首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Both drought and root pruning (RP) increased the number of cones induced when black spruce (Picea mariana (Mill.) B.S.P.) grafts were injected with gibberellins A(4/7) (GA), but their effects on predawn shoot water potential and current-year needle development differed. Drought decreased predawn shoot water potential (Psi(pd)), but only during the period when irrigation was withheld, and it had no effect on the growth or gas exchange properties of current-year needles. Conversely, root pruning had little effect on Psi(pd), but it resulted in trees with smaller current-year needles that had lower nitrogen and chlorophyll concentrations and reduced rates of gas exchange up to the later stages of shoot elongation compared with needles of control trees. These findings are discussed in relation to potential effects on the development of induced cones in the following growth cycle.  相似文献   

2.
A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.  相似文献   

3.
Differences between rootstocks, 'Cleopatra' mandarin and 'Carrizo' citrange, in soil-plant water relations and the influence of these factors on vigor, crop yield, fruit quality and mineral nutrition were evaluated in field-grown Clemenules mandarin trees irrigated at 100% of potential seasonal evaporation (ET(c)) (control treatment), or irrigated at 100% ET(c), except during Phases I and III of fruit growth and post-harvest when no irrigation was applied (deficit irrigation (DI) treatment), for 3 years. Differences between rootstocks in plant-soil water relations were the primary cause of differences among trees in vegetative development and fruit yield. After 3 years of DI treatment, trees on 'Cleopatra' showed more efficient soil water extraction than trees on 'Carrizo', and maintained a higher plant water status, a higher gas exchange rate during periods of water stress and achieved faster recovery in gas exchange following irrigation after water stress. The DI treatment reduced vegetative development more in trees on 'Carrizo' than in trees on 'Cleopatra'. Cumulative fruit yield decreased more in DI trees on 'Carrizo' (40%) than on 'Cleopatra' (27%). The yield component most affected by DI in 'Cleopatra' was the number of fruit, whereas in 'Carrizo' it depended on the severity of water stress reached in each phase (severe water stress in Phase I affected mainly the number of fruit, whereas it affected fruit size the most in Phase III). In the third year of DI treatment, water-use efficiency decreased sharply in trees on 'Carrizo' (70%) compared to trees on 'Cleopatra' (30%). Thus, trees on 'Cleopatra' were able to tolerate moderate water stress, whereas trees on 'Carrizo' were more sensitive to changes in soil water content.  相似文献   

4.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

5.
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.  相似文献   

6.
In nut tree orchards in California, irrigation is typically withheld during the harvest period to reduce the likelihood of bark damage during mechanical shaking of the trees. The ensuing water stress, however, may result in premature defoliation and subsequent yield declines. Our objective was to establish and quantify the water stress resulting from irrigation deprivation and determine its impact on leaf function and persistence in mature almond trees (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) during a 3-year field experiment. The severity of the water stress was characterized by measurements of predawn leaf (Psi(pd)) and midday stem (Psi(ms)) water potentials, stomatal conductance (gs), net CO2 assimilation rate (A) and leaf abscission. During 1995, Psi(ms) of fully irrigated (FI) trees was maintained above -1.0 MPa. In trees in the moderate- (MS) and severe-stress (SS) treatments, Psi(ms) was reduced to -1.4 to -2.0 MPa and -2.0 to -2.6 MPa, respectively. After 18 days of irrigation deprivation, A was reduced by 32 and 58% at midday and early afternoon, respectively, compared with morning values. A significant decrease in morning values of A only occurred after 30 days of irrigation deprivation. Water-use efficiency and A declined as evaporative demand increased from morning to afternoon. Assimilation also declined seasonally as leaves aged. Midday stem water potential was highly correlated with A, but less so with gs. The coefficient of determination between Psi(ms) and gs improved considerably when vapor pressure deficit and wind were multiply regressed with Psi(ms). Although A recovered rapidly when MS trees were irrigated, recovery in SS trees was slower and incomplete. Integrating the MS and SS effects for an extended period during 1995 resulted in 14 and 30% declines in A, and 6 and 20% declines in gs, respectively. The apparent Psi(ms) threshold for leaf abscission was -1.8 MPa. Daily canopy light interception declined with decreasing Psi(ms) as a result of premature defoliation (and perhaps altered leaf angles) from 67.9% in FI trees to 61.4 and 60.7% in MS and SS trees, respectively.  相似文献   

