首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于β-内酰胺类药物的广泛应用,在临床上出现了许多产生β-内酰胺酶的耐药菌株。为了消除细菌的耐药性和防止新的耐药菌株的出现,在80年代就开发出了β-内酰胺酶抑制药物,与β-内酰胺类药物联合应用。如90年代上市的他唑西林(tazocillin)、阿莫维酸钾胶囊等制剂就是β-内酰胺类药物和β-内酰胺酶抑制剂的复合制剂,临床应用效果很好。克拉维酸(clavulanicacid),又名棒酸,是由克拉维链霉菌分离到的一种β-内酰胺酶抑制剂。其本身的抑菌作用非常微弱,临床上主要用作β-内酰胺酶的抑制剂与β-内酰胺酶类药物联合应用。…  相似文献   

2.
阿莫西林(Amoxicillin),是一种最常用的青霉素类广谱β-内酰胺类抗生素.阿莫西林对β-内酰胺酶不稳定,克拉维酸为不可逆性β-内酰胺酶抑制剂,与阿莫西林联合,可保护阿莫西林免遭β-内酰胺酶水解,并使阿莫西林的抗菌作用显著增强和抗菌谱拓宽.阿莫西林-克拉维酸的复方制剂已在临床上广泛应用[1].本试验以猪为研究对象,用高效液相色谱法测定猪血浆中AMO和CLA的含量,旨在为兽医临床合理用药提供理论依据.  相似文献   

3.
β-内酰胺类药物与β-内酰胺酶抑制剂配伍常获得协同作用。使青霉素类和头孢菌素类的最低抑菌浓度(MIC)明显下降,药物增效几倍至十几倍,并可使产酶菌株对药物恢复敏感。常见的如将克拉维酸与氨苄西林合用,阿莫西林和苏巴坦钠。使后者的最低抑菌浓度成倍下降。临床上常用药物还有氨苄西林钠+舒巴坦钠、阿莫西林+克拉维酸钾、氨苄西林+舒巴坦甲苯磺酸盐。  相似文献   

4.
克拉维酸是一种β-内酰胺酶抑制剂,与阿莫西林同时应用时使得通过产生β-内酰胺酶对阿莫西林耐药的大多数细菌重新成为敏感菌。对来源于鸡、猪的共31株致病性大肠埃希氏菌最小抑菌浓度(MIC)测定表明,70%以上菌株对阿莫西林耐药;克拉维酸与阿莫西林联合使用使MIC显著下降;与单一使用阿莫西林相比,头孢氨苄青霉素对大多数分离菌的MIC较低。  相似文献   

5.
β-内酰胺酶抑制剂(Beta—lactamase inhibitors,BLI)作为当前抗生素领域发展的新趋势而特别引人注目。他唑巴坦是继克拉维酸、舒巴坦之后,抑酶作用优于克拉维酸、舒巴坦钠的又一β-内酰胺酶抑制剂,既能增强抗生素的抗菌活性,又可以扩大抗菌谱,减少不良反应,在临床具有广泛的应用前景。为指导临床合理用药,延缓细菌耐药性的产生,控制耐药菌株的播散和流行,  相似文献   

6.
随着抗菌药物在畜牧业及临床上广泛及不合理的使用,耐药菌株不断出现,革兰阴性菌临床分离株的耐药率大幅上升。菌株的耐药种类很多,近年来最受关注的是耐β-内酰胺类药物的菌株,其对β-内酰胺类药物的耐药机制日趋复杂,其中最主要原因是菌株产生可以特异性水解抗生素的β-内酰胺酶。目前国内外有关奶牛生鲜乳中分离出的肠杆菌耐药性研究越来越受到关注。论文对国内外患乳房炎奶牛的乳中产β-内酰胺酶菌的产酶类型、耐药表型和耐药基因型进行综述,以期为奶牛疾病治疗及生鲜乳中兽药残留安全防控提供参考。  相似文献   

7.
β-内酰胺酶抑制剂舒巴坦的研究进展   总被引:5,自引:0,他引:5  
β-内酰胺类抗生素通过共价键与细菌细胞壁合成有关的青霉素结合蛋白(PBPs)而抑制细菌细胞壁的合成,选择性好,是很重要的一类抗感染药物[1].但近年来,耐药菌株的产生,使其疗效大大下降.β-内酰胺酶的产生是细菌对该类抗生素产生耐药的主要机制,对于细菌因产生β-内酰胺酶而引起的耐药性已成为临床治疗中的严重问题[2,3].在对待产酶耐药菌的感染时,使用β-内酰胺酶抑制剂,将其与β-内酰胺类抗生素结合,保持甚至加强β-内酰胺类抗生素的抗菌活性,不失为一快捷、有效的方法[4].  相似文献   

8.
(续上期 )4 准确控制药物剂量 ,避免产生抗药性细菌在与抗菌素接触的过程中 ,特别是在不合理应用抗菌素的情况下 ,细菌会顽强地对抗药物的杀灭作用 ,如通过细菌体内的结构改变 ,可使药物失去作用 ;细菌外膜的通透性降低 ,使抗菌素无法进入细菌体内发挥杀菌作用 ;产生破坏抗菌素的酶 ,使这类药物丧失杀菌作用等。大肠杆菌能分泌 β -内酰胺酶 ,这种物质可使具有 β -内酰胺结构的抗菌素失去作用 ,从而导致耐药菌株的出现。而且 ,耐药微生物还会把耐抗生素作用的能力传给下一代。微生物抗药性的出现和蔓延是一个复杂的问题 ,是由许多相互关联…  相似文献   

9.
为建立用于抗耐药菌的β-内酰胺酶(β-lactamase)抑制剂快速筛选方法,本研究采用双层平板法,以2%的琼脂为底层,1%的含碘试剂为上层,以青霉素为β-内酰胺酶的底物,克拉维酸作为体系验证的阳性对照,通过比较透明圈形成大小,优化反应体系,并对190个微生物发酵产物进行了初步筛选。研究最终确定的筛选条件为,pH7.0的PBS缓冲液体系,底物青霉素(160万单位)浓度为50 mg/mL,β-内酰胺酶浓度为10 U/mL,40℃孵育40 min。通过测量反应体系透明圈形成大小来筛选具有活性的β-内酰胺酶抑制剂。结果证实该方法可以为耐药菌β-内酰胺酶抑制剂的筛选提供快速简单、易行、稳定、可靠的研究平台,并初步筛选获得了具有较高β-内酰胺酶抑制活性的化合物。  相似文献   

10.
β-内酰胺酶是对β-内酰胺类抗生素耐药的细菌分泌的一种胞外酶,该酶可选择性分解牛奶中残留的β-内酰胺类抗生素,通过水解使β-内酰胺环打开而失去抗菌活性,类型众多,底物不同,特性各异。β-内酰胺酶包括以下几种:(1)青霉素酶,主要水解青霉素类,能被克拉维酸抑制;(2)头孢菌素酶,能水解头孢菌素,但对青霉素水解作用很弱,  相似文献   

11.
苦豆子碱对产β-内酰胺酶动物源性菌株的药敏分析   总被引:1,自引:0,他引:1  
目的:了解40株动物源性大肠埃希氏菌和肺炎克雷伯氏菌对β-内酰胺类抗菌药物的敏感性,在此基础上探讨苦豆子总碱对产β-内酰胺酶动物源性阴性菌株的抗菌活性,目的筛选出能够逆转耐药菌株的中药。方法:以肉汤稀释法和纸片扩散法筛选产超光谱β-内酰胺酶耐药菌株。以琼脂稀释培养法、试管稀释法、活菌计数法检测苦豆子总碱对大肠杆菌和肺炎克雷伯氏菌的体外最低抑菌浓度(MIC)和最低杀菌浓度(MBC)。结果:40株大肠埃希氏菌和肺炎克雷伯氏菌共有16株为产超光谱β-内酰胺酶(ESBLs)耐药菌株,苦豆子总碱在体外对抗生素敏感株、产β-内酰胺酶(ESBLs)耐药菌株和产超光谱β-内酰胺酶(ESBLs)耐药菌株均有较好的抑菌作用。  相似文献   

