首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes were studied using diffusive gradients in thin films (DGT). A unique feature of this research was (1) the use of DGTs with diffusive layer thicknesses ranging from 0.4 to 2.0 mm to study lability and mobility of Zn(II)–, Cd(II)–, Pb(II)–, and Cu(II)–humic acid complexes, combined with (2) the application of a competing ligand exchange (CLE) method using Chelex 100, the same chelating resin that is used in DGT, to study the kinetic speciation. The CLE experiments were run immediately after the completion of the DGT experiments, thereby allowing effects of the competing ligand to be separated from the effects introduced by the use of the polyacrylamide gel that is used in DGT. The results indicate that Zn(II) and Cd(II) tend to form more labile and more mobile complexes with humic acid than Pb(II) or Cu(II). The dissociation rate constants of Zn(II), Cd(II), and Pb(II) were found to increase with the ionic potential of the metal, suggesting that the binding between some trace metals and humic acid has a significant covalent component. Furthermore, the results suggest that the Eigen mechanism may not be strictly obeyed for metals such as Cu(II) which have high rate constants of water exchange, k w. Consequently, the markedly slow kinetics of Cu(II)-HA species suggests that the usual equilibrium assumption may not be valid in freshwaters.  相似文献   

2.
This study was conducted to assess the hyperaccumulation and phytoremediation potential of copper (Cu) and lead (Pb) in Hardy ‘Limelight’ Hydrangea (Hydrangea paniculata) and the common sunflower (Helianthus annuus). The study also investigated the capacity of these two plants to transpire the metals in a temperature-controlled greenhouse. Plants were grown for 4 weeks and periodically watered with known elemental concentrations of copper oxide nanoparticles, copper sulfate, and lead nitrate. Both H. annuus and H. paniculata accumulated significant amounts of Cu and Pb to be classified as hyperaccumulator species. H. annuus took up significant amounts of Cu in the shoots, specifically the leaves (Cu max.?=?1368 ppm), and easily translocated it from stem to leaf (translocation factor (TF) ranged from 2.7 to 81.0). Pb was not as easily taken up and translocated (TF?=?0.6) as Cu was by this species. H. paniculata took up Cu and Pb in high concentrations but preferentially stored more metals in the stems (Cu max.?=?1757 ppm; Pb max.?=?780 ppm) than in the leaves (Cu max.?=?126 ppm; Pb max.?=?35 ppm). The translocation ability of H. paniculata was much lower for both metals compared to H. annuus. Both Cu and Pb transpired from H. annuus at concentrations of 0.04 and 0.005 ppm, respectively.  相似文献   

3.
Citrus essential oils are widely used in the food, cosmetics, and pharmaceutical industries, so the determination of heavy metals content is of great importance to guarantee their quality. The present work deals with the quantification of Cd(II), Cu(II), Pb(II), and Zn(II) in different varieties of citrus essential oils, using derivative potentiometric stripping analysis. Two different metals extraction procedures, involving concentrated hydrochloric acid treatment and acid-alcoholic dissolution, are tested on lemon, mandarin, sweet orange, and bergamot essential oils, and they give very similar results. Cd(II), Cu(II), Pb(II), and Zn(II) recovery tests spanned from 95 to 100.50%, providing evidence that metals quantification remained unaffected by the cleanup steps of the two procedures. The repeatability of the hydrochloric acid extraction method, applied on different varieties of essential oils, is >95.00% for Cd(II), Cu(II), Pb(II), and Zn(II), whereas the repeatability of the acid-alcoholic dissolution method is >93.00% for Cu and Cd only in lemon oil. Detection limits obtained for the four analytes, using both procedures, ranged from 0.10 to 0.98 ng g(-)(1) in lemon, mandarin, sweet orange, and bergamot essential oils.  相似文献   

4.

Purpose

The aim was to study Cu (II), Zn (II), and Pb (II) forms in technogenically transformed soils adjacent to the Karabashmed copper smelter.