7.
We compared seasonal changes in maximum diurnal trunk shrinkage (MDS) with seasonal changes in midday stem water potential (Psi(s)) over three years in plum trees grown in differing drip-irrigated regimes. In well-irrigated trees, day-to-day variations in Psi(s) and MDS were related to evaporative demand. Reference equations were obtained to predict MDS and Psi(s) values for well-irrigated trees as functions of environmental conditions. A decrease in plant water status toward the end of the growing season occurred even in the well-irrigated trees, probably reflecting a reduced volume of soil wetted by the drip irrigation system. Thus, for the prediction of Psi(s), different reference equations are required for the fruit-growth and after-harvest phenological periods. A seasonal change in the relationship between MDS and Psi(s) was observed, which compensated for the decrease in plant water status such that well-irrigated trees had similar MDS values during both the fruit-growth and after-harvest periods. The influence of tree size on the relationship between MDS and Psi(s) was also investigated. For tree trunk diameters ranging between 8 and 13 cm, MDS increased 13% for each cm of increase in trunk diameter, as a result of the thicker phloem tissues of the larger trees. This finding may allow extrapolation of Psi(s) predictions based on empirical relationships with MDS to plum trees of different sizes.  相似文献   

8.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

9.
Effects of needle water potential (Psi(l)) on gas exchange of Scots pine (Pinus sylvestris L.) grown for 4 years in open-top chambers with elevated temperature (ET), elevated CO(2) (EC) or a combination of elevated temperature and CO(2) (EC + ET) were examined at a high photon flux density (PPFD), saturated leaf to air water vapor pressure deficit (VPD) and optimal temperature (T). We used the Farquhar model of photosynthesis to estimate the separate effects of Psi(l) and the treatments on maximum carboxylation efficiency (V(c,max)), ribulose-1,5-bisphosphate regeneration capacity (J), rate of respiration in the light (R(d)), intercellular partial pressure of CO(2) (C(i)) and stomatal conductance (G(s)). Depression of CO(2) assimilation rate at low Psi(l) was the result of both stomatal and non-stomatal limitations on photosynthetic processes; however, stomatal limitations dominated during short-term water stress (Psi(l) < -1.2 MPa), whereas non-stomatal limitations dominated during severe water stress. Among the nonstomatal components, the decrease in J contributed more to the decline in photosynthesis than the decrease in V(c,max). Long-term elevation of CO(2) and temperature led to differences in the maximum values of the parameters, the threshold values of Psi(l) and the sensitivity of the parameters to decreasing Psi(l). The CO(2) treatment decreased the maximum values of V(c,max), J and R(d) but significantly increased the sensitivity of V(c,max), J and R(d) to decreasing Psi(l) (P < 0.05). The effects of the ET and EC + ET treatments on V(c,max), J and R(d) were opposite to the effects of the EC treatment on these parameters. The values of G(s), which were measured simultaneously with maximum net rate of assimilation (A(max)), declined in a curvilinear fashion as Psi(l) decreased. Both the EC + ET and ET treatments significantly decreased the sensitivity of G(s) to decreasing Psi(l). We conclude that, in the future, acclimation to increased atmospheric CO(2) and temperature could increase the tolerance of Scots pine to water stress.  相似文献   

10.
Effect of irrigation deprivation during the harvest period on the nonstructural carbohydrate (NC) content of dormant, mature, field-grown almond (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) trees was studied. Roots, trunk, branches, spurs and stems of 12 trees were subsampled in February 1997, across a gradient of irrigation treatments (FI = fully irrigated, MS = moderately stressed and SS = severely stressed) to relate NC concentration to the degree of water stress experienced by individual trees during the previous (1996) harvest period. To assess the effect of water stress on whole-tree NC content, three dormant FI trees and three dormant SS trees were excavated on December 10, 1997, and dry weights and NC and N concentrations of the tree components were determined. Whole-tree biomass did not differ significantly between FI and SS trees, although SS trees tended to have less total dry weight. Although roots constituted just 13% of tree biomass, they stored 36 and 44% of tree NC and N contents, respectively. There were negative relationships between the seasonal minimum values of both midday (Psi(ms)) and predawn (Psi(pd)) stem water potentials during the harvest period and root NC content of dormant trees. Severe water stress during the harvest period resulted in a 26% reduction in NC content and a 50% reduction in biomass of current-year stems (> 5 cm in length) per tree. The reduction in NC content is consistent with the previously reported late season reductions in leaf function and persistence. The SS trees exhibited a reduction in NC content but not in N content per tree, indicating that late season accumulation of NC and N were uncoupled in trees subjected to severe harvest-period water stress.  相似文献   

