首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
用高温处理的杨木单板与HDPE薄膜制备木塑复合胶合板,考察处理温度对木塑复合胶合板性能的影响,并通过红外光谱、表面接触角等分析其作用机理。结果表明:杨木单板经130~200℃处理后,表面的亲水性降低,与HDPE薄膜界面的相容性改善,有效地提高了木塑复合胶合板的胶合强度和耐水性能;但高温处理导致单板自身强度降低,木塑复合胶合板的静曲强度和弹性模量降低。处理温度为160℃时,木塑复合胶合板的综合性能最佳。  相似文献   

2.
采用SiO2水性分散液浸渍处理的杨木单板,以低密度聚乙烯(LDPE)薄膜为胶黏剂,制备热塑性树脂胶合板,分析其制备工艺因子对板材性能的影响。结果表明:塑料加入量、热压温度、偶联剂种类等因素对热塑性树脂胶合板的性能有非常显著影响,优化工艺条件制备板材的胶合强度可达到GB/T 9846.3-2004中II类胶合板的要求,表面硬度比未处理板材有所提高,游离甲醛释放量更低。  相似文献   

3.
为获得无甲醛释放的环保胶合板,将热塑性树脂薄膜(低密度聚乙烯(LLDPE)、聚丙烯(PP)、聚氯乙烯(PVC))用作胶黏剂,并利用空气介质阻挡等离子体对热塑性树脂薄膜进行表面改性处理以提高薄膜与杨木单板的界面相容性,从而获得性能良好的环保胶合板。研究了等离子体处理对胶合板胶合性能的影响,并从等离子体处理对热塑性树脂薄膜表面化学组分及其对胶合板界面形貌的影响分析其胶合机理。结果表明:在等离子体处理功率为4.5 kW、处理时间为8 m/min的条件下处理热塑性树脂薄膜,胶合板的胶合强度得到显著提高,LLDPE/杨木胶合板的胶合强度从0.49 MPa增至0.81 MPa,PP/杨木胶合板的胶合强度从0.65 MPa提高到0.84 MPa,均达到Ⅱ类胶合板标准要求。其中用等离子体处理后PVC与杨木制备的胶合板能满足Ⅰ类胶合板的标准要求,胶合强度达到0.79 MPa。XPS分析表明,等离子体改性热塑性树脂薄膜的表面发生了氧化反应,引入了含氧官能团,提高了薄膜表面极性,有利于提高薄膜与杨木单板之间的相互作用,从而使得胶合板的界面胶合更为紧密,说明等离子体处理后树脂与杨木单板的相容性提高,树脂能在单板表面更好地附着。热塑性树脂薄膜与杨木单板制备的胶合板仅有极微量甲醛释放,其主要源于木材自身,远低于国家标准对人造板甲醛释放限量的要求。研究证明等离子体处理能明显改善热塑性树脂薄膜与杨木单板的界面相容性。  相似文献   

4.
《林产工业》2021,58(5)
为提高木材与地质聚合物的界面胶合强度,使用KH550、KH560和KH570三种硅烷偶联剂对杨木单板进行涂刷处理,以实验室自制的偏高岭土基地质聚合物为木材胶黏剂,热压制备胶合板,研究硅烷偶联剂处理对杨木单板表面微观形貌和润湿性能、胶接界面化学基团和微观结构、胶合板干态和湿态胶合强度的影响。结果表明:KH550、KH560、KH570偶联剂处理后,木材表面形成的硅烷薄膜层,有利于碱激发剂在木材表面的进一步扩散,平衡接触角分别降低了25.8%、31.8%、14.8%;硅烷偶联剂处理有利于促进地质聚合物在木材内部的渗透,其中偶联剂KH550处理组的地质聚合物在木材中渗透更为均匀;经浓度为10%的KH550处理后,胶合板胶合强度达到最大值,其湿态胶合强度与干态胶合强度分别比未处理材提高了41.5%和47.5%。  相似文献   