12.
20世纪40年代,第一个β-内酰胺类抗生素青霉素的研制和应用,开创了抗生素治疗细菌性疾病的光辉时代。但细菌的耐药性也因抗生素的广泛应用而变得日益普遍,细菌对β-内酰胺类抗生素最主要的耐药机制是产生β-内酰胺酶,破坏β-内酰胺环使抗生素失活。β-内酰胺酶抑制剂的研制应用,恢复了β-内酰胺类抗生素的有效性,使β-内酰胺类抗生素得以继续发挥其在临床上强大的治疗作用。本文主要综述了β-内酰抑制剂的作用机制及其与β-内酰胺类抗生素联用的抗菌活性,以及在兽医临床上的应用概况。为有效地应用β-内酰胺类抗生素控制耐药菌感染提供参考。  相似文献   

13.
1常用药物β-内酰胺类抗生素。氨苄西林,内服1次量为每千克体重10毫克或肌肉注射为1次量每千克体重10毫克,1日2~3次。阿莫西林,内服1次量为每千克体重10~15毫克,1日2次。目前兽医临床上使用的β-内酰胺酶抑制剂有克拉维酸和舒巴坦。用法与用量为,阿莫西林+克拉维酸钾(2:1),内服1次量每  相似文献   

14.
β-内酰胺环类抗生素具有广谱、高效、低毒的特点,有很广阔的应用前景,但耐药菌株的出现使其应用受到很大的限制。超广谱β-内酰胺酶(Extend spectrum β-lactamses,ESBLs)的产生是革兰阴性菌对新型广谱β-内酰胺类抗生素产生耐药性的重要机制之一。ESBLs在革兰氏阴性菌中常见,细菌产生ESBLs后,对临床常用的青霉素类、头孢菌素类、氨基糖苷类和喹诺酮类抗生素都可耐药,耐药谱可因小同地区使用抗生素的差异而变化很大。  相似文献   

15.
随着抗生素的广泛应用,细菌的耐药菌株显著增加,成为预防和控制临床细菌感染性疾病的主要障碍。产超广谱β-内酰胺酶(Extended Spectrum β-lactamases,ESBLs)是细菌对β-内酰胺类抗生素耐药最重要的机制,它能水解氧氨基头孢菌素和氨曲南,但也能被β-内酰胺酶抑制剂所抑制。ESBLs产生的细菌,不仅对β-内酰胺环类抗生素耐药,  相似文献   

16.
吴佳宁 《养猪》2006,(3):59-59
正确的药物配伍可增强药物疗效、缩短疗程、降低成本。常见药物配伍有以下几类。1.β-内酰胺类包括青霉素类和头孢菌素类。β-内酰胺类与β-内酰胺酶抑制剂如克拉维酸、舒巴坦合用有增效作用。青霉素类与氨基苷类(庆大霉素、卡那霉素除外)等量配伍有协同作用,但大剂量青霉素类药物可降低氨基苷类药物的活性;其禁与四环素类、大环内酯类、磺胺类、氨茶碱等药物合用,但因青霉素不易透过血脑屏障,可用青霉素与磺胺嘧啶分别注射治疗脑膜炎。青霉素G、苯唑青霉素与甲氧嘧啶联合应用有增效作用。青霉素与葡萄糖注射液配伍效价降低,应用生理盐水稀…  相似文献   