11.
Leaf gas exchange, water relations and osmotic adjustment were studied in hydroponically grown Phillyrea latifolia L. plants exposed to 5 weeks of salinity stress (0, 80, 160, 240 and 320 mM NaCl) followed by 5 weeks of treatment with half-strength Hoagland solution. Whole-plant relative growth rate and root/shoot and lateral/structural root ratios were also evaluated. Net CO2 assimilation rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Growth was also strongly depressed by all salt treatments, especially lateral root growth. Leaf water potential decreased soon after salinity stress was imposed, whereas there was a lag of several weeks before leaf osmotic potential decreased in response to the salt treatments. After 5 weeks of salinization, leaf turgor of salt-treated plants was similar to that of controls. Although Na+ + Cl- contributed little to the salt-induced changes in osmotic potential at full turgor (Psi(piFT)), the contributions of K+, mannitol (Man) and glucose (Glc) to Psi(piFT) markedly increased as external salinity increased. Salt accumulation was negligible in the youngest leaves, which mostly accumulated soluble carbohydrates and K+; in contrast, old leaves served as storage sinks for Na+ and Cl-. Photosynthetic performance of salt-treated plants fully recovered once salt was leached from the root zone, with the recovery rate depending on the severity of the salt stress previously experienced by the plants. Recovery of gas exchange occurred even though the leaves still had a salt load similar to that detected in leaves at the end of the 5-week salinity period, and had markedly lower concentrations of K+ and soluble carbohydrates than control leaves. We conclude that salt-induced water stress primarily controlled gas exchange of salt-treated P. latifolia leaves, whereas the salt load in the leaves did not cause irreversible damage to the photosynthetic apparatus.  相似文献   

12.
Marsal J  Girona J 《Tree physiology》1997,17(5):327-333
Effects of water deficits on leaf turgor maintenance processes were analyzed for pear trees (Pyrus communis L. cv. "Barlett") grown in 120-liter containers. Four irrigation treatments were applied: a well-watered control treatment, a spring water stress cycle (Sp), a summer water stress cycle (Su), and a spring plus summer water stress cycle (Sp + Su). For the Sp treatment, water application was progressively reduced from 100 to 20% of the control dose over a period of 27 days in spring. For the Su treatment, water application was progressively reduced over 23 days in summer, from 100 to 20% of the control dose. The Sp + Su treatment comprised both the spring and summer drought stress cycles. Pressure-volume (P-V) curves were constructed and stomatal conductances were determined for pear leaves from each treatment during the spring and summer stress cycles. Leaf water potential (Psi(pi) (0)) and relative water content (R(0)) at the turgor loss point of control leaves tended to decrease from spring to summer. Changes in leaf osmotic water potential at full turgor (Psi(pi) (100)) and in symplast water fraction (R(s)) did not explain the seasonal decrease in Psi(pi) (0). The water stress treatments had no effect on Psi(pi) (100), but R(s) was reduced by the water stress treatments, particularly during the summer stress cycle of the Su and Sp + Su treatments. The decrease in R(s) was correlated with an increase in the slope of the linear region of the P-V curve. Such a coupled adjustment would lead to increased water uptake capacity of water-stressed trees only under non-turgor conditions. Furthermore, pear leaves did not actively accumulate solutes. We conclude, therefore, that changes in leaf tissue water relations as a result of leaf acclimation to water stress are unlikely to facilitate maintenance of fruit productivity under drought.  相似文献   

13.
Crop load affects maximum daily trunk shrinkage of plum trees   总被引:1,自引:0,他引:1  
We studied the effects of low fruit load (3-4 fruits cm(-2) of trunk cross-sectional area (TCSA), and high fruit load (6-7 fruits cm(-2) TCSA) on maximum daily trunk shrinkage (MDS) and trunk growth rates (TGR) over two seasons in plum (Prunus salicina Lindell) trees receiving full irrigation or deficit irrigation. Seasonal changes in MDS and TGR were compared with those in midday stem water potential (Psi(s)) and leaf stomatal conductance (g (s)). Crop load increased g (s) in fully irrigated trees approaching harvest. Although crop load did not affect plant water status in either watering regime, there were considerable differences in both MDS and TGR as a function of crop load. Compared with low-cropping [corrected] trees, MDS was 34% higher and TGR was 48% lower in high-cropping [corrected] trees. The differential responses of MDS and Psi(s) to crop load were a consequence of a higher MDS for a given Psi(s) in the high-cropping trees compared with the low-cropping trees. There was a linear increase in MDS with crop load, with a slope of 15.2 microm MPa(-1) per unit increment of crop load. In the fully irrigated trees, day-to-day variations in MDS were related to evaporative demand; however, the slope of the relationship between MDS and evaporative demand increased with crop load, indicating that different reference equations must be used to adjust for tree crop load when using MDS to determine plant water status and irrigation requirements.  相似文献   

14.
One-year-old rooted cuttings of olive (Olea europaea L. cvs. Frantoio and Leccino) were grown either hydroponically or in soil in a greenhouse. Plants were exposed to NaCl treatments (0, 100, and 200 mM) for 35 days, followed by 30 to 34 days of relief from salt stress to determine whether previously demonstrated genotypic differences in tolerance to salinity were related to water relations parameters. Exposure to high salt concentrations resulted in reductions in predawn water potential (Psi(w)), osmotic potential at full turgor (Psi(piFT)), osmotic potential at turgor loss point (Psi(piTLP)), and relative water content (RWC) in both cultivars, regardless of the growth substrate. Leaf Psi(w) and RWC returned to values similar to those of controls by the end of the relief period. The effect of salinity on Psi(pi) appeared earlier in Leccino than in Frantoio. Values for Psi(piFT) were -2.50, -2.87, and -3.16 MPa for the 0, 100, and 200 mM salt-treated Frantoio plants, respectively, and -2.23, -2.87, and -3.37 MPa for the corresponding Leccino plants. Recovery of Psi(pi) was complete for plants in the 100 mM salt treatment, but not for plants in the 200 mM salt treatment, which maintained an increased pressure potential (Psi(pi)) compared to control plants. Net solute accumulation was higher in Leccino, the salt-sensitive cultivar, than in Frantoio. In controls of both cultivars, cations contributed 39.9 to 42.0% of the total Psi(piFT), mannitol and glucose contributed 27.1 to 30.8%, and other soluble carbohydrates contributed 3.1 to 3.6%. The osmotic contribution of Na(+) increased from 0.1-2.1% for non-treated plants to 8.6-15.5% and 15.6-20.0% for the 100 mM and 200 mM salt-treated plants, respectively. The mannitol contribution to Psi(piFT) reached a maximum of 9.1% at the end of the salinization period. We conclude that differences between the two cultivars in leaf water relations reflect differences in the exclusion capacities for Na(+) and Cl(-) ions.  相似文献   

15.
Many evergreen mahogany (Swietenia macrophylla King) trees in the seasonally dry Bajo Paragua forest in northeast Bolivia carry substantial liana loads. Evergreen lianas may impede the growth of their host trees in various ways, including competition for water. Hypotheses tested were that water relations status differs (a) between lianas and their host trees, and (b) between trees infested with lianas that were cut 3.5 months previously (treated trees) and control trees with intact lianas. Diurnal measurements of stomatal conductance (g(s)) and leaf water potential (Psi) were made on canopy leaves of treated and control trees and lianas at the start and end of the dry season. Lianas had higher (less negative) Psi values (mean and predawn) and higher diurnal g(s) (expressed as mean or sum of diurnal values) than mahogany trees, indicating that lianas had a higher demand for, and ability to obtain, water than their host trees. Control and treated trees had a similar water relations status, suggesting that removal of lianas had no effect on the water relations of the trees, even at the end of the dry season. We conclude that either both life forms have conservative water relations that were unaffected by water availability in our study, or that the trees and lianas have access to sufficient and different sources of water because of differences in their rooting depths. Our data are consistent with studies of temperate species, indicating that lianas do not interfere with water availability to their host trees.  相似文献   