5.
改性豆基蛋白胶黏剂的胶合工艺初探   总被引:2,自引:0,他引:2  
以杨木单板为试材研究了改性豆基蛋白胶黏剂的胶合性能,采用单因素实验方法,探讨了改性豆基蛋白胶黏剂压制胶合板的胶合工艺。分析了热压温度、热压时间和涂胶量对三层杨木胶合板胶合性能的影响。结果表明:采用改性后的豆基蛋白胶黏剂,在压力为1.4MPa,温度为165℃左右,热压时间为1.4~1.6 min/mm,涂胶量为220g/m~2,压制的杨木胶合板胶合性能较佳且达到Ⅰ类胶合板的标准。  相似文献   

6.
4A分子筛改性阻燃胶合板的研制   总被引:1,自引:0,他引:1  
用4A分子筛改性脲醛树脂、BL阻燃剂处理杨木单板,通过正交试验设计,制备阻燃胶合板并检测其胶合强度及阻燃性能。结果表明,分子筛可提高阻燃胶合板的胶合强度,分子筛加入胶黏剂中对阻燃胶合板的阻燃性能影响不大。分子筛改性阻燃胶合板制造的优化工艺为阻燃剂浓度10%、分子筛量4%、涂胶量380g/m2、热压温度120℃。  相似文献   

7.
豆胶染色杨木胶合板的工艺及性能   总被引:2,自引:0,他引:2  
研究了豆胶染色杨木胶合板的工艺,并且对其胶合强度和x射线衍射图谱进行分析.实验结果表明:较佳的热压工艺条件为:热压温度160℃,热压压力1.5 MPa,热压时间80 s/mm;用此工艺压制胶合板的胶合强度达到1.50 MPa,表面颜色较好;X射线衍射结果证明了热压后豆胶染色杨木单板的相对结晶度有所提高,达到76.27%.  相似文献   

8.
以大豆蛋白胶和竹柳为原料制备胶合板。分析竹柳的密度、干缩性和大豆蛋白胶在竹柳单板表面的润湿性。采用单因子试验,分析施胶量、热压时间、单板厚度对胶合强度的影响规律。试验结果表明:竹柳的气干密度为0.401g/cm~3,属于低密度材。竹柳的气干差异干缩为2.12,全干差异干缩为1.68。大豆蛋白胶在单板上的接触角总是松面大于紧面,随着单板厚度的增加,接触角逐渐增大。大豆蛋白胶制备竹柳胶合板的最优工艺:施胶量350g/cm~2,热压时间80 s/mm。在此工艺下,使用不同厚度的单板生产的胶合板胶合强度均高于GB/T 9846-2015《普通胶合板》中Ⅱ类胶合板的要求。随着单板厚度的增加,胶合强度呈下降趋势,且大豆蛋白胶制备的胶合板的胶合强度低于UF制备的板材,但两者的力学性能均能达到国标的要求,说明大豆蛋白胶制备胶合板是可行的。SEM图像表明竹柳胶合板的管孔被压缩,但细胞本身并没有被压溃,仍保持着完整性。  相似文献   

9.
采用常压空气介质阻挡放电等离子体对杨木单板表面进行改性处理,利用自制纳米纤维素改性大豆蛋白胶黏剂制备胶合板,研究等离子体处理工艺对杨木单板表面润湿性能和杨木胶合板胶合性能的影响,以期提高胶合板性能、降低施胶量,并从等离子体处理对微观形貌和化学组分两方面的影响分析其机理。试验结果表明:常压等离子体处理后,胶液在单板表面的初始接触角和平衡角相比未处理单板最大分别下降12.4%和46.3%,润湿性能得到明显改善;在达到Ⅱ类胶合板胶合性能的前提下可降低一定的施胶量;改性单板表面粗糙度提高,含氧官能团含量增加,均有利于胶液在单板表面的润湿。综合胶合板性能与经济效益,选择较优处理工艺条件为处理功率4.5 kW、处理速率14 m/min和单面施胶量140 g/m~2。  相似文献   

10.
借鉴木质材料界面液化自胶合的工艺,以杨木单板为原料,碳酸乙烯酯为液化剂,硫酸或甲烷磺酸为催化剂进行胶合板制造工艺的研究.采用正交试验法,探讨催化剂、液化剂以及热压工艺对胶合板胶合强度的影响.试验结果表明:以稀释硫酸作为催化剂,催化剂用量占液化剂的3.5%,液化剂的涂布量(单面)为250 g/m2,热压温度145℃,热压时间2.4 min/mm,热压压力1.2 MPa为较优工艺,胶合强度均值可达到1.46 MPa.  相似文献   

11.
在单板表面喷雾施涂异氰酸酯胶黏剂,热压制备无醛胶合板,比较不同树种的单板材料无醛胶合板的胶合性能,比较施胶后陈放时间对胶合性能的影响。结果表明,单板的材种对无醛胶合板性能有影响,杨木、桦木、尾叶桉这三种阔叶材的无醛胶合板的胶合强度达到了GB/T17657-1999中规定的Ⅰ类胶合板的胶合强度水平,而落叶松和杉木的胶合强度低于这个水平;施胶量为20g/m~2时,放置时间对胶合性能基本没有明显影响。根据试验结果并结合生产实际的成本分析表明,达到Ⅰ类胶合板水平的无醛胶合板的成本较PF板降低了80元/m~3,较UF板的成本增加了约100元/m~3。  相似文献   

12.
浸渍薄木与杨木单板复合制备地板的表板,与基材及背板胶合热压成复合地板。通过正交试验分析,以表面抗裂性、表面硬度和表面耐磨度为依据,得到浸渍薄木与杨木单板复合地板表板的最优工艺为浸渍薄木浸胶量为90%,杨木单板涂胶量为150 g/m~2,热压时间为6 min,热压温度为130℃。复合地板性能指标为:表面耐磨0.060 8 g/100 r,硬度为2.87 kN,没有出现表面龟裂,浸渍剥离合格。  相似文献   

13.
采用正交试验设计方法,研究了杨木单板压缩率、胶液浓度、树脂浸渍时间和热压温度四个因素对杨木胶合板性能的影响。结果表明:杨木单板的压缩与树脂浸渍处理可以显著提高杨木胶合板的力学性能。当杨木单板压缩为35%、胶液浓度90%、树脂浸渍时间2h、热压温度150℃时,杨木胶合板的MOE、MOR和胶合强度分别高出国家标准127%、212%和77%。  相似文献   

14.
分别对杨木单板进行高温加热和硅烷溶液喷淋处理,并与高密度聚乙烯(High Density Polyethylene,HDPE)薄膜胶合制备木塑复合胶合板,利用扫描电镜(SEM)和动态热机械仪(DMA)分析了两种改性方法对木塑复合胶合板抵抗水分子破坏能力的影响。结果表明:3次"湿-冷冻-热"循环对未处理和高温处理材的破坏程度较大,循环处理后胶接结构中存在明显的裂缝及脱落的HDPE碎片。硅烷处理可以显著提高木塑复合胶合板的耐湿循环能力,胶接结构中仅存在少量的裂纹。胶接结构的破坏引起了胶合强度不同程度的降低,未处理、高温处理和硅烷处理材的胶合强度保留率分别为57%,72%和84%。DMA结果表明:水分子的交替作用显著降低了未处理和高温处理材的热稳定性,而对硅烷处理材的影响较小。当环境温度达到200℃时,未处理和高温处理材的胶接界面结构完全破坏,木材单板与塑料薄膜两相完全分离。  相似文献   

