首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— This study investigated interactions between zooplanktivores (roach and perch) and piscivorcs (pike and large perch) in experimental ponds (16 m2) with open water habitat and three densities of natural macrophytes. Fish habitat selection was determined both day and night and was supported by daytime observations to study anti-predator behavioural patterns. Diel migration out from among macrophytes was seen in the absence of predators, particularly for roach, which changed from 13% of individuals being in open water during the day to 90% at night. The risk of predation from piscivores influenced the habitat selection of the zooplanktivores. Roach seemed to be the most vulnerable to predation from pike and selected the open water (90-92%) during daylight hours, but kept a 1-m distance from the macrophytes edge. The presence of pike thus reduced the use of macrophytes by roach, which in turn may improve macrophytes and the edge area as a refuge for zooplankton. Pike appeared to have less impact on the gross habitat selection of O+ perch, which were associated with the macrophytes (58–89%), though they were still vulnerable to predation. Adult perch, which was a generally less effective predator than pike, showed subdued behavior, concealing them selves in the macrophytes most of the time. No effect of the simultaneous presence of two predator species was found.  相似文献   

2.
Abstract  – This study investigated the habitat use of 0+ pike (9–17 cm) in relation to two different water transparency regimes (clear water/chlorophyll water), two different light regimes (day/night) and the presence/absence of prey using 16 m2 experimental ponds. Pike could freely choose between two structured habitats (a simple structured and a complex structured), an interface habitat (between the structured habitats and open water) and an open water habitat. Foraging success of the pike in relation to water transparency was investigated by comparing mean condition (Fultons K ) of the pike as well as the number of surviving prey fish. Habitat use was influenced by the presence/absence of prey and varied between waters with different transparency. The presence of prey intensified the use of structural habitats of 0+ pike in both clear and chlorophyll waters. A preference for complex habitats was found in clear water and was presumably related to foraging. The pike in chlorophyll water, in contrast, appeared more evenly distributed among all habitats, as illustrated by a more intensive use of open water in chlorophyll water compared to the clear water. No detectable impact of water transparency on the foraging success of 0+ pike was found.  相似文献   

3.
Sixty‐two years of voluntarily collected angling logbook data from a large natural Danish lake were used to study variation in pike, Esox lucius L., CPUE (catch per unit effort), expressed as no. of captured pike per boat trip, as an index of stock size. Pike CPUE was positively related to pike release rate by anglers and negatively affected by certain commercial fishers. The stocking of young‐of‐the‐year pike and a fishery‐dependent index of perch, Perca fluviatilis L., abundance (which may be pike prey or predator depending on size) did not correlate with pike CPUE. Analyses of the size distribution of pike, based on sizes of annual record trophy pike captured by anglers, confirmed the negative impact of commercial pike fishing and revealed a positive influence of air temperature. It is concluded that high‐quality angler logbooks that record effort and catch can be a cost‐effective tool to inform lake fisheries management by revealing long‐term population trends. Further, state space modelling, a statistical technique not yet seen in recreational fisheries science, is recommended as a tool to model proxies for population dynamics from angler logbook data.  相似文献   

4.
Abstract Predation is an important force structuring aquatic communities, but predator–prey interactions are complex and regulated by multiple factors. Invasive fishes may interact with native fishes to alter predator–prey preferences and community dynamics. For example, common carp, Cyprinus carpio L., is an invasive species that can become abundant and negatively affect aquatic ecosystems. Juvenile common carp are occasionally found in predator diets, but predator preferences for common carp compared with alternative prey remains unknown. Prey selection and feeding behaviour of five piscivores (flathead catfish, Pylodictis olivaris (Rafinesque); largemouth bass, Micropterus salmoides (Lacepède); smallmouth bass, M. dolomieu Lacepède; walleye, Sander vitreus (Mitchill); and northern pike, Esox lucius L.) foraging on juvenile common carp and two alternative prey (fathead minnow, Pimephales promelas Rafinesque, and yellow perch, Perca flavescens Mitchill) at variable densities and habitats were evaluated. Common carp and fathead minnow were generally selected for or neutrally selected across predator species, habitat types and prey assemblages. By contrast, yellow perch was generally selected against. Common carp were easily captured but difficult to manipulate and ingest compared with other prey. These results reveal that common carp are vulnerable to a variety of predators, suggesting control of this detrimental invader may be possible through biomanipulation.  相似文献   

