首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The HPLC analyses of Australian unifloral Eucalyptus honeys have shown that the flavonoids myricetin (3,5,7,3',4', 5'-hexahydroxyflavone), tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), luteolin (5,7,3', 4'-tetrahydroxyflavone), and kaempferol (3,5,7, 4'-tetrahydroxyflavone) are present in all samples. These compounds were previously suggested as floral markers of European Eucalyptus honeys. The present results confirm the use of flavonoid analysis as an objective method for the botanical origin determination of eucalyptus honey. Honeys from E. camaldulensis (river red gum honey) contain tricetin as the main flavonoid marker, whereas in honeys from E. pilligaensis (mallee honey), luteolin is the main flavonoid marker, suggesting that species-specific differences can be detected with this analysis. The main difference between the flavonoid profiles of Australian and European Eucalyptus honeys is that in the Australian honeys, the propolis-derived flavonoids (pinobanksin (3,5, 7-trihydroxyflavanone), pinocembrin (5,7-dihydroxyflavanone), and chrysin (5,7-dihydroxyflavone)) are seldom found and in much smaller amounts.  相似文献   

2.
Flavonoids of nine Australian monofloral Eucalyptus honeys have been analyzed and related to their botanical origins. The mean content of total flavonoids varied from 1.90 mg/100 g of honey for stringybark (E. globoidia) honey to 8.15 mg/100 g of honey for narrow-leaved ironbark (E. crebra) honey, suggesting that species-specific differences occur quantitatively among these Eucalyptus honeys. All of the honey samples analyzed in this study have a common flavonoid profile comprising tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), and luteolin (5,7,3',4'-tetrahydroxyflavone), which, together with myricetin (3,5,7,3',4',5'-hexahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone), were previously suggested as floral markers for European Eucalyptus honeys. Thus, flavonoid analysis could be used as an objective method for the authentication of the botanical origin of Eucalyptus honeys. Moreover, species-specific differences can also be found in the composition of honey flavonoid profiles. Among these honeys, bloodwood (E. intermedia) honey contains myricetin and tricetin as the main flavonoid compounds, whereas there is no myricetin detected in yapunyah (E. ochrophloia), narrow-leaved ironbark (E. crebra), and black box (E. largiflorens) honeys. Instead, these types of Eucalyptus honeys may contain tricetin, quercetin, and/or luteolin as their main flavonoid compounds. Compared to honeys from other geographical origins, the absence or minor presence of propolis-derived flavonoids such as pinobanksin, pinocembrin, and chrysin in Australian honeys is significant. In conclusion, these results demonstrate that a common flavonoid profile exists for all of the Eucalyptus honeys, regardless of their geographical origins; the individual species-specific floral types of Eucalyptus honey so common in Australia could be possibly differentiated by their flavonoid profile differences, either qualitatively or quantitatively or both.  相似文献   

3.
With the objective of finding floral markers for the determination of the botanical origin of acacia (robinia) honey, the phytochemicals present in nectar collected from Robinia pseudacacia flowers were analyzed by high-performance liquid chromatography-tandem mass spectrometry. Eight flavonoid glycosides were detected and characterized as kaempferol combinations with rhamnose and hexose. Acacia honey produced in the same location where the nectar was collected contained nectar-derived kaempferol rhamnosides. This is the first time that flavonoid glycosides have been found as honey constituents. Differences in the stability of nectar flavonoids during honey elaboration and ripening in the hive were shown to be due to hydrolytic enzymatic activity and to oxidation probably related to hydrogen peroxide (glucose-oxidase) activity. Acacia honeys contained propolis-derived flavonoid aglycones (468-4348 microg/100 g) and hydroxycinnamic acid derivatives (281-3249 microg/100 g). In addition, nectar-derived kaempferol glycosides were detected in all of the acacia honey samples analyzed (100-800 microg/100 g). These flavonoids were not detected in any of the different honey samples analyzed previously from different floral origins other than acacia. Finding flavonoid glycosides in honey related to floral origin is particularly relevant as it considerably enlarges the number of possible suitable markers to be used for the determination of the floral origin of honeys.  相似文献   

