首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
本文对黄麻/棉混纺纱的生产工艺作了初步的探索,利用经过脱胶后的精细化黄麻纤维,通过对纺纱加工工艺与设备的选择、调整,纺制成了黄麻/棉55/45的转杯混纺纱.结果表明,黄麻纤维在脱胶精细化处理后,是可以加工成应用领域更广泛的产品的.  相似文献   

2.
恢复黄麻生产 开发黄麻新产品   总被引:2,自引:0,他引:2  
黄麻在我国具有近千年种植历史,尽管作为传统包装材料使用正居于次要地位,但由于黄麻纤维具有优质、可降解特性,我国麻纺科技人员及企业正在开发新产品,如高支黄麻纱、布;黄麻/棉、黄麻/化纤、黄麻/羊毛、黄麻/丝等混纺高档产品,以及汽车、装饰等产业用品。许多企业正呼吁恢复我国黄麻种植,以减少对孟加拉进口黄麻的依赖。  相似文献   

3.
Danny  E.  Akin  Jonn  A.  Foulk  Roy  B.  Dodd  David  D  McAlister    杨喜爱 《中国麻业》2006,28(3):160-165
对纤用亚麻(阿里安)与北达科他州油用亚麻茎进行酶法脱胶实验。脱胶酶制剂含Viscozyme L(富含果胶酶的成品酶)和乙二胺四乙酸(螯合剂EDTA)。碾压破裂后的亚麻茎浸吸不同比例的Viscozyme L-EDTA溶液,脱胶后纤维进行梳纺。供测纱样为Shirley机清理的原亚麻纤维与棉花纤维按不同比例混纺而成的纱。处理不同,清理后的纤维性质有所不同。不同配比的酶溶液脱胶后的纤维性质不同,不考虑EDTA的因素,0.3%(v/v)的酶浓度比0.05%的酶浓度脱胶效果好,但纤维强力低。麻样与酶制剂不同,混纺纱的质量变异系数、单纱强力与粒结数存在差异。以成本、纤维和纱的质量为依据,本实验结果确立了脱胶酶制剂的组分含量范围,可作为进一步研究优化亚麻脱胶酶制剂的基础。本实验中,0.3%(v/v)Viscozyme L与25mMEDTA配制的酶溶液脱胶制成的纱最好。因此,可以此为基础进一步研究开发工业级纺织用亚麻短纤维。  相似文献   

4.
黄红麻脱胶工艺初探   总被引:6,自引:0,他引:6  
本文对黄红麻纤维的化学脱胶工艺作了初步的探索,实验结果表明,脱胶后的黄红麻纤维性能有了较大的改善,为精细化黄红麻产品提供了基础。  相似文献   

5.
由国际黄麻组织召开的国际黄麻、红麻脱胶技术研讨会于1987年2月23~26日在孟加拉国首都达卡召开,目的是交流经验,共同商讨在黄麻、红麻脱胶上存在的问题,以便改进脱胶技术,提高纤维质量,并为修改脱胶项目书提出意见。参加会议的有孟加拉、中国、印度、尼泊尔和泰国五个产麻国专家,由国际黄麻组织主席H·辛格先生致开幕词,高级农业官员M·K·阿里博士主持会议,各国专家宣读论文后并进行答辩和讨论。  相似文献   

6.
本文对黄红麻纤维的化学脱胶工艺作了初步的探索,实验结果表明,脱胶后的黄红麻纤维性能有了较大的改善,为精细化黄红麻产品提供了基础.  相似文献   

7.
黄麻/棉织物服用性能探讨   总被引:3,自引:1,他引:3  
赵睿哲  梁中波等 《中国麻业》2002,24(5):35-39,22
本文通过试验测定了黄麻/棉织物的服用性能,并与苎麻/棉,涤/棉,纯棉等织物的服用性能进行比较,结论表明黄麻/棉织物作为服用织物是可行的。  相似文献   

8.
对纤用亚麻(阿里安)与北达科他州油用亚麻茎进行酶法脱胶实验.脱胶酶制剂含 Viscozyme L (富含果胶酶的成品酶)和乙二胺四乙酸(螯合剂 EDTA).碾压破裂后的亚麻茎浸吸不同比例的 Viscozyme L- EDTA溶液,脱胶后纤维进行梳纺.供测纱样为 Shirley机清理的原亚麻纤维与棉花纤维按不同比例混纺而成的纱.处理不同,清理后的纤维性质有所不同.不同配比的酶溶液脱胶后的纤维性质不同,不考虑 EDTA的因素, 0.3%( v/v)的酶浓度比 0.05%的酶浓度脱胶效果好,但纤维强力低.麻样与酶制剂不同,混纺纱的质量变异系数、单纱强力与粒结数存在差异.以成本、纤维和纱的质量为依据,本实验结果确立了脱胶酶制剂的组分含量范围,可作为进一步研究优化亚麻脱胶酶制剂的基础.本实验中, 0.3% (v/v) Viscozyme L与 25mM EDTA配制的酶溶液脱胶制成的纱最好.因此,可以此为基础进一步研究开发工业级纺织用亚麻短纤维.  相似文献   