15.
采用水性聚酰胺、乙二醛和异腈酸酯对豆粕蛋白粉进行复合改性制备无甲醛木材胶黏剂,并对复合胶黏剂的黏度、接触角和胶合强度进行了研究.结果表明:复合改性可显著降低豆粕基胶黏剂的黏度和接触角,增强胶黏剂在木材表面的润湿性,改善涂布性能.复合改性最佳pH值在大豆蛋白的等电点附近,当复合改性剂添加量为10%水性聚酰胺/4%异腈酸酯、10%水性聚酰胺/2%乙二醛或10%水性聚酰胺/1%乙二醛/1%异腈酸酯时,胶合强度都达到0.7MPa以上,满足国家Ⅱ类胶合板使用要求.  相似文献   

16.
将不同微纳纤丝添加量的三聚氰胺树脂涂饰在杨木单板表面,并以添加微纳纤丝的豆胶作为胶黏剂,制造杨木胶合板,检测微纳纤丝添加量对染色杨木单板表面色牢度、胶合板表面耐磨性能、胶合强度的影响。结果表明:微纳纤丝可明显改善单板表面色牢度及表面耐磨性能;在豆胶中加入微纳纤丝,可提高胶合板的胶合强度。  相似文献   

17.
单板在高温干燥条件下表面会发生钝化,表面活性下降,从而影响胶合性能。利用常压低温等离子体处理高温干燥杨木单板,以改善其表面特性,提高胶合性能。主要研究了等离子体处理功率和处理速率对高温干燥杨木单板表面特性及界面胶合性能的影响。研究结果表明:等离子体处理可明显提高单板表面的润湿性,当处理功率为4.5 k W、处理速率为2 m/min时,脲醛树脂胶和酚醛树脂胶在杨木单板表面的初始接触角和平衡接触角分别降低了18.2%,17.8%和40.4%,38.8%,脲醛树脂和酚醛树脂胶所制胶合板的胶合剪切强度分别增加了56.0%和51.5%。等离子体处理后脲醛树脂在高温干燥杨木单板所制胶合板的胶合界面中的渗透深度明显提高,胶合界面的平均渗透深度和有效渗透深度增幅分别为80.0%和61.9%。等离子体处理后,高温干燥杨木单板表面羰基数量有所增加。  相似文献   

18.
为提高胶合板性能,以苯丙/Si O2作为改性剂,通过物理共混的方法制备了改性脲醛树脂(UF)胶。研究了苯丙/Si O2改性剂添加量和改性UF胶施胶量对胶合板胶合强度和阻燃性能的影响。结果表明:随着改性剂添加量和施胶量的增加,胶合板的胶合强度和阻燃性能提高明显,但过量的改性剂添加量和施胶量会使胶合强度和阻燃性能有所下降,当施胶量为220 g/m2,改性剂添加量为15%时,制备的胶合板性能较佳,胶合强度为1.63 MPa,热释放总量为12.7 MJ/m2,释烟总量为213.79 m2/m2。  相似文献   

19.
采用磷氮硼复合阻燃剂浸渍处理桉木和杨木单板,分别制备5层阻燃胶合板,检测其物理力学性能和阻燃性能.结果表明:阻燃胶合板的胶合强度,均满足GB/T 9846-2004《胶合板》中Ⅱ类要求,抗弯性能满足LY/T 1738-2008《实木复合地板用胶合板》要求;两树种胶合板相比,杨木阻燃胶合板的胶合强度较好,桉木阻燃胶合板的抗弯性能及阻燃性能更优.  相似文献   

20.
杨木胶合板用低毒不脱水脲醛树脂胶   总被引:3,自引:0,他引:3  
为适应短周期工业材-杨木采用低压,快速热压胶合工艺对胶粘剂的特殊要求,通过对树脂合成工艺和杨木单板胶合工艺的一系列试验而研制出低毒,不脱水脲醛树脂胶,试验结果证明使用该胶粘剂压制的新疆杨,1-69杨,I-72杨等杨木胶合板,其胶合强度均符合GB9846-88胶合板国家标准的要求,胶合板游离甲醛释放量视单板树不同分别达到JAS规定的F2级和F3级指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号