4.
To select and establish floral biomarkers of the botanical origin of Diplotaxis tenuifolia honeys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MS(n). Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey. D. tenuifolia mature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765-3171 μg/100 g) and hydroxycinnamic acid derivatives (29-1514 μg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of Argentinean Diplotaxis honeys.  相似文献   

5.
Acacia confusa Merr. (Leguminosae) is traditionally used as a medicinal plant in Taiwan. In the present study, anti-inflammatory activity of extracts from the heartwood of A. confusa were investigated for the first time. Results demonstrated that ethanolic extracts of A. confusa heartwood strongly suppressed NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Among all fractions derived from ethanolic extracts, the EtOAc fraction exhibited the best inhibitory activity. Following column chromatography and reverse-phase high-performance liquid chromatography, 13 specific phytocompounds including 5 new flavonoids (i.e., 7,8,3',4'-tetrahydroxy-4-methoxyflavan-3-ol, 7,8,3',4'-tetrahydroxyflavone, 7,8,3'-trihydroxy-3,4'-dimethoxyflavone, 7,3',4'-trihydroxyflavone, and 7,3',4'-trihydroxy-3-methoxyflavone) were isolated and identified from the EtOAc fraction. In addition, melanoxetin (3,7,8,3',4'-pentahydroxyflavone), a major compound in the EtOAc fraction, markedly suppressed LPS-induced NO and prostaglandin E 2 (PGE 2) production. Moreover, melanoxetin completely suppressed gene expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at 50 and 100 microM, respectively. This is the first report to identify the inhibitory bioactivities of melanoxetin on iNOS and COX-2.  相似文献   

6.
Studies were conducted on the flavonoids (myricetin, quercetin, kaempferol, luteolin, and apigenin) contents of 62 edible tropical plants. The highest total flavonoids content was in onion leaves (1497.5 mg/kg quercetin, 391.0 mg/kg luteolin, and 832.0 mg/kg kaempferol), followed by Semambu leaves (2041.0 mg/kg), bird chili (1663.0 mg/kg), black tea (1491.0 mg/kg), papaya shoots (1264.0 mg/kg), and guava (1128.5 mg/kg). The major flavonoid in these plant extracts is quercetin, followed by myricetin and kaempferol. Luteolin could be detected only in broccoli (74.5 mg/kg dry weight), green chili (33.0 mg/kg), bird chili (1035.0 mg/kg), onion leaves (391.0 mg/kg), belimbi fruit (202.0 mg/kg), belimbi leaves (464.5 mg/kg), French bean (11.0 mg/kg), carrot (37.5 mg/kg), white radish (9.0 mg/kg), local celery (80.5 mg/kg), limau purut leaves (30.5 mg/kg), and dried asam gelugur (107.5 mg/kg). Apigenin was found only in Chinese cabbage (187.0 mg/kg), bell pepper (272.0 mg/kg), garlic (217.0 mg/kg), belimbi fruit (458.0 mg/kg), French peas (176.0 mg/kg), snake gourd (42.4 mg/kg), guava (579.0 mg/kg), wolfberry leaves (547.0 mg/kg), local celery (338.5 mg/kg), daun turi (39.5 mg/kg), and kadok (34.5 mg/kg). In vegetables, quercetin glycosides predominate, but glycosides of kaempferol, luteolin, and apigenin are also present. Fruits contain almost exclusively quercetin glycosides, whereas kaempferol and myricetin glycosides are found only in trace quantities.  相似文献   

7.
We report on the development of a novel alternative method for the assessment of floral origin in honey samples based on the study of honey proteins using immunoblot assays. The main goal of our work was to evaluate the use of honey proteins as chemical markers of the floral origin of honey. Considering that honeybee proteins should be common to all types of honey, we decided to verify the usefulness of pollen proteins as floral origin markers in honey. We used polyclonal anti-pollen antibodies raised in rabbits by repeated immunization of Sunflower (Elianthus annuus) and Eucalyptus (Eucalyptus sp.) pollen extracts. The IgG fraction was purified by immunoaffinity. These antibodies were verified with nitrocellulose blotted pollen and unifloral honey protein extracts. The antibodies anti-Sunflower pollen, bