased by around 300 g between May and October. Mean OMD values from treatments 1, 2 and 3 were higher for the Agrostis/Festuca site (0·66) than for the Molinia and Nardus sites (0·63 and 0·64 respectively). The OMD values for treatments 1, 2 and 3 at the Molinia and Nardus sites declined by between 0·05 and 0·02 between years 2 and 13 and also showed the greatest decrease between May and October (0·08). OMD values for treatments 4 and 5 (0·67 and 0·69 respectively) were higher than for treatments 1, 2 and 3 at all sites and levels were maintained over 13 years. Individual liveweight gains of sheep increased from treatment 1 (?18 g d?1) to treatment 5 (82 g d?1), but they decreased over time on all treatments. The Agrostis/Festuca site gave 17% more annual sheep grazing days than the Molinia site and 33% more than the Nardus site. The mean number of annual sheep grazing days for each treatment ranged from 2250 for treatment 1 to 3640 for treatment 5. Annual sheep grazing days increased over 13 years by between 35 and 45% for treatment 1 and 55 and 70% for treatment 5. The results are described in relation to the changes in pasture composition and herbage accumulation.  相似文献   

2.
Herbage intake is usually depressed when beef cattle grazing abundant pastures are supplemented with energy-rich feedstuffs but relatively little is known about the effects of supplementation on the components of ingestive behaviour. An experiment was conducted to establish the effect of ground corn (Zea mays L.) on the ingestive behaviour of yearling Angus and Angus × Hereford steers (Bos taurus) (mean live weight (LW) of 323 kg) grazing autumn stockpiled Boone cocksfoot (Dactylis glomerata L.) using a tethered grazing system in which the experimental unit was the tethered steer and its grazing area (45 m2) for one grazing session. Herbage dry matter (DM) mass was 1662 kg ha?1 and herbage DM allowance was 7–5 kg steer?1 for each grazing session. Herbage DM intake was measured as the difference between herbage DM mass offered and refused. Grazing took place during two daily sessions each of about 2 h duration commencing at 08.00 and 14.00 h for 9 days. Ground corn (0, 1·5, 3·0 and 4·5 kg steer?1) was fed each day at 12.00 h and had no significant (P < 0·05) effect on rate of DM intake, rate of biting or DM intake per bite. Mean DM intake was 6 2 kg steer?1 d?1 (87 mg (kg LW)?1 min?1). Steers averaged 4832 bites per grazing session, with a mean DM intake per bite of 644 mg (2·0 mg (kg LW)?1) and a mean rate of 44 bites min?1. Data obtained at the beginning and end of each grazing period on ingestive behaviour of one group of four steers (mean LW of 306 kg) fitted with oesophageal fistulae supported data for the two groups of normal steers and showed no response to supplementation. Mean values for rate of DM intake, DM intake per bite and rate of biting established for the fistulated cattle were 73 mg (kg LW)?1 min?1, 521 mg bite?1 (1·7 mg (kg LW)?1) and 39 bites min?1, respectively.  相似文献   

3.
Herbage allowance is one of the important pasture factors in the determination of intake by grazing livestock. Ingestive behaviour of 12 adult Angus cows (Bos taurus) was measured over a range of allowances (0·25 to 0·72 kg dry matter (DM) per 100 kg live weight (LW) for a 1-h period) of vegetative tall fescue (Festuca arundinacea Schreb.). A balanced change-over design was used to estimate direct, residual and permanent effects of herbage allowance on rate of DM intake, rate of biting and herbage DM intake per bite. In Experiment 1, herbage DM intake per meal increased linearly from 0·68 to 1·72 kg (100 kg LW)?1 as DM allowance increased from 0·25 to 0·72 kg (100 kg LW)?1 h?1. Cows grazed at ·30 kg (100 kg LW)?1 h?1 and stopped grazing when the sward was reduced to a height about 10 to 12 cm above the soil surface, approximately defined by the tops of pseudostems. In Experiment 2, herbage DM intake rates of 0·29, 0·47 and 0·42 kg (100 kg LW)?1 h?1 were recorded as cows grazed allowances of 0·43, 0·70 and 0·90 kg (100 kg LW)?1 h?1 for most of the 1-h grazing period. Limiting herbage DM allowances in Experiment 2 were associated with small reductions in rate of biting and herbage DM intake per bite as allowance declined. Sward DM density (>5 cm) was an important variable in the determination of herbage DM intake rates at lower herbage allowances.  相似文献   