9.
生物脱胶苎麻纤维性能研究   总被引:1,自引:0,他引:1  
钟安华 《中国麻业》2006,28(1):37-40,51
应用一种简便、廉价的细菌脱胶方法对苎麻进行脱胶,研究脱胶后的苎麻纤维性能。结果表明,苎麻细菌脱胶后残胶率1.82%,达到了脱胶要求。且松散了苎麻纤维横截面组织结构,对苎麻中纤维素无破坏,提高了上染色率12%左右,单纤维强力比碱液脱胶的大0.15N/tex,对白度影响不大。说明该脱胶法是一种绿色生产工艺。  相似文献   

10.
前言黄麻杆是印度的一项大宗农业副产物,每年有300—400万吨,它是黄麻通过脱胶剥取纤维后剩下的麻株中心部分。而纤维部分是制造麻袋、地毯,装饰布等的大宗商品。占纤维产量2倍的黄麻杆在商业上的作用很小。黄麻工艺研究室成功地利用黄麻杆作为纸浆、纸张、纤维板、尼隆和其它有用产品的原料(Chatterjee et al.1979)。黄麻杆的另一用途是通过低温碳化工艺生  相似文献   

11.
Coconut fibres were subjected to chemical treatment to obtain softer and finer fibres, suitable to blend with other finer fibre like jute. The chemical softening recipe was optimized using Box-Behnken design of experiments as 40 % Na2S, 10 % NaOH and 6 % Na2CO3, which notably reduced the fineness (33 %) and flexural rigidity (74 %) and improved tensile property of coconut fibre. Effect of softening of coconut fibre on its process performance was studied in high speed mechanized spinning system at different blend ratios with jute. Blending with jute assists in spinning of coconut fibre to produce yarn of 520 tex at production rate of 5-6 kg/h, as compared to 15 kg/day for hand spun 5300 tex raw coconut fibre yarn in manual system. Analysis of blended yarn structure in terms of packing density, radial distribution of fiber components (SEM) and mass irregularity were investigated. SEM shows yarns made from softened coconut fibre -jute blends are more compact than raw coconut fibre -jute blend yarns. Coconut fibres were preferentially migrated to core of the yarn. Major yarn properties viz., tensile strength, and flexural rigidity of raw and chemically softened blended yarns were compared against their finest possible 100 % coconut fibre yarn properties. Yarn made up to 50:50 chemically softened coconut fibre-jute blend showed much better spinning performance, and having superior property in terms of reduced diameter, higher compactness, strength, initial modulus and less flexural rigidity than 100 % raw, 100 % chemically softened coconut fibre rope, and raw coconut fibre-jute blend yarns.  相似文献   

12.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

13.
Bidirectional PP/jute yarn eco-composites were fabricated via environment friendly commingling technique and its long term durability/life time was monitored as an effect of accelerated solar ageing on its mechanical properties (tensile & flexural). Accelerated solar ageing promoted the thermal oxidation of PP thus resulting in deterioration of its properties, however; MAPP and KMnO4 treated commingled composites showed much better stability towards thermal oxidation brought about by the solar concentrator, compared to untreated sample and neat polypropylene. This increased resistivity of treated composites (especially MAPP and KMnO4) towards thermal oxidation brought about by the solar concentrator is due to the increased interfacial adhesion between the matrix and jute yarn owing to chemical modifications. The significance of effective stress transfer between the PP matrix and reinforcing jute yarns is evident from the increased tear resistance of PP/jute yarn commingled composites with increasing fibre content and also with different chemical treatments.  相似文献   

14.
苎麻/黄(红)麻织物服用性能测试分析   总被引:1,自引:0,他引:1  
裴泽光  郁崇文 《中国麻业》2004,26(6):286-289
本文通过实验测定了苎麻/黄(红)麻混纺交织织物的服用性能,并与苎麻织物的服用性能进行比较,结论表明苎麻/黄(红)麻混纺交织织物具有良好的服用性能。  相似文献   

15.
From early times, jute fibre has been generally conditioned for easy spinning by adding oil and water in the form of an emulsion. The commonly used oil consists of C12–C31 fractions of mineral oil that sometimes impart different intensities of oily (kerosene) or fishy smell to the end product. In the present work, efforts have been made to find a suitable sustainable substitute of mineral oil based conditioning agent for spinning of jute yarn and for this, three types of vegetable oil (rice bran oil, palmolein oil and castor oil), a silicone emulsion, a mixed enzyme system and glycerine have been used separately or in combinations as conditioning agents for jute fibre before its mechanical processing for making yarn in jute spinning machines. Considering comparable mechanical process performance for spinning of jute fibre (viz., fibre loss as droppings during processing, moisture retention prior to spinning stage and spinning end breakage rate), tensile properties of yarn, and lower yarn hairiness, it may be suggested to use 2.5% castor oil alone, or 2% castor oil in combination with 0.1–0.5% glycerine in the form of oil-in-water emulsion as the most suitable alternatives to conventional mineral oil-based jute conditioning agent to spin ordinary jute yarn.  相似文献   

16.
In this work, the effect of optimum drafting condition on the drafting behavior and yarn quality of the bamboo charcoal-modified fiber blended spun yarns were studied. We measured the drafting force and drafting force variance, CV% of the bamboo charcoal-modified Polyester/Cotton (BCP/C) blended roving and bamboo charcoal-modified Rayon/Cotton (BCR/C) blended roving to examine the influence of the roller gauge and drafting ratio on drafting behavior and yarn quality. We understand that the drafting force of the bamboo charcoal-modified fiber blended roving follow the same trend as that for the regular P/C and R/C blend roving. However, the drafting force presents some difference in characteristics between these bamboo charcoal-modified fiber blended rovings. To correlate the drafting force variation, CV% and the bamboo charcoal-modified fiber blended spun yarn properties, we evaluated the yarn quality and investigate the yarn quality index in conjunction with the break drafting ratio. Therefore, in this work, we can obtain the best optimum drafting conditions for bamboo charcoal-modified fiber blended spun yarns; for the 19.7 tex of BCP70/C30 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.3, whereas, for the 19.7 tex of BCR40/C60 blend spun yarn was under the roller gauge of 54 mm at the draft ratio of 1.2.  相似文献   

17.
混纺比对麻涤纱线性能的影响   总被引:2,自引:0,他引:2  
俞雯  沈丕华等 《中国麻业》2001,23(3):30-33,37
本文通过对不同混纺比下的麻涤混纺纱的性能测试分析得出:涤纶比例必须达到一定量(40%)后,混纺纱的断裂伸长率才能随着涤纶比列的提高而逐渐改善;随着混纺比的改变,在涤纶含量为50%左右,混纺纱的断裂强力将出现一个低谷;随着涤纶含量的增加,毛羽和条干指标得以改善。  相似文献   

18.
This paper presents the low stress mechanical properties of plain fabrics woven from cotton, bamboo viscose and cotton-bamboo viscose blended yarns. Three blends (100 % cotton, 50:50 cotton-bamboo and 100 % bamboo) were used to produce three yarn counts (20, 25 and 30 Ne). Each of these yarns was used to make fabrics with different pick densities (50, 60 and 70 picks per inch). It was found that bending rigidity, bending hysteresis, shear rigidity, shear hysteresis and compressibility is lower for bamboo fabrics as compared to those of 100 % cotton fabrics. On the other hand, extensibility, tensile energy and compressional resilience are higher for 100 % bamboo fabrics than 100 % cotton fabrics. Higher pick density increases linearity of load-elongation curve, bending rigidity, shear rigidity and compressional resilience. Shear and bending rigidities show very good correlation with the respective hysteresis values.  相似文献   

19.
In the field of yarn spinning engineering, the importance of the processing parameters taken depends directly on the quality characteristics of the yarn. This study aimed to find the optimal processing parameters for an open-end rotor spinning frame at work to identify its multiple quality characteristics for yarn. In this study, Bamboo charcoal and cotton 70 %/polyester 30 % (CVC) blended fibers were adopted as the materials, and the open-end rotor spinning frame was used to spin the yarn. In order to identify optimal conditions of an open-end rotor spinning frame, the Taguchi experimental method was applied to design open-end rotor spinning experiments, and the L9 orthogonal array was chosen in accordance with nine sets of experiments and contained four control factors and three levels. Furthermore, a response surface methodology (RSM) was used to obtain the models of significant processing parameters for the strength, unevenness, I.P.I, and hairiness. Based on experiments designed to obtain an open-end rotor spun yarn Ne 30, the strength, unevenness, imperfection indicator/km (I.P.I) and hairiness were then chosen as the quality characteristics. In addition, grey relational analysis integrated the optimal processing parameter of multiple quality characteristics, and a confirmation experiment was performed. In conclusion, the optimal processing parameters under steady spinning conditions were a rotor speed of 88000 rpm, a feed speed of 0.392 m/min, and a winding speed of 39.466 m/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号