首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
光周期对大豆品种生育进程及农艺性状的影响   总被引:3,自引:0,他引:3  
在盆栽条件下,光照长度对大豆品种各生育阶段均产生不同程度的影响。短光照下各类型品种的总叶片数、株高、分枝数、主茎节数和茎秆重均减少。叶片生长速率在不同光照长度下品种间差异不大,Ve~VT阶段的长短与叶片生长速率关系不明显。光照长度对单株荚数、单株粒重和百粒重的影响,不同品种反应不同。  相似文献   

2.
水稻株高QTL及其与产量性状和抽穗期关系的研究进展   总被引:3,自引:0,他引:3  
株高是一个与水稻品种丰产潜力密切相关的重要性状。主效半矮秆基因背景下的水稻株高变异,一般表现为受多基因控制的数量性状。最近的研究表明,已定位的株高QTL分布于水稻的所有12条染色体,其中4个QTL已克隆。克隆研究和QTL初定位结果表明,株高QTL往往存在对产量性状和(或)抽穗期的多效作用,可利用于提高水稻产量潜力。  相似文献   

3.
【目的】挖掘水稻抽穗期和产量相关性状新基因,并筛选携带有利等位基因的优良株系,为分子标记辅助育种提供新基因和优异种质。【方法】以多亲本重组自交系群体MAGIC-Hei群体为材料,分别于2017和2018年连续两年种植于湖南长沙开展抽穗期和产量性状表型调查,基于基因分型(genotypingbysequencing,GBS)技术进行全基因组关联分析发掘影响水稻抽穗期、单株有效穗数、每穗粒数、结实率、千粒重和单株产量性状QTL。【结果】在两个环境下共计检测到26个控制抽穗期和产量相关性状的QTL,分布于除第10染色体外的其他染色体上。其中,11个位点为新位点,1个新位点(qNTP9)在两年均被检测到,该位点受环境影响较小,可用于进一步的精细定位和基因克隆。根据抽穗期和产量性状表型数据,结合SNP基因型筛选到5个携带有利等位基因的优良株系,可用于将来的水稻高产育种。【结论】本研究发掘一批新的水稻抽穗期和产量相关性状QTL位点,可有效加速水稻遗传研究和高产育种进程。  相似文献   

4.
利用不同群体对玉米株高和叶片夹角的QTL分析   总被引:13,自引:6,他引:13       下载免费PDF全文
应用H21×Mo17、自330×K36、B73×L050这3个F23∶群体为作图材料,利用SSR等分子标记,对株高、穗位高和叶片夹角3个性状进行了数量性状位点(QTL)分析。对株高共检测到18个QTL,对穗位高检测到12个QTL,对叶夹角检测到9个QTL。在这些影响不同性状的QTL中,有一部分处于染色体上的同一区域,有的则是区域间部分重叠或处于邻近区域。此外,有的QTL还与其他研究中发现的影响相应性状的质量性状基因位点处于相同基因组区域。  相似文献   

5.
玉米株型性状的QTL定位   总被引:11,自引:2,他引:9  
以玉米自交系L26和095组配的F2世代为作图群体,采用SSR分子标记技术和复合区间作图法对玉米茎粗等7个株型性状进行基因定位。共检出21个QTL,其中茎粗检测到1个位点(qSD1),穗位高、株高均检测到3个QTL位点(qEH1-qEH3、qPH1-qPH3),雄穗分枝数检测到5个QTL位点(qTBN1-qTBN5),叶片数检测到4个QTL位点(qLN1-qLN4),叶型系数检测到3个QTL位点(qLSC1-qLSC3),叶向值检测到2个QTL位点(qLOV1-qLOV2)。21个QTL中,qTBN1、qTBN4、qLN1、qLN3、qLN4这5个QTL解释表型变异率超过30%,表现出明显的主效QTL效应。研究还发现,有5个影响不同性状的QTL位于染色体上相同标记区间内或与相同标记连锁,分为Ch3-2和Ch8-1两个区段,表现出了成簇分布的特性。  相似文献   

6.
数学上称为黄金数比值的0.618,可预测水稻生育进程的叶龄数(或称叶片数)。其原理是水稻同一品种主茎总叶片数的多少在相似环境条件下是较为稳定的。同时水稻主茎叶片的出生与其生殖器官的发育具有同伸的关系。因此,只要知道水稻某品种(组合)在当地的主茎总叶片数,就可通过黄金比值0.618,预测其不同生育时期的叶龄,以及幼穗分化所处的发育阶段的近似值。作者通过多年的水稻苗情观察发现,本田期生长的合适叶龄与主茎总叶片数的比值为0.618,秧田期的叶片数与本田期生长叶片数的比值也为0.618,至幼穗分化始期叶片数与本田期生长…  相似文献   

7.
密植是提高大豆单产的重要技术措施之一,大豆耐密植性是大豆品种的基因型与环境共同作用的结果。影响大豆品种耐密植特性的生长性状主要是株型性状和抗倒伏性等,其中株型性状包括株高、分枝数、叶柄长度和叶片大小等。研究人员通过对不同遗传群体进行解析,获得了多个控制相关表型的QTL位点并提出相关的候选基因。迄今在soybase网站中汇集了238个控制株高性状的QTL和68个与株高相关的QTN,21个与分枝相关的QTL,106个与抗倒伏性或茎秆强度相关的QTL位点。本文综述了大豆耐密植性相关性状遗传调控机制研究进展,以促进大豆耐密植遗传调控研究,为耐密植品种的分子设计育种提供参考。  相似文献   

8.
一种水稻营养生长期快速出叶基因型的发现及初步分析   总被引:1,自引:0,他引:1  
通过对14个水稻品种分期播种试验,发现在籼稻品种盐恢559中存在一种营养生长期快速出叶基因型。将盐恢559与出叶速率最慢的Lemont进行比较,两者在各播期的播始历期均相近的情况下,前者的主茎叶片数始终比后者多4~5张,出叶速率极显著快于后者,且出叶速率差异主要表现在秧田期和大田营养生长期,幼穗分化期两品种的出叶速率差异不显著。分析盐恢559、Lemont及其配制的2个回交群体及F2群体的单株出叶速率,推测盐恢559的快速出叶性状为多基因控制的数量性状,其中可能存在效应较大的数量基因。通过对双亲及回交后代群体中部分类型亚群体性状调查发现,这种基因型出叶速率快,单株茎蘖数、茎蘖增加速度以及高峰苗均相对较高,单株有效穗数、每穗粒数明显高于出叶速率慢的类型。讨论了对这种快速出叶基因型进行深入研究的必要性及育种应用的可能性。  相似文献   

9.
小麦重组自交系群体9个重要农艺性状的遗传分析   总被引:3,自引:0,他引:3  
为了初步判断小麦重要性状的遗传组成,并筛选适于QTL定位的性状,以小偃81和西农1376及其构建的重组自交系群体(RILs)F7代为材料,采用植物数量性状主基因+多基因混合遗传模型研究了株高、叶面积、穗下茎长、穗下节长、穗下节间直径、穗长、小穗数、穗粒数和抽穗期等9个重要农艺性状的遗传特点.结果表明,穗下节长性状符合多基因遗传,无主基因存在;株高、小穗数、穗粒数、叶面积、穗长和抽穗期6个性状符合2对主基因+多基因遗传;穗下节间直径性状符合3对主基因遗传,无多基因存在;穗下茎长性状则符合3对主基因+多基因遗传.株高、穗长、抽穗期和穗下节间直径等4个性状的主基因遗传率分别为82.32%、75.75%、81.98%和91.04%,可能含有较大的主效QTL.  相似文献   

10.
利用单片段代换系群体定位玉米株型性状QTL   总被引:1,自引:0,他引:1  
以优良玉米自交系许178背景的综3单片段代换系群体为基础材料,通过一年两点的田间试验,对株高、穗位高、总叶片数、穗上叶片数、叶面积等植株性状进行QTL分析。结果表明,利用显著性检验方法在两点共检测到5个株型相关性状的72个QTL,包括23个株高QTL、12个穗位高QTL、6个总叶片数QTL、15个穗上叶片数QTL、16个叶面积QTL,其中,有10个株高QTL、3个穗位高QTL、3个总叶片数QTL、2个穗上叶片数QTL和1个叶面积QTL在2个试验环境中同时检测到。  相似文献   

11.
《Plant Production Science》2013,16(3):309-318
Abstract

Appropriate plant height, tiller number and heading date are important traits for maximizing rice production. In order to understand the genetic basis of the relationships among these three plant traits, we mapped quantitative trait loci (QTLs) using a recombinant inbred population and detected two-locus interactions for plant height and tiller number at two growth stages and for heading date in two years. There were significant negative correlations between tiller number and plant height, and between tiller number at maturity and heading date. A significant positive correlation was observed between heading date and plant height at maturity. A total of 29 QTLs for the three traits were identified over the two years. Results show that QTLs and majority of two-locus interactions for plant height and tiller numbers at 35 days after transplanting were different from those at maturity, indicating that different genes and interactions control the traits at different developmental stages. A large proportion of QTLs and interactions could only be detected in one year, suggesting that QTLs and two-locus interactions for the traits were dependent on the environment. Results suggest that pleiotropy and/or close linkage of genomic regions and pleiotropy of common two-locus combinations may be the genetic basis for the close correlations among the three traits. A QTL with a large effect for heading date, which was located in RG424-RZ667 on chromosome 6, also showed large effects on tiller number and plant height at maturity.  相似文献   

12.
用培矮64S/日本晴F2群体对水稻6个农艺性状的QTL定位   总被引:1,自引:0,他引:1  
 用水稻测序品种培矮64S和日本晴配组建立了由180个单株组成的F2群体,构建了含137个SSR标记的连锁遗传图谱,对水稻的分蘖数、有效分蘖数、分蘖率、株高、剑叶长和穗长等6个相关农艺性状进行了QTL定位分析。共检测到14个QTL,分布在第1、2、4、5、6、7染色体的11个区间。检测到1个控制株高的主效QTL(qPH1 2),位于第1染色体,其表型贡献率为24.0%;1个控制剑叶长的主效QTL(qFL4),位于第4染色体,其表型贡献率为30.5%。对所定位QTL的价值、QTL在染色体上的区域分布等进行了探讨。  相似文献   

13.
用自交系Mo17与黄早四构建的RIL群体239个株系及双亲为研究材料,在高氮(施N300kg/hm2)和低氮(不施N)条件下,测定株高、穗位高、单株总叶数、穗位叶长、穗位叶宽和穗位叶面积等株型相关性状。采用QTLMapper1-6统计软件检测控制这些性状的加性效应QTLs和加性×加性上位性QTLs,共检测到19个加性效应QTLs和14对上位性QTLs,定位在玉米所有染色体上,其中1个加性效应QTL控制株高;3个加性效应QTLs和3对上位性效应控制穗位高;4个加性效应QTLs和3对上位性效应与单株总叶数有关;有4个加性效应QTLs和3对上位性效应影响穗位叶长;2个加性效应QTLs和3对上位性效应控制穗位叶宽;5个加性效应QTLs和2对上位性效应控制穗位叶面积。对应用分子标记辅助育种选育玉米株型的可能性进行了讨论。  相似文献   

14.
 利用超级杂交稻协优9308(协青早B×中恢9308)衍生的重组自交系群体,采用条件复合区间作图法对主茎叶片数进行了动态QTL分析。在各时期检测到5个非条件QTL和2个条件QTL。非条件QTL qLN2.1、qLN2.2、qLN2.3和qLN2.4在第2染色体上成簇分布,单个非条件QTL可解释的表型变异介于11.68%~16.48%。2个条件QTL qLN2.2和qLN2.4表达时段与拔节盛期和抽穗盛期一致。最终只检测到1个叶片数非条件QTL,没有一个叶片数条件QTL能在测定的所有时期都有效应。表明控制水稻叶片数的QTL表达具有时空性。  相似文献   