Materials and methods

Studies were performed in the plume zone of the Karabash smelter and in the floodplains of Ryzhii Brook and Sak-Egla River. Geomorphological and geochemical migration processes prevail in technogenic landscapes. The differentiation of landscape-geochemical conditions plays the dominant role, which determines the localization of metals. The total Mn, Cr, Ni, Cu, Zn, Pb, Cd, and As contents and the macroelement compositions of soils were determined by X-ray fluorescence. The composition of Cu, Pb, and Zn compounds in soils was determined by the Tessier sequential fractionation. The determination of the geochemical fractions of heavy metals in soils is a key issue in the study of their mobility. The metals were fractionated into the following five fractions: exchangeable, bound to carbonates, bound to Fe and Mn oxides, bound to organic matter, and residual fractions.

Results and discussion

It is shown that the total Zn and As contents in the 0- to 5-cm layer of soils on monitoring plots exceed their lithosphere clarks in hundreds of times, and the total Cu, Pb, and Cr contents exceed their lithosphere clarks in tens of times. Factors and processes controlling the distribution and transport of Cu, Pb, and Zn forms in soils were determined. According to landscape-geochemical differentiation, the eluvial (automorphic) catena (plot T4) takes the main technogenic load of dust fallouts from the Karabash copper smelter. The accumulation of material brought from above and the geochemical precipitation of discharges from tailings dumps occur in superaqual catenas (plots T1, T2, and T3). In the technogenically transformed soils, the basic stabilizers of the mobility of Cu is organic matter, for Pb it is Fe-Mn (hydro) oxides, and for Zn - it is clay minerals.

Conclusions

The distributions of Cu, Zn, and Pb forms in the studied technogenically transformed soils are due to a number of factors: First, these are the composition of technogenic pollutants contaminating ecosystems and the time during which the contamination occurred, and second, this is the combination of physicochemical properties controlling the buffer properties of the polydisperse system of soils and parent materials.
  相似文献   

5.
This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.  相似文献   

6.
This is a study of trace metal competition in the complexation of Pb(II) by well-characterized humic substances, namely Suwannee River Fulvic Acid (SRFA) in model solutions. It was found that Cu(II) seems to compete with Pb(II) for strong binding sites of SRFA when present at the same concentration as Pb(II). However, Cd(II) and Zn(II) did not seem to compete with Pb(II) for strong binding sites of SRFA. These two metals did compete with Pb(II) for the weaker binding sites of SRFA. Heterogeneity of SRFA was found to play a crucial role in metal–SRFA interactions. The environmental significance of this research for freshwater is that even at relatively low Pb(II) loadings, the metals associated with lead in minerals, e.g. Cu(II), may successfully compete with Pb(II) for the same binding sites of the naturally occurring organic complexants, with the result that some of the Pb(II) may exist as free Pb2+ ions, which has been reported to be one of the toxic forms of Pb in aquatic environment.  相似文献   

7.
The metal removal efficiency of live and dead fungal cells of Penicillium simplicissimum (isolate 10, KP713758) was tested against 100 ppm toxic metals Cd, Cu, Pb, Zn and trivalent Cr in single-metal solutions and in mixtures with 50 ppm triphenylmethane (TPM) dyes (Cotton Blue, Crystal Violet, Methyl Violet, and Malachite Green). Results revealed that live cells were more effective at removing metals from single (10.8–70.0%) and dye-metal mixtures (5.3–62.2%) than dead cells (5.1–27.4%). The dyes in dye-metal mixtures influenced metal uptake capacity. All four dyes inhibited the uptake of Cd (0.9–7.1%), Zn (5.3–7.7%), Cu (5.0–25.8%) and Cr (47.3–60.7%) by live cells. The exception was the enhance removal of Pb by live cells (48.6 to 56.3–62.2%) in the presence of dye (MG or CB). Pb uptake was not affected by MV (51.8%), but was inhibited by CV (31.9%). For dead cells, uptake of metals (Cd, Cr and Zn) in single (3.2–27.4%) and dye-metal solutions (0.7–27.4%) was similar, whilst removal of Cu (6.4–13.5%) and Pb (33.6–44.0%) was inhibited by all four dyes. P. simplicissimum is concluded to have potential to remove toxic metals even in the presence of TPM dyes, with preferred use of live cells than dead cells.  相似文献   