4.
The mechanisms that terminate meals of cattle grazing lucerne (Medicago sativa L.) are not well defined. Sub-acute bloat may lead to cessation of grazing and, consequently, surface active substances used in the treatment and prevention of bloat, such as poloxalene, may extend grazing meals and increase herbage intake. Twelve mature Angus cows (Bos taurus) were offered 0, 12·5 and 25·0 g poloxalene in 0·5 kg of crushed maize (Zea mays L.) kernels each day, immediately before two consecutive 1-h measured parts of a grazing meal on 21- to 24-day-old lucerne swards with a herbage dry matter (DM) mass (> 5 cm) of 2·03 t ha?1 and herbage DM mass allowance of 3·55 kg hd?1h?1. Total herbage DM intake was 2·52 kg hd?1 during the first hour and 1·54 kg hd?1 during the second hour of the 2-h grazing meal. Differences in herbage intake were attributable to a cessation of grazing. Mean rates of biting were 26·3 and 14·8 bites min?1 and mean DM intakes per bite were 1·82 and 4·38 g during the first and second part of meals, respectively. Poloxalene treatments caused a small linear decline in grazing time during the first part of meals and a larger increase in grazing time during the second part of meals. Lower rates of DM intake caused by poloxalene were offset by increases in grazing time. It was concluded that poloxalene moderated ingestive behaviour within grazing meals of immature lucerne and this response may have been at least partly due to the relief of sub-acute bloat.  相似文献   

5.
Development of simulation models of grazing beef cattle requires measurement of the components of the ingestive process and the establishment of relationships between these components and the structure of the sward. The ingestive behaviour of eight half-sib Angus steers (live weight (LW), x?= 270 kg) grazing alfalfa (Medicago sativa L.) was studied at three stages of maturity (26, 40 and 47 days of regrowth) and at four allowances of herbage dry matter (DM) (1·0, 1·5, 20 and 2·5 kg per 100 kg LW) at each of two daily grazing sessions. A tethering system of grazing was used in which the experimental unit was a tethered steer and its plot for one grazing session. Grazing sessions commenced at 08.00 and 14.00 h EDT. Intake (DM) increased linearly from 1·98 kg per steer session at a DM allowance of 1 kg (100 kg LW)?1 to 2 89 kg steer session at an allowance of 2·5 kg (100 kg LW) ?1 as utilization of herbage declined linearly from 0·69 to 0·43. Herbage DM in take per bite increased from 1 0 g at 1 kg (100 kg LW) ?1 allowance to 1·5 g at 2·5 kg (100 kg LW) ?1 allowance. Rates of biting were not affected by herbage allowance and averaged 21 bites min?1. Dry matter intake increased from 1·77 to 3 41 kg per steer session as the alfalfa matured and herbage mass changed from 1500 to 4656 kg ha?1. Mean rates of biting were 24 bites min?1 for steers grazing the youngest alfalfa and 16 bites min?1 for steers on the oldest forage. Herbage DM intakes per bite were 1·1 g and 1·7 g at the same stages. Rates of DM intake approached 2 kg h?1 and maximum daily DM intake was estimated at 2 75 kg (100 kg LW) ?1. Intake of alfalfa was limited by allowance and mass of herbage above a canopy horizon of 20 cm and, to a lesser extent, by the length of fast.  相似文献   