15.
赤霉病是最严重的大麦病害之一。由于赤霉病抗性是受多基因控制的数量性状(QTL),并且一些表型性状也影响大麦赤霉病的抗病,如棱数、株高和抽穗期等,所以抗赤霉病大麦品种的选育十分困难。为了明确加拿大六棱大麦中赤霉病抗性以及相关性状的QTLs,本研究在4年中对93个家系的DH作图群体中赤霉病抗性、呕吐毒素(DON)含量、株高、抽穗期和成熟期等相关性状进行调查,并利用分子标记(444个DArT和26个SSR标记)构建的连锁图谱对QTL开展复合区间作图。结果表明,本研究共检测到4个影响赤霉病的QTLs,其中,2个主要的QTLs定位在3H和7H染色体上,它们的加性效应为-3.44和-3.69,分别解释14.1%和17.5%的表型差异,总共解释31.6%的赤霉病抗性差异;另外2个QTLs定位于7H染色体上,但二者同时也与DON含量显著相关。此外,在3H、5H和7H染色体上确定了5个影响株高的QTLs,在2H、4H、5H和7H上确定了4个影响抽穗期的QTLs。同时发现2个赤霉病抗性QTLs和1个DON累积QTL与控制株高的QTLs聚集重叠,1个赤霉病抗性QTL和抽穗期QTLs重叠。这些与赤霉病抗性、株高及抽穗期等农艺性状紧密连锁的分子标记可进一步用于有效提高抗赤霉病大麦品种的选育效率。  相似文献   

16.
水稻叶挺长发育动态的QTL分析   总被引:8,自引:1,他引:8  
 采用条件复合区间作图法,分析籼型品种IR64和粳型品种Azucena为亲本的DH群体,对不同时期的叶挺伸长动态进行了QTL定位。检测到各时期影响叶挺长的非条件QTLs。随着叶挺的伸长,解释叶挺表型变异的所有非条件QTLs贡献率逐渐增加,到测定末期QTL的贡献率达到90.0%。条件QTL分析表明,Hls 1-2、Hls 3-3、Hls 2和Hls 4等位点的基因表达,在8月18日至9月7日和9月7日至9月17日两个时段较为活跃,与DH群体的拔节盛期和抽穗盛期相吻合。  相似文献   

17.
《Plant Production Science》2013,16(4):447-456
Abstract

Thirty-nine chromosome segment substitution lines (CSSLs) population derived from a Koshihikari / Kasalath cross was used for quantitative trait locus (QTL) analysis of plant type in rice (Oryza sativa L.). Putative rough QTLs (26.2~60.3cM of Kasalath chromosomal segments) for culm length, plant height, panicle number, chlorophyll content of flag leaf blade at heading and specific leaf weight, were mapped on the several chromosomal segments based on the comparison of CSSLs with Koshihikari in the field experiment for 3 years. In order to verify and narrow QTLs detected in CSSLs, we conducted QTL analyses using F2 populations derived from a cross between Koshihikari and target CSSL holding a putative rough QTL. The qPN-2, QTL for panicle number was mapped on chromosome 2. In traits of flag leaf, the qCHL-4-1 and qCHL-4-2 for chlorophyll content was mapped on chromosome 4, and the qSLW-7 for specific leaf weight on chromosome 7. All QTLs were detected in narrow marker intervals, compared with rough QTLs in CSSLs. The qPN-2, qCHL-4-1 and qCHL-4-2 had only additive effect. On the other hand, the qSLW-7 showed over-dominance. It could be emphasized that QTL analysis in the present study with the combination of CSSLs and backcross progeny F2 population can not only verify the rough QTLs detected in CSSLs but also estimate allelic effects on the QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号