8.
Two species of sunflower, i.e., Tithonia diversifolia and Helianthus annuus, were investigated for their potential to remove heavy metals from contaminated soils. Dried and mature T. diversifolia (Mexican flower) seeds were collected along roadsides, while H. annuus (sunflower) seeds were sourced from the Department of PBST, University of Agriculture Abeokuta, Nigeria. The contaminants were added as lead nitrate (Pb (NO3)2) and zinc nitrate (Zn (NO3)2) at 400 mg/kg which represents upper critical soil concentration for both Pb and Zn. The results indicated that T. diversifolia mopped up substantial concentrations of Pb in the above-ground biomass compared to concentrations in the roots. The concentrations in the leaf compartment were 87.3, 71.3, and 71.5 mg/kg at 4, 6, and 8 weeks after planting (AP), respectively. In roots, it was 99.4 mg/kg, 97.4 mg/g, and 77.7 mg/kg while 79.3, 77.8, and 60.7 mg/kg were observed in the stems at 4, 6, and 8 weeks AP, respectively. Observations with H. annuus followed the pattern found with T. diversifolia, showing significant (p?<?0.05) accumulation of Pb in the above-ground biomass. Results obtained from Zn contaminated soils showed significant (p?<?0.05) accumulation in the above-ground compartments of T. diversifolia and H. annuus compared with root. However, the highest accumulation of Zn was observed in the leaf. The translocation factor and enrichment coefficient of Pb and Zn with these plant species are greater than 1, indicating that these metals moved more easily in these plants. However, this result also showed that the translocation of Zn from root to the shoot of the two plants was higher than Pb. In conclusion, this experiment showed that these plants accumulated substantial Pb and Zn in their shoots (leaf and stem) at 4 weeks AP which diminished with time. This implies that the efficiency of these plants in cleaning the contaminated soils was at the early stage of their growth.  相似文献   

9.
Tailings are frequently a source of pollution in mining areas due to the spread of metals from their bare surfaces via wind or runoff water. Phytostabilization is an interesting and low-cost option to decrease environmental risks in these sites. In this study, an acidic mine tailing (pH 3?C4) located in a semiarid area in Southeast Spain and the spontaneous vegetation which grow on were investigated. Soil samples were taken to characterize metal contamination, and three plant species, Lygeum spartum, Piptatherum miliaceum, and Helichrysum decumbens, were sampled in order to determine plant uptake of metals. The rhizosphere pH of H. decumbens was measured to be 6.7, which was significantly higher than the bulk soil (pH 3). The electrical conductivity values were around 2?C5 dS m?1. Total metal concentrations in soil were high (9,800 mg kg?1 for Pb and 7,200 mg kg?1 for Zn). DTPA-extractable Zn and Pb were 16% and 19% of the total amount, respectively. The three selected plant species accumulated around 2?C5 mg kg?1 Cu in both shoots and roots. Zn concentration was 100 mg kg?1 in P. miliaceum roots. DTPA-extractable Zn was positively correlated with Zn plant uptake. These plant species demonstrated to grow well in acid tailings taking up only low concentrations of metals and therefore are good candidates to perform further phytostabilization works.  相似文献   

10.
The Nyabugogo natural wetland (Kigali City, Rwanda) receives all kinds of untreated wastewaters, including those from industrial areas. This study monitored heavy metal concentrations (Cd, Cr, Cu, Pb, and Zn) in all environmental compartments of the swamp: water and sediment, the dominant plant species Cyperus papyrus, and fish (Clarias sp. and Oreochromis sp.) and Oligochaetes. Cr, Cu, and Zn concentrations in the water were generally below the WHO (2008) drinking water standards, whereas Cd and Pb were consistently above these limits. Except Cd, all metal concentrations were below the threshold levels for irrigation. The highest metal accumulation occurred in the sediment with up to 4.2 mg/kg for Cd, 68 mg/kg for Cu, 58.3 mg/kg for Pb, and 188.0 mg/kg for Zn, followed by accumulation in the roots of C. papyrus with up to 4.2 mg/kg for Cd, 45.8 mg/kg for Cr, 29.7 mg/kg for Cu, and 56.1 mg/kg for Pb. Except Cu and Zn, other heavy metal (Cd, Cr, and Pb) concentrations were high in Clarias sp., Oreochromis sp., and Oligochaetes. Therefore, there is a human health concern for people using water and products from the swamp.  相似文献   