17.
新疆不同动物源大肠埃希菌耐药性比较   总被引:1,自引:0,他引:1  
为了比较新疆不同动物源大肠埃希菌对临床常用抗菌药物的耐药情况,从猪场、羊场和牛场分别分离猪源大肠埃希菌454株、羊源大肠埃希菌638株和牛源大肠埃希菌89株,用微量肉汤法对上述细菌进行临床常用β-内酰胺类、氟喹诺酮类、氨基糖苷类和酰胺醇类抗菌药物最小抑菌浓度测定。结果表面,猪源大肠埃希菌对氨苄西林(67.0%)和阿莫西林/克拉维酸(63.7%)耐药率较高,其他药物耐药率在10.4%~41.2%之间;羊源大肠埃希菌对安普霉素(33.9%)和阿莫西林/克拉维酸(21.2%)耐药率较高,其他药物耐药率在3.1%~15.6%之间;牛源大肠埃希菌对氨苄西林(24.4%)和阿莫西林/克拉维酸(8.9%)耐药率较高,其他药物耐药率在1.1%~6.7%之间。多药耐药结果,猪源大肠埃希菌以2耐~5耐为主,羊源大肠埃希菌以0耐~2耐为主,牛源大肠埃希菌以0耐~1耐为主。新疆猪源大肠埃希菌对临床常用抗菌药物耐药情况最严重,羊源菌次之,牛源菌最轻;猪源大肠埃希菌多药耐药现象严重。  相似文献   

18.
β-内酰胺酶抑制剂在对抗β-内酰胺酶耐药菌感染中发挥着重要作用,一直是药物化学领域的研究热点,但β-内酰胺酶变异体多元化及不利突变减缓了新型抑制剂的发展进程。诸多国内外相关文献在深入了解β-内酰胺酶水解机制及活性位点关键氨基酸作用特点的基础上,通过对已有化合物进行结构修饰或基于片段设计来筛选新的β-内酰胺酶抑制剂。详细介绍了β-内酰胺酶抑制剂的研究进展,旨在为进一步深入开展以增强化合物与酶关键氨基酸互作为基础的创新药物筛选提供帮助。  相似文献   

19.
副猪嗜血杆菌病是副猪嗜血杆菌主要针对保育仔猪的一种全身多发性的传染病,对猪场的危害极大。β-内酰胺类抗生素是临床上使用比较多的一类抗生素,具有杀菌活性强、毒性低、适应症广及临床疗效好等优点,常用于治疗副猪嗜血杆菌病,因此有必要了解副猪嗜血杆菌对β-内酰胺类抗生素的耐药情况,从而更科学地指导临床用药和新药开发。本研究参考CLSI-VET和VETCAST中流行病学临界值的建立方法,汇总不同地区来源的菌株对14种β-内酰胺类药物的药敏结果,建立β-内酰胺类药物的流行病学临界值。结果显示,头孢克洛、头孢吡肟、头孢噻肟、头孢喹肟、头孢噻呋、头孢氨苄、阿莫西林-克拉维酸、阿莫西林、克拉维酸、氨苄西林、青霉素、苯唑西林、亚胺培南和美罗培南的流行病学折点值分别为16、0.5、0.125、0.031 25、0.5、32、0.25、1、0.5、1、2、8、0.25、0.062 5 μg·mL-1,可以得出副猪嗜血杆菌对氨苄西林、阿莫西林以及头孢吡肟的耐药率较高,对亚胺培南和阿莫西林-克拉维酸的敏感性较高。在CLSI (Clinical and Laboratory Standards Institute)和EUCAST (The European Committee on Antimicrobial Susceptibility Testing)缺乏敏感性评判标准的情况下,本研究可以直观地识别非野生型菌株的出现,有利于耐药性监测工作的开展,对副猪嗜血杆菌的治疗和防控具有一定的参考价值。  相似文献   

20.
正复方阿莫西林粉是含阿莫西林10.00%与克拉维酸钾1.25%的粉剂制剂。阿莫西林为广谱青霉素类抗生素,广泛应用于畜牧养殖业;然而革兰氏阴性菌的β-内酰胺酶产生的耐药性严重影响了阿莫西林的临床治疗效果[1]。克拉维酸钾可协助阿莫西林杀灭大多数耐药菌,除了极少数以产生AmpC酶和碳青霉烯酶耐药的革兰氏阴性菌和以靶位改变机制耐药的革兰氏阳性菌,并且克拉维酸钾能明显提高阿莫西林的药效,减少阿莫西林的临床用药量,从而降低阿莫西林的临床不良反应;然而克拉维酸钾的稳定性很  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号