16.
We studied variations in water relations and drought response in five Himalayan tree species (Schima wallichii (DC.) Korth. (chilaune) and Castanopsis indica (Roxb.) Miq. (dhale katus) at an elevation of 1400 m, Quercus lanata Smith (banjh) and Rhododendron arboreum Smith (lali gurans) at 2020 m, and Quercus semecarpifolia Smith (khasru) at 2130 m) at Phulchowki Hill, Kathmandu, Nepal. Soil water potential at 15 (Psi(s15)) and 30 cm (Psi(s30)) depths, tree water potential at predawn (Psi(pd)) and midday (Psi(md)), and leaf conductance during the morning (g(wAM)) and afternoon (g(wPM)) were observed from December 1998 to April 2001, except during the monsoon months. There was significant variation among sites, species and months in Psi(pd), Psi(md), g(wAM) and g(wPM), and among months for all species for Psi(s15). Mean Psi(pd) and Psi(md) were lowest in Q. semecarpifolia (-0.40 and -1.18 MPa, respectively) and highest in S. wallichii (-0.20 and -0.63 MPa, respectively). The minimum Psi value for all species (-0.70 to -1.79 MPa) was observed in March 1999, after 4 months of unusually low rainfall. Some patterns of Psi(pd) were related to phenology and leaf damage. During leafing, Psi(pd) often increased. Mean g(wAM) and g(wPM) were highest in Q. semecarpifolia (172 and 190 mmol m(-2) s(-1), respectively) and lowest in C. indica (78 and 74 mmol m(-2) s(-1), respectively). Soil water potential (Psi) at 15 cm depth correlated with plant Psi in all species, but rarely with g(wAM) and not with g(wPM). Plant Psi declined with increasing elevation, whereas g(w) increased. As Psi(pd) declined, so did maximal g(w), but overall, g(w) was correlated with Psi(pd) only for R. arboreum. Schima wallichii maintained high Psi, with low stomatal conductance, as did Castanopsis indica, except that C. indica had low Psi during dry months. Rhododendron arboreum maintained high Psi(pd) and g(w), despite low soil Psi. Quercus lanata had low g(w) and low Psi(pd) in some months, but showed no correlation between tree Psi and g(w). Quercus semecarpifolia, which grows at the highest elevation, had low soil and plant Psi and high g(w).  相似文献   

17.
We compared leaf gas exchange and water potential among the dominant tree species and major size classes of trees in an upland, pine-oak forest in northern Arizona. The study included old-growth Gambel oak (Quercus gambelii Nutt.), and sapling, pole, and old-growth ponderosa pines (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Old-growth oak had higher predawn leaf water potential (Psi(leaf)) than old-growth pine, indicating greater avoidance of soil water stress by oak. Old-growth oak had higher stomatal conductance (G(w)), net photosynthetic rate (P(n)), and leaf nitrogen concentration, and lower daytime Psi(leaf) than old-growth pine. Stomatal closure started at a daytime Psi(leaf) of about -1.9 MPa for pine, whereas old-growth oak showed no obvious reduction in G(w) at Psi(leaf) values greater than -2.5 MPa. In ponderosa pine, P(n) and G(w) were highly sensitive to seasonal and diurnal variations in vapor pressure deficit (VPD), with similar sensitivity for sapling, pole, and old-growth trees. In contrast, P(n) and G(w) were less sensitive to VPD in Gambel oak than in ponderosa pine, suggesting greater tolerance of oak to atmospheric water stress. Compared with sapling pine, old-growth pine had lower morning and afternoon P(n) and G(w), predawn Psi(leaf), daytime Psi(leaf), and soil-to-leaf hydraulic conductance (K(l)), and higher foliar nitrogen concentration. Pole pine values were intermediate between sapling and old-growth pine values for morning G(w) and daytime Psi(leaf), similar to sapling pine for predawn Psi(leaf), and similar to old-growth pine for morning and afternoon P(n), afternoon G(w), K(l), and foliar nitrogen concentration. For the pines, low predawn Psi(leaf), daytime Psi(leaf), and K(l) were associated with low P(n) and G(w). Our data suggest that hydraulic limitations are important in reducing P(n) in old-growth ponderosa pine in northern Arizona, and indicate greater avoidance of soil water stress and greater tolerance of atmospheric water stress by old-growth Gambel oak than by old-growth ponderosa pine.  相似文献   

18.
Photosynthetic response to water stress was analyzed in 1-year-old interior spruce (Picea glauca (Moench) Voss x P. engelmanni Parry hybrid complex) seedlings and emblings produced from somatic embryogenesis. Carbon dioxide uptake, oxygen evolution and chlorophyll fluorescence at 20 degrees C were monitored as predawn shoot water potential (Psi) decreased. Concurrently with stomatal closure, carbon assimilation declined rapidly as Psi decreased to -1.0 MPa. Oxygen evolution at 10,000 micro l CO(2) l(-1) declined continuously as Psi decreased to -1.6 MPa. At photon flux densities (PFD) above 50 micro mol m(-2) s(-1), photochemical efficiency of photosystem (PS) II observed during actinic light exposure (Phi(II), calculated as DeltaF/F(m)') decreased as Psi decreased. At the same PFDs, photochemical quenching (q(P)) declined with decreasing Psi and nonphotochemical quenching (q(N)) increased steadily. At PFDs below 50 micro mol m(-2) s(-1), major decreases in q(N) were not observed until Psi decreased below -1.6 MPa. We identified three phases of photosynthetic response to progressive water stress in interior spruce: a pronounced decline in gas exchange, subsequent photoprotective changes in chlorophyll fluorescence as primary photochemistry was down-regulated, and a decline in photochemical efficiency of dark-adapted needles.  相似文献   

19.
Quercus douglasii Hook. & Arn. (blue oak) is a deciduous white oak that is currently failing to regenerate throughout much of its range in California, USA. Patterns of water use were observed in adult trees, saplings and seedlings to determine if ontogenetic changes in water use occur, which might be important in the establishment of this long-lived perennial species in a Mediterranean-type system. Seasonal and diurnal stomatal conductance (g(s)), late-season predawn xylem water potentials (Psi(pre)), carbon isotopic ratio (delta(13)C) and soil water status were compared among the three size classes at three sites differing in mean precipitation and soil water characteristics. Comparisons were also made between microsites with and without regeneration (defined by the presence or absence of saplings). Overall patterns of water use were consistent among the three sites, except that, at the site with the highest rainfall, Q. douglasii plants had higher g(s) and more positive Psi(pre) values. Although no differences in water use patterns were found between regeneration and non-regeneration microsites, the observed ontogenetic differences in water use may have important implications for Q. douglasii establishment. Compared with adult trees and saplings, seedlings had higher gas exchange rates during periods of high soil water content (early in the season and in the morning). Seedling g(s) was correlated with percent extractable soil water (ESW) throughout the season; adult tree and sapling g(s) was correlated with ESW between June and September. Despite experiencing greater water stress (indicated by more negative Psi(pre) values) than older trees, seedlings had more negative delta(13)C values, implying lower water-use efficiencies.  相似文献   

20.
We determined how ecophysiological characteristics of two juniper species, Juniperus occidentalis Hook. (western juniper) and Juniperus osteosperma (Torr.) Little (Utah juniper), changed along altitudinal and regional environmental gradients in the Great Basin of western North America. We obtained diurnal measurements of leaf gas exchange and xylem water potential (Psi) from plants at a low and a high altitude site within each of six mountain ranges during fall 1994, spring, summer, and fall 1995, and summer 1996. We also determined carbon isotope composition (delta(13)C) of leaf cellulose produced during the 1995 growing season. Overall, leaf gas exchange, Psi and delta(13)C did not differ significantly between species. Differences in daily (A(d)) and season-long (A(s)) carbon assimilation among mountain ranges suggested two groupings-a group of northern ranges and a group of southern ranges. Each group contained one mountain range with J. occidentalis and two with J. osteosperma. Differences in carbon assimilation based on this grouping were associated with two findings: (1) conductance of CO(2) from substomatal cavities to the site of carboxylation (g(m)) for junipers in the northern ranges averaged almost twice that of junipers in the southern ranges; and (2) physiological shifts occurred such that A(d) of junipers in the northern ranges was influenced more by Psi(pd), whereas A(d) of junipers in the southern ranges was influenced more by leaf temperature. Mean delta(13)C over all trees at a site was significantly correlated with annual precipitation. Significant differences in A(d) occurred between altitudes, but these differences were associated with differences in the timing of optimum leaf temperature for photosynthesis rather than with physiological acclimation to temperature, irradiance, or Psi. Most gas exchange parameters (e.g., assimilation, transpiration, stomatal conductance, and water use efficiency) varied seasonally, and the seasonal differences were strongly influenced by water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号