5.
Turbidity can fluctuate rapidly during the early life of fishes, impacting foraging behaviours. For piscivores, turbidity may hinder foraging, whereas planktivores and juvenile fishes may increase foraging activity and decrease antipredator behaviours in moderate levels of turbidity. Black crappie (Pomoxis nigromaculatus) and white crappie (P. annularis) population trends are often related to changes in turbidity. Yet effects of turbidity on juvenile foraging of these species are unknown and may differ between species. To evaluate effects of three turbidity levels (0, 25 and 50 NTU) on juvenile crappie foraging, controlled experiments compared (a) consumption and size selection for a single prey and (b) selection, total consumption and energetic value of diets when offered three distinct prey options. Overall, black crappies exhibited universally greater diet biomass than white crappies. Black crappies displayed higher prey consumption and were more size selective of a single‐prey type, whereas white crappies were less size selective and maintained uniform consumption as turbidity increased. Selection patterns for three prey types were similar among species and turbidity levels, with Chaoborus preferred and Chironomus avoided. However, black crappies also avoided Daphnia, whereas white crappies consumed them neutrally. Overall, turbidity did not impair foraging of juvenile crappies. Turbidity‐driven fluctuations in prey base paired with predator interactions likely also contribute to observed growth and abundance fluctuations in natural systems.  相似文献   

6.
Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (?3 to ?45% change) compared to largemouth bass that experienced subtle changes (4 to ?6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.  相似文献   

7.
Cohorts of perch larvae, hatched within 24 h, developed into a bimodal body size distribution as early as 6 days after commencement of external food uptake. At this development stage, intra-cohort cannibalism occurred among larval perch individuals of larval stage V (body size: 10.5±0.26 mm, 95% c. l.) on smaller siblings. In experimental trials the consumption rate (C: no. of prey/predator·hour) increased exponentially with size of predatory perch (L: mm) and at 21°C was expressed by the relationship log C=3.406·log L-3.848 (n=10, r2=0.98, P<0.001). For predatory perch in larval stage V, consumption rate was reduced when Daphnia pulex were added, while not in later stages. Perch larvae experimentally forced to live as true piscivores without additional food items developed from stage V to stage IX (15.8±1.34 mm) within the same time as those fed on Daphnia alone, but with increased mortality.  相似文献   

8.
Abstract – In natural systems, prey frequently interact with multiple predators and the outcome often cannot be predicted by summing the effects of individual predator species. Multiple predator interactions can create emergent effects for prey, but how those change across environmental gradients is poorly understood. Turbidity is an environmental factor in aquatic systems that may influence multiple predator effects on prey. Interactions between a cruising predator (largemouth bass Micropterus salmoides) and an ambush predator (muskellunge Esox masquinongy) and their combination foraging on a shared prey (bluegill Lepomis macrochirus) were examined across a turbidity gradient. Turbidity modified multiple predator effects on prey. In clear water, combined predators consumed in total more prey than expected from individual predator treatments, suggesting risk enhancement for prey. In moderately turbid water, the predators consumed fewer prey together than expected, suggesting a risk reduction for prey. At high turbidity, there were no apparent emergent effects; however, the cruising predator consumed more prey than the ambush predator, suggesting an advantage for this predator. Understanding multiple predator traits across a gradient of turbidity increases our understanding of how complex natural systems function.  相似文献   