11.
A comparative study between conventional methods (EPA 3050B and ISO 11466.3) of metal extraction and a simple low-cost method, using aqua regia, was carried out in this work. Six elements (Mn, Cu, Zn, Pb, Ni, and Cd) were determined by flame atomic absorption spectrometry (FAAS) in a certified sample of sediment (CNS 392). Central composite design (CCD) and response surface methodology (RSM), as well as machine learning, were used to find the optimal conditions for metal extraction. The influence of the parameters—volume of nitric acid in aqua regia (v), time of extraction (t), and temperature (T)—on Mn, Cu, Zn, and Pb recoveries was investigated. The best condition for the recovery of all the metals was v = 2.5 mL of HNO3, t = 2 h, and T = 90 °C. In comparison with the conventional methods, the aqua regia method was found to present better recovery values and lower standard deviations for all the metals studied.  相似文献   

12.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

13.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

14.
Total topsoil 50th percentile Cu, Pb and Zn concentrations (n?=?491) in the Sydney estuary catchment were 23 ??g?g?1, 60 ??g?g?1 and 108 ??g?g?1, respectively. Nine percent, 6% and 25% of samples were above soil quality guidelines, respectively and mean enrichment was 14, 35 and 29 times above background, respectively. Soils in the south-eastern region of the catchment exhibited highest metal concentrations. The close relationship between soil metal and road network distributions and outcomes of vehicular emissions modelling, strongly suggested vehicular traffic was the primary source of metals to catchment soils. Catchment soil and road dust probably make an important contribution to contamination of the adjacent estuary. The concentration of soil metals followed the land use trend: industrial?>?urban?>?undeveloped areas. A high proportion (mean 45%, 62% and 42%, for Cu, Pb and Zn, respectively) of metals in the soils may be bioavailable.  相似文献   

15.
Volcanic rock is a potential adsorbent for metallic ions from wastewater. This study determined the capacity of Gisenyi volcanic rock found in Northern Rwanda to adsorb Cd, Cu, Pb and Zn using laboratory scale batch experiments under a variety of experimental conditions (initial metal concentration varied from 1 to 50 mg/L, adsorbent dosage 4 g/L, solid/liquid ratio of 1:250, contact time 120 h, particle size 250–900 μm). The adsorbent had a surface area of 3 m2/g. The adsorption process was optimal at near-neutral pH 6. The maximal adsorption capacity was 6.23, 10.87, 9.52 and 4.46 mg/g for Cd, Cu, Pb and Zn, respectively. The adsorption process proceeded via a fast initial metal uptake during the first 6 h, followed by slow uptake and equilibrium after 24 h. Data fitted well the pseudo second-order kinetic model. Equilibrium experiments showed that the adsorbent has a high affinity for Cu and Pb followed by Cd and Zn. Furthermore, the rock is a stable sorbent that can be reused in multiple sorption–desorption–regeneration cycles. Therefore, the Gisenyi volcanic rock was found to be a promising adsorbent for heavy metal removal from industrial wastewater contaminated with heavy metals.  相似文献   

16.
The present study is an attempt to assess the heavy metal contamination in the marine environment of the Arabian Gulf of Saudi Arabia. The concentrations of heavy metals in water and the soft tissues of the bivalve species Meretrix meretrix Linnaeus, 1758, from different stations along the Arabian Gulf coastline, were determined during the summer season of 2008. Bioaccumulation of some heavy metals (Cd, Pb, Cu, and Zn) in fresh parts of the clam (M. meretrix) was measured by an atomic absorption spectrophotometer. The average concentrations of heavy metals in the clam tissues were 0.224?C0.908, 0.294?C2.496, 3.528?C8.196, and 12.864?C24.56 mg/kg wet weight for Cd, Pb, Cu, and Zn, respectively. In water, the mean concentration values of these metals were arranged in the following descending order: Pb > Cu > Zn > Cd. The heavy metal concentrations in tissues of M. meretrix were within the acceptable standards set by the US Environmental Protection Agency, the Commission Européenne, and the Food and Drug Administration of the USA. From the human public health point of view, these results seem to show no possibility of acute toxicities of Cd, Cu, Pb, and Zn if the edible clam is consumed. It is recommended that relevant authorities should carry out a continual assessment on the levels of these pollutants in the studied area.  相似文献   

17.
An experiment of Randomized Block Design was conducted during 2005 in a greenhouse of the University of Ioannina, Department of Environmental Management and Natural Resources, in order to study the effect of the Treated Municipal Wastewater (TMWW) on the interrelationships of macro, micronutrients, heavy metals and physical and chemical properties of a soil cultivated with Brassica oleracea var. italica (broccoli). The experimental design included the following treatments: (a) TMWW, (b) Fresh irrigation water or “control”, in six replications, with a total number of 2?×?6?=?12 plots of 2.5?×?1.8?=?4.5 m2 size. The following were found. Numerous interactions are taking place in the soil under the effect of TMWW, between: (a) macro-, micronutrients, and heavy metals, i.e. (N, P, K, Ca, Mg, Zn, Mn, Fe, B, Cu)×(Ni (Co, Pb, Cd) and (b) between all the above metals and the soil properties i.e. (nutrients and heavy metals)×(pH,CaCO3, O.M) These interactions could have an important impact on plant growth and the environment, as they can either supply the plants with nutrients, due to their synergistic effects or they can contribute to the decrease or inactivation (fixation) of some undesirable soil heavy metals, owing to their antagonism. Examples of these interactions are studied, and their significance in plants and the environment, is examined, under the effect of the TMWW reuse.  相似文献   

18.
In this study, N-(2-aminoethyl)salicylaldimine bonded silica gel was synthesized and characterized using Fourier transform infrared and C, H, N elemental analysis. The analytical conditions such as the pH and volume of the solution, flow rates of the sample solution and the type of eluent to achieve the simultaneous preconcentration of Cu(II), Ni(II), Cd(II) and Zn(II) were optimised using the modified silica gel loaded column using a solid phase extraction technique. Samples (50?C500?ml) containing metal ions at optimal pH of 8 were passed through the column filled with the modified silica gel at 7?ml min?1 and then elution was achieved using 5?ml of 0.25?M HCl. The concentrations of metal ions in the eluates were determined using flame atomic absorption spectrometry (FAAS). The effects of matrix ions were also studied and none of the major ions interfered to the proposed method. The accuracy of the developed method was validated using a certified reference water sample (Ontario Lake water, NWTMDA-54.4). The method was successfully applied to the analysis of various natural water samples. The adsorption capacities of the modified silica gel for Cu(II), Ni(II), Cd(II) and Zn(II) ions were determined and found to be 0.332, 0.261, 0.130 and 0.375?mmol g?1, respectively.  相似文献   

19.
The effects of sixteen metal ions: Al, Cd, Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Li, Mg, Mn(H), Mo(VI), Ni(II), Pb(II), Se(IV), V(V), and Zn on the mortality and infectivity of Steinernema carpocapsae were observed in 96 hour laboratory tests. All ions except Cu(II), Pb(II), and Zn even at naturally unrealistic concentrations did not cause the mortality of S. carpocapsae. However, such treatment lowered infectivity of nematodes with respect to wax moth caterpillars, Galleria mellonella.  相似文献   

20.
This work examined the removal of heavy metals in a system consisting of ultrafiltration (UF) or microfiltration (MF) membranes combined with sludge and minerals. The metals under examination were Ni(II), Cu(II), Pb(II), and Zn(II), while the system performance was investigated with respect to several operating parameters. Metal removal was achieved through various processes including chemical precipitation, biosorption, adsorption, ion exchange, and finally retention of the metals by the membranes. The pH had a profound effect on metal removal, as the alkaline environment favored the metal removal process. The use of sludge resulted in increased levels of metal uptake which was further enhanced with the addition of minerals. The metal removal mechanisms depended on the pH, the metal, and mineral type. The combined sludge?Cmineral?CUF system could effectively remove metal ions at an alkaline environment (pH?=?8), meeting the US EPA recommended long-term reuse limits of lead and copper and the short-term reuse limits of nickel and zinc for irrigation purposes, provided that specific mineral dosages were added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号