6.
The effects of restricted access time to pasture (2, 4 or 6 h d?1; 2H, 4H or 6H) on ingestive behaviour and performance were assessed on four occasions per target grazing day (D1, initial day; D4, intermediate day; and D7, final day) in dairy ewes rotationally grazing berseem clover with a 7‐day grazing period and a 21‐day recovery period. A randomized block design with two replicates per treatment was used. All ewes were supplemented daily with 700 g per head of concentrates and 700 g per head of ryegrass‐based hay. Pasture subplot and animal group data were analysed by a factorial model including access time (AT), grazing day (D) and their interaction as fixed factors. Sward height decreased from D1 (< 0·001) and green leaf mass from D4 (< 0·001) onwards during the grazing period. Grazing time as a proportion of AT was higher in 2H than in 4H and 6H ewes on D1 and D4 but not on D7 (< 0·05 for AT × D). Herbage intake rate was higher in 2H than in 4H and 6H ewes (< 0·001). Herbage and total intakes were higher in 4H and 6H than in 2H ewes (< 0·001), with herbage intake varying non‐linearly during the grazing period (< 0·05). Milk yield was higher in 4H and 6H than in 2H ewes (< 0·01). To conclude, despite the evidence of compensatory behaviour, restricting access time to 2 h d?1 constrained intake and performance of dairy ewes rotationally grazing berseem clover.  相似文献   

7.
Intensive grazing of pastures may cause drastic and rapid changes in swards which have major effects on ingestive behaviour and diet. Twelve adult Angus cows (Bos Taurus), mean live weight of 482±19 kg, were allowed to graze on swards of lucerne (Medicago sativa L.) that were not grazed (TO), or had been grazed previously for 1 h (T1), or 2 h (T2) in a balanced changeover design. Herbage dry ma er (DM) masses (>5 cm) were 2611, 1895 and 1441 kg ha?1; leaf fractions were 0-48, 0-29 and 0-14; and herbage DM allowances per animal were 10·6, 7·9 and 6·0 kg h?1 for TO, T1 and T2, respectively. During a 1 h measured grazing session that followed an overnight fast, cows ingested 2-93, 1·71 and 0·66 kg DM h?1 with herbage DM intakes per bite of 1·6, 0·9 and 0·4 g for T0, T1. and T2, respectively. Rates of biting did not respond to sward treatment and averaged 30 bites min?1. Intake of leaf DM was estimated at 98, 70 and 6% of total DM intake for the same treatment sequence. Utilization of herbage allowance was 0·29, 0·23 and 0·12, for TO, T1 and T2, respectively. Metabolzable energy (ME) intake per animal was 30, 17 and 5 MJ h?1 and ME intake per bite was 16, 9 and 3 KJ for TO, T1 and T2, respectively. Data show that grazing-induced differences in sward characteristics moderate both ingestive behaviour and diet.  相似文献   

8.
Remote sensing of nitrogen (N) concentration and in vitro dry matter digestibility (IVDMD) in herbage can help livestock managers make timely decisions for adjusting stocking rate and managing pastures during the grazing season. Traditional laboratory analyses of N and IVDMD are time-consuming and costly. Non-destructive measurements of canopy hyperspectral reflectance of pasture may provide a rapid and inexpensive means of estimating these measures of nutritive value. Using a portable spectroradiometer, canopy reflectance was measured in eight warm-season grass pastures in the USA in June and July in 2002 and 2003 to develop and validate algorithms for estimating N concentration and IVDMD of herbage. Nitrogen concentration of herbage was linearly correlated (r = 0·82; P < 0·001) with a ratio of reflectance in the 705- and 1685-nm wavebands (R705/R1685) and IVDMD was correlated with R705/R535 (r = 0·74; P < 0·001). Compared with simple linear regressions of N concentration and IVDMD in herbage with two-waveband reflectance ratios, multiple regression, using maximum r2 improvement, band-depth analysis with step-wise regression, and partial least-squares regression enhanced the correlation between N concentration and IVDMD of herbage and canopy reflectance values (0·81 ≤ |r| ≤ 0·90; P < 0·001). Validation of the prediction equations indicated that multiple regression only slightly improved accuracy of a model for predicting N concentration and IVDMD of herbage compared with simple linear regression of reflectance ratios. Results suggest that the N concentration and IVDMD of herbage of warm-season grass pastures can be rapidly and non-destructively estimated during the grazing season using canopy reflectance in a few narrow wavebands.  相似文献   