9.
Abstract –  Foraging juvenile fish with relatively high food demands are usually vulnerable to various aquatic and avian predators. To compromise between foraging and antipredator activity, they need exact and reliable information about current predation risk. Among direct predator-induced cues, visual and olfactory signals are considered to be most important. Food intake rates and prey-size selectivity of laboratory-reared, naive young-of-the-year (YOY) perch, Perca fluviatilis , were studied in experiments with Daphnia magna of two size classes: 2.8 and 1.3 mm as prey and northern pike, Esox lucius , as predator. Neither total intake rate nor prey-size selectivity was modified by predator kairomones alone (water from an aquarium with a pike was pumped into the test aquaria) under daylight conditions. Visual presentation of pike reduced total food intake by perch. This effect was significantly more pronounced (synergistic) when visual and olfactory cues were presented simultaneously to foraging perch. Moreover, the combination of cues caused a significant shift in prey-size selection, expressed as a reduced proportion of large prey in the diet. Our observations demonstrate that predator-induced olfactory cues alone are less important modifiers of the feeding behaviour of naive YOY perch than visual cues under daylight conditions. However, pike odour acts as a modulatory stimulus enhancing the effects of visual cues, which trigger an innate response in perch.  相似文献   

10.
Human disturbances such as angling and manual handling may have long‐term effects on the behaviour of pike, Esox lucius L., an ecologically important species. Using continuous high‐resolution positional telemetry, this study compared the swimming activity of handled and unhandled pike in a small lake. Pike pre‐equipped with acoustic transmitters were angled and exposed to a handling protocol including measurements of length and mass. Pike not recaptured constituted an unhandled control group. Results demonstrated that the handling protocol caused temperature‐dependent changes in pike activity, with higher temperatures leading to lower activity of the recaptured pike. The effects, however, were transitory and not detectable after 48‐h post‐release. These findings indicate that pike are relatively resilient to handling and quickly resume pre‐handling activity.  相似文献   

11.
Light intensity has been shown to influence the foraging success of larval fish. However, the effect of light intensity on larval foraging is likely variable and influenced by both the density and characteristics of planktonic prey. In this study we examined the influence of light intensity of 0.1, 2.0, and 60 μmol·s?1·m?2 Photosynthetically Active Radiation (PAR) on foraging of yellow perch (Perca flavescens) larvae at two prey densities. We fed them with a mixture of zooplankton taxa common to lakes inhabited by yellow perch. In addition to light intensity and prey density, the effect of larval yellow perch size was examined by using fish ranging from 9 to 15 mm. The results of our study indicated that yellow perch larvae are well adapted to feed at a wide range of light intensities, as there was no difference in foraging success at investigated light intensities. Increasing prey density from 25 to 150 (zooplankton·l?1) significantly improved the foraging success of larval yellow perch. However, the influence of prey density on foraging success was dependent on fish length. Improved foraging success at increased prey densities occurred only for individuals with a total length >10 mm. Overall, prey selection by fish larvae was influenced by light intensity, prey density, and fish length. However, the factors that influenced selection for specific prey types differed. Our study, combined with evidence from other field and laboratory work, highlight the need for a better understanding of the influence of prey density on foraging throughout ontogeny.  相似文献   

12.
Understanding the forces that drive habitat selection of species in communities is important in both ecology and evolution. In nature, species face variation in competition, predation and physical characters among habitats. Vendace (Coregonus albula (L.)) is a specialised zooplanktivorous fish predominantly using deeper water in lakes during summer, while roach (Rutilus rutilus (L.)) uses mainly the shallow littoral zone as well as the upper layer of the pelagic zone. To understand mechanisms behind habitat use of these species, I first conducted a predation experiment to investigate their sensitivity to predation by perch (Perca fluviatilis L.). Second, I performed a foraging experiment using different temperature and light treatments. I then used metabolic calculations to estimate energetic costs when foraging. I found no difference between species regarding sensitivity to predation. Vendace was the most efficient forager on zooplankton but also swam faster spending more energy compared to roach. Roach had a comparatively high metabolic rate in the lowest temperature, where their foraging efficiency was lowest. The energy gain ratio at 6°C was highest for vendace, while it was lowest for roach. In the highest temperature (18°C) and the lowest light level (1 lux), both species were similar in their energy gain ratio. The relative energy gain ratio provides a mechanism to explain habitat distribution for the two species. An increased understanding of the role of metabolism in combination with biotic interactions and habitat use may help to foresee effects of environmental change for different species.  相似文献   

13.
Northern pike (Esox lucius) are opportunistic predators that can switch to alternative prey species after preferred prey have declined. This trophic adaptability allows invasive pike to have negative effects on aquatic food webs. In Southcentral Alaska, invasive pike are a substantial concern because they have spread to important spawning and rearing habitat for salmonids and are hypothesised to be responsible for recent salmonid declines. We described the relative importance of salmonids and other prey species to pike diets in the Deshka River and Alexander Creek in Southcentral Alaska. Salmonids were once abundant in both rivers, but they are now rare in Alexander Creek. In the Deshka River, we found that juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) dominated pike diets and that small pike consumed more of these salmonids than large pike. In Alexander Creek, pike diets reflected the distribution of spawning salmonids, which decrease with distance upstream. Although salmonids dominated pike diets in the lowest reach of the stream, Arctic lamprey (Lampetra camtschatica) and slimy sculpin (Cottus cognatus) dominated pike diets in the middle and upper reaches. In both rivers, pike density did not influence diet and pike consumed smaller prey items than predicted by their gape‐width. Our data suggest that (1) juvenile salmonids are a dominant prey item for pike, (2) small pike are the primary consumers of juvenile salmonids and (3) pike consume other native fish species when juvenile salmonids are less abundant. Implications of this trophic adaptability are that invasive pike can continue to increase while driving multiple species to low abundance.  相似文献   

14.
To investigate the impact of changing environmental conditions in the North Sea on the distribution and survival of early life stages of a marine fish species, we employed a suite of coupled model components: (i) an Eulerian coupled hydrodynamic/ecosystem (Nutrients, Phyto‐, Zooplankton, Detritus) model to provide both 3‐D fields of hydrographical properties, and spatially and temporally variable prey fields; (ii) a Lagrangian transport model to simulate temporal changes in cohort distribution; and (iii) an individual‐based model (IBM) to depict foraging, growth and survival of fish early life stages. In this application, the IBM was parameterized for sprat (Sprattus sprattus L.) and included non‐feeding (egg and yolk‐sac larval) stages as well as foraging and growth subroutines for feeding (post‐yolk sac) larvae. Sensitivity analyses indicated that the angle of visual acuity, assimilation efficiency and the maximum food consumption rate were the most critical intrinsic model parameters. As an example, we applied this model system for 1990 in the North Sea. Results included not only information concerning the interplay of temperature and prey availability on larval fish survival and growth but also information on mechanisms underlying larval fish aggregation within frontal zones. The good agreement between modelled and in situ estimates of sprat distribution and growth rates in the German Bight suggested that interconnecting these different models provided an expedient tool to scrutinize basic processes in fish population dynamics.  相似文献   

15.
Southern bluefin tuna, Thunnus maccoyii, are cultured in Australia following collection of wild juveniles. Hatchery culture from egg is in the experimental stage. High early mortality has hindered the production of quality juveniles in the hatchery. This study investigated the visual capacity of T. maccoyii during early larval ontogeny in order to describe the best larval rearing conditions to produce high‐quality seed stock. Functional visual ability, determined through behavioural experimentation, identified the effect of light intensity, prey density, turbidity, tank colour and turbulence on the feeding response. Larvae were visually challenged to feed under a range of conditions in short‐duration (4 h) feeding experiments. Feeding performance was measured as the proportion of larvae feeding and the intensity of feeding. First‐feeding performance was positively affected by increasing prey density and lower turbidities and unaffected by light intensity, tank colour, turbulence, prey size and larval density. The key findings from feeding experiments on 6 and 9 dph larvae was that as T. maccoyii aged, lower light intensities and higher prey densities significantly increased feeding performance. In addition, the study has identified that high light intensity and high air‐driven turbulence induced significant mortality. The proficient first‐feeding response indicated that early mortality common in culture is unlikely to be associated with a failure to initiate feeding. Our findings show the use of low light intensity has the potential to significantly improve survival and feeding response during the first two critical weeks of culture, when the major bottleneck in hatchery production is currently experienced.  相似文献   