9.
Pasture herbage is a major source of minerals for livestock in pasture‐based production systems. Herbage mineral concentrations vary throughout the growing season, whereas mineral supplementation to livestock is often constant. The study objectives were to analyse the seasonal variation in herbage mineral concentrations in tall fescue [Schedonorus phoenix (Scop.) Holub]‐based pasture with regard to beef cattle mineral requirements and to create a statistical model to predict variation in herbage mineral concentrations across the growing season. Pasture herbage was analysed from 12 grazing systems in Virginia to determine its mineral concentration from April to October of 2008–2012. The pasture herbage, grown without fertilization, contained adequate macronutrient concentrations to meet the requirements of dry beef cows through the growing season and the requirements of lactating beef cows in April. Phosphorus supplementation appeared to be unnecessary for dry beef cows given adequate concentrations in pasture herbage. A model using month of harvest, soil moisture and relative humidity explained 75% of the variation in an aggregated mineral factor. The 90% prediction intervals indicated that N, P, K, S and Cu concentrations could be predicted within 1·35, 0·08, 0·80 and 0·07% and 3·83 mg kg?1 respectively. Prediction of herbage mineral concentrations could help to improve livestock health, reduce costs to producers and limit nutrient losses to the environment.  相似文献   

10.
The impact of manipulating ruminal fill (RF) on intake rate of herbage and grazing dynamics was measured with three rumen‐cannulated beef heifers grazing Bermudagrass pastures individually. The treatments compared were removal of proportions of rumen contents of 0 (treatment RF0), 0·33 (treatment RF33), 0·66 (treatment RF66) and 1·00 (treatment RF100). Treatments were randomly applied in a 3 × 4 Youden‐square design. The rumens were emptied before and after planned grazing sessions (30 min) to set up the treatments, and to estimate intake rate and bite mass, respectively. Measurements were made of bite rate, bites per feeding station, feeding stations per minute, intake per feeding station, time per feeding station, eating and searching step rates and times. Apparent bite area and area grazed per feeding station were calculated. Ruminal fill affected short‐term intake rate and changed grazing dynamics. As RF increased, step rates, searching times, bite mass, apparent bite area, bites per feeding station, area grazed per feeding station, time per feeding station and intake per feeding station decreased (P < 0·01) while step times, eating step rates and bite depth increased (P < 0·01). The results of the present study indicate that RF is an important factor governing the intake characteristics and behaviour of grazing beef heifers.  相似文献   

11.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

12.
The effect of feeding indoors fresh perennial ryegrass vs. grazing on ingestive behaviour, release of cell contents and comminution of particles during ingestion, as well as on gas production of ingested boli fermented in vitro, was studied. Indoor feeding and grazing were compared using four dairy cows according to a triple reversal design with six periods. Chemical and morphological composition of the ingested herbage was similar for both indoor feeding and grazing treatments. The intake rate was markedly higher indoors compared with grazing [52·1 vs. 22·9 g dry matter (DM) min?1] with heavier boli and less saliva added per gram of DM intake. The proportions of intracellular nitrogen and chlorophyll released during mastication after ingestion of herbage fed indoors were lower, and the median size of the particles in the boli was larger (5·97 vs. 4·44 mm) compared with grazing. As a result, the rate of gas production in vitro was also lower for herbage fed indoors compared with grazing (0·423 vs. 0·469 mL min?1 g?1 incubated DM). Indoor feeding or grazing may have limited consequences in vivo on the kinetics of availability of nutrients for micro‐organisms in the rumen, because the consequences of the more extensive physical damage suffered by herbage ingested at grazing could be compensated by a lower intake rate.  相似文献   