16.
Abstract– The role of predation risk and structural complexity in determining the habitat use and activity patterns of roach, rudd and perch was assessed using a series of video-recorded laboratory trials. The time spent in open and structured habitats, vertical swimming heights and activity levels of each species were observed in the presence and absence of a potential, pike, predator. Habitat complexity varied between treatments with artificial stem densities of 200, 400 and 600 stems'm−2. Predator free trials showed that roach and rudd spent significantly less time in structured habitats than perch. Increasing stem density had no significant effect on the habitat choice of perch but did affect the distribution of roach and rudd. Stem density influenced the vertical swimming height of rudd or perch but not roach, although the effects of habitat complexity on swimming activity were more complicated. Pike were themselves influenced by increases in stem density, only selecting structured habitats when stem densities were less than 600 stems'm−2. In the presence of a predator, both roach and rudd increased the amount of time spent in structured areas. These observed differences were independent of stem density. Perch, however, decreased the amount of time spent in structural habitats at all stem densities. Predation risk also prompted significant changes in both vertical swimming height and activity levels of potential prey fish. A pike predation success hierarchy of rudd-roach-perch was also observed during the study. The reasons for this pattern are discussed.  相似文献   

17.
Abstract – Cold water temperatures are widely supposed to reduce the food intake of stream salmonids. Although cold temperatures have been documented to reduce swimming ability, digestion and gastric evacuation rates, little is known about how temperature influences the ability of fish to capture prey. We examined the effects of water temperature on the prey capture probability of drift‐feeding juvenile brown trout (Salmo trutta) in a laboratory stream. Temperatures ranged between 5.7 °C and 14 °C. We found significant effects of water temperature on prey capture probability and capture manoeuvre time. The mean capture probability dropped from 96% at 14 °C to 53% at 5.7 °C. At 8 °C and higher temperatures, foraging performances did not differ much among treatments. We suggest that reduced swimming ability could be one of the most important mechanisms for the observed pattern of reduced prey capture probability at cold water temperatures, but prey detection limitations and predator avoidance may play a role. Our results will be of use for bioenergetics‐based drift‐foraging models, which to date have not incorporated a temperature‐dependent prey capture function.  相似文献   

18.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

19.
Abstract –  The effect of pike Esox lucius predation on the mortality of newly stocked Atlantic salmon Salmo salar smolts was investigated in the Pyhäjoki River, Finland. The number of smolts eaten by pike was assessed by estimating the size of the pike population (mark–recapture experiment) and studying the stomach contents of pike. Before recapturing the pike, approximately 39,700 smolts were stocked upstream of the 2.5-km-long (89-ha) research area. The estimated size of the >40-cm pike population was 1507 (95% CL 1012–4731) individuals (17 pike and 29.8 kg·ha−1). Pike were estimated to eat 29% of the released smolts during 1 week. The diet of the pike in the research area consisted almost entirely of smolts, whereas in the reference area with no stocked smolts, the meal sizes were significantly smaller and the importance of smolts as prey was substantially lower. Pike <40 cm had not eaten any smolts, probably indicating a size refuge for the smolts, or alternatively fear of intraspecific interactions or cannibalism of pike.  相似文献   

20.
Northern pike, Esox lucius, needs different habitats to survive and reproduce and thus depends on the availability and accessibility of these habitats. To efficiently manage pike, information is needed on its spatial and temporal patterns of migration. In this study, we investigated the occurrence of adult pike migration and which environmental variables influenced migration. From December 2010, we followed 15 pike for 1 year by use of radio telemetry in the River Yser, a typical lowland river characterised by anthropogenic impacts such as artificial embankments. Pike migrated most in February and March, which could indicate they frequented spawning habitat in this period. Four environmental variables significantly affected pike migration, ranging from the location where pike were observed (strongest effect), over water temperature and flow to diel water temperature change (weakest effect). The relation between migration and the location where pike were observed could demonstrate that pike preferred specific regions in the river. Increasing water temperature triggered migration for both sexes, and males started migrating at lower temperatures than females, which suggests that males start migrating earlier. This was the only substantial difference observed between male and female pike migration. The results suggest that migration was inhibited by high flow, as no migration was observed at high flow. River managers can use this information to efficiently manage their pike populations, for example, by removing or temporarily opening hydraulic structures like valves, weirs and sluices. This may facilitate access to suitable habitats at moments pike needs these habitats to fulfil its life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号