13.
Abstract Four sward height treatments were imposed by continuous variable stocking using at least ten Suffolk × Greyface lambs per plot from late July to late August: constant 3·5 cm. constant 6·0 cm. 3·5cm increasing to 6·0 cm and 6·0 cm decreasing to 3·5 cm. The treatments were established on two swards given fertilizer N applications over the season of 97 and 160 kg N ha?1 respectively. Animal density was greater on the high fertilizer treatment, at the lower sward height and especially on the decreasing height treatments. Liveweight change of lambs was higher (P <0·001) on the 6-cm than on the 3·5-cm treatments (+159 vs-13g d?1 and was also higher (P <0·001) on the increasing than on the decreasing sward height treatments (+92 vs-26 g d?1). Herbage organic matter intake (OMI), measured on two occasions in the experiment, was greater (P <0·001) on the 6·0 cm than on the 3·5-cm sward heights whereas values for the increasing sward height treatments were much greater than those for the decreasing sward height treatments. There was little difference in the organic matter digestibility of the diet between treatments. Diets were composed largely of lamina, although there was more pseudostem and dead herbage in the diets of Iambs grazing the decreasing than the increasing sward height treatments at the end of the experiment. Bite mass was closely related to OMI but the treatment and period differences were relatively greater than for OMI. Bite mass was more closely related to the depth of the lamina layer (sward height-pseudostem height) than it was to sward height. There was evidence that pseudostem acted as a barrier to defoliation on these short swards and also that the proportion of youngest leaf in the diet was positively related to sward height and to increases in sward height. Sward height and especially the direction of change in sward height, together with associated stock density, were potent influences on lamb growth rate. This was a consequence of differences in herbage intake, which was strongly influenced by bite mass.  相似文献   

14.
The effects of allowance of extended (deferred) grazed herbage (AEGH) and herbage allocation management (HAM) were studied in ewe lambs (248) and late‐gestation ewes (152), respectively, on commercial farms in south‐east Ireland in 2005–06. In Experiment 1, which consisted of four treatments, the effects of AEGH (0·75, 1·25 and 1·75 kg DM per head daily) and concentrate supplementation (0·5 kg per head daily with the 0·75 kg DM herbage allowance) on lamb performance during the extended grazing (16 December to 3 March) and subsequent grazing (4 March to 11 August) seasons were evaluated. Increasing AEGH increased herbage intake linearly (P < 0·001) and live weight (P < 0·001) at the end of extended grazing and the subsequent grazing season. In Experiment 2, single‐ and twin‐bearing ewes were allocated to either a conventional (single‐ and twin‐bearing ewes grazed separately) or leader–follower system (twin‐ and single‐bearing ewes, as leaders and followers respectively) of HAM from 30 January to 24 March. The same quantities of herbage were offered daily for each system. System of HAM affected ewe condition score at lambing but did not alter (P > 0·05) subsequent lamb birth or weaning weights. It is concluded that increasing AEGH to ewe lambs increased liveweight gain during extended grazing and resulted in heavier animals in mid August of the subsequent grazing season. For ewe lambs each 1 kg concentrate DM had the same feed value as 2·4 kg DM AEGH. Use of a leader–follower system for ewes in late pregnancy did not alter lamb birth weight or subsequent performance.  相似文献   

15.
This study assessed the use of pasture attributes to control daily intake and diet quality during progressive defoliation on pastures of Axonopus catarinensis. Three consecutive 12‐day grazing treatments of progressive defoliation were conducted with Brahman cross‐steers. Daily forage intake and defoliation dynamics were assessed using a pasture‐based method. The treatments differed in initial sward height (33, 44 and 61 cm) and herbage mass (1030, 1740 and 2240 kg ha?1). The post‐grazing residual sward height, at which forage intake decreased, appeared to increase with the initial sward height (12·3, 14·6 and 15·5 cm). Steers grazed up to four distinctive grazing strata in all treatments. The depth and herbage mass content of the top grazing stratum were at least five times higher than the lower grazing strata in all treatments. This explains why forage intake decreased when the top grazing stratum was removed in approximately 93% of the pasture area in all treatments, equivalent to approximately 7% of the pasture area remaining ungrazed. We conclude that the residual ungrazed area of the pasture, rather than residual sward height, can be used to develop grazing management strategies to control forage intake and diet quality in a wide range of pasture conditions.  相似文献   

16.
In Appalachian USA, silvopasture offers promise of increased farm productivity. A synchronized, temporal understanding of open pasture (OP) and silvopasture (SP) nutritive characteristics is essential for grazing system development. We examined pasture‐type nutritive‐value relationships when herbage was harvested based on morphological maturity rather than calendar date. Neutral detergent fibre and acid detergent fibre (ADF and NDF) content were greater in silvopasture, while organic matter (OM) was lower (P < 0·05). Digestibility of SP herbage dry matter (DM) and OM tended (P = 0·10) to be lower (418 vs. 471 and 437 vs. 491 g kg?1 respectively). Neutral detergent fibre digestibility was greater (< 0·05) for OP than SP forage (538 vs. 480 g kg?1), and ADF tended to be greater (P = 0·10; 551 vs. 501). Open‐pasture forage fermentation effluent exhibited slightly higher microbial richness and Shannon diversity than SP. However, overall community composition of both bacteria and archaea did not differ between pasture types or sampling times. Pasture types show proximate analyses differences generally favourable to OP, although both have similar overall nutritive value. In addition, the SP sward exhibited a 4‐ to 6‐days delay in reaching equivalent maturity. Conversion of farm woodlots to SP would increase overall herbage production and improve pasture management flexibility.  相似文献   

17.
This study investigated the effects of levels of supplementation with maize grain and herbage allowance (HA) on grass herbage and maize intake, animal performance and grazing behaviour in two replicated grazing experiments with Angus beef cattle in Argentina. In Experiment 1, the response to increasing HA (2·5, 5·0 and 7·5 kg DM herbage 100 kg?1 live weight (LW) d?1 with and without 0·5 kg DM maize grain 100 kg?1 LW d?1) was investigated. In Experiment 2, the responses to level of maize grain offered (0, 0·5 and 1·0 kg DM maize grain 100 kg?1 LW d?1) at an HA of 2·5 kg DM herbage 100 kg?1 LW d?1 and an HA of 5·0 kg 100 kg?1 LW d?1 without maize grain were assessed. In Experiment 2, soyabean meal was added to control the crude protein concentration in the diet. Two methods were used for intake estimations: pre‐ and post‐feeding herbage mass difference, and the use of the n‐alkane and 13C technique. The latter predicted most accurately the metabolizable energy requirements calculated from live weights and liveweight gain of beef cattle attained in each treatment in both experiments. Increasing HA significantly increased herbage intake and liveweight gain (P < 0·01), and general quadratic relationships between these variables could be fitted across experiments despite differences in animal and pasture characteristics. Increasing the amount of maize grain offered significantly reduced herbage intake and grazing time, but increased liveweight gain and digestibility of the diet. Substitution rate increased with increasing HA in Experiment 1 but was not affected by level of maize supplementation in Experiment 2. These relationships will aid the development of grazing management models for Argentinean conditions.  相似文献   

18.
Plots of five intermediate‐heading varieties of perennial ryegrass (Lolium perenne L.) [AberDove, Belramo and Glen (diploid); Twins (tetraploid); and AberExcel (tetraploid hybrid)] were continuously stocked with sheep to maintain a target sward surface height of 40–50 mm. Daily dry matter (DM) intake was significantly different (F‐value = 0·032) between the varieties, with the tetraploid hybrid AberExcel having the highest values for daily DM intake and intake rate during eating. Amongst the diploid varieties, intake rate tended to be higher for sheep grazing Glen. The varieties comprised a wide range in potential growth habit, from the relatively prostrate, highly tillered Glen to the more‐erect AberExcel and there were differences between them in the vertical distribution of leaves within the sward canopy. The leaves of AberExcel weighed 3·6 mg DM cm?2 leaf area in contrast to the other varieties (4·3–5·3 mg DM cm?2 leaf area) resulting in a high leaf area index (LAI) in relation to the green leaf mass. Intake rate was not significantly correlated with extended tiller and sheath tube lengths, partition of herbage mass, number of tillers per square metre or LAI. However, canonical variates analysis showed that there were significant differences between the varieties for the morphological and chemical factors examined. Other factors also need to be explored to explain these differences in ingestive behaviour in order to identify plant traits that are correlated with herbage intake rate. These are needed for varieties destined for grazing use, both during the breeding programme and their subsequent evaluation.  相似文献   

19.
The nutritive value of pasture is an important determinant of the performance of grazing livestock. Proximal sensing of in situ pasture is a potential technique for rapid prediction of nutritive value. In this study, multispectral radiometry was used to obtain pasture spectral reflectance during different seasons (autumn, spring and summer) in 2009–2010 from commercial farms throughout New Zealand. The analytical data set (n = 420) was analysed to develop season‐specific and combined models for predicting pasture nutritive‐value parameters. The predicted parameters included crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, lignin, lipid, metabolizable energy (ME) and organic matter digestibility (OMD) using a partial least squares regression analysis. The calibration models were tested by internal and external validation. The results suggested that the global models can predict the pasture nutritive value parameters (CP, ADF, NDF, lignin, ME and OMD) with moderate accuracy (0·64 ≤ r2 ≤ 0·70) while ash and lipid are poorly predicted (0·33 ≤ r2 ≤ 0·40). However, the season‐specific models improved the prediction accuracy, in autumn (0·73 ≤ r2 ≤ 0·83) for CP, ADF, NDF and lignin; in spring (0·61 ≤ r2 ≤ 0·78) for CP and ash; in summer (0·77 ≤ r2 ≤ 0·80) for CP and ash, indicating a seasonal impact on spectral response.  相似文献   

20.
Demand for livestock food products is projected to increase dramatically through to 2050. Increased livestock production capacity on marginal lands will be critical to meeting this demand. A 5‐year research effort was undertaken to evaluate lamb and sward productivity within open and hardwood silvopasture (SP) systems in Appalachia, USA. Grazing began in mid to late April each year, with the grazing season averaging 141 d. Grazing system treatments during 2002 and 2003 grazing seasons were as follows: 100% open pasture (OP), 67% OP and 33% SP, and 67% OP and 33% SP with delayed SP grazing initiation (OSD). In 2004, a 100% SP (SP) system was added. Animals were rotationally stocked through either 6 (2002–2004) or 7 (2005–2006) paddocks. Open pasture produced greater (P < 0·001) grazing season herbage yield, while all systems generated similar animal performance. Based on summer solstice, herbage production in spring was greater (P < 0·001) than summer, except in 2003. Total non‐structural carbohydrate (TNC) content was greater (P < 0·05) in spring than in summer, except in 2004. Animal performance was superior in spring versus summer (P < 0·001). Animal plasma urea nitrogen (PUN) was lower (P < 0·05) for OP in 2003. When PUN was correlated with nutritive value indicators, the ratio of TNC to crude protein (CP) had the strongest correlation. The strong correlation indicates the need for synchronized ruminal energy and CP availability. Development of silvopasture from existing woodlots has potential to improve whole farm productivity on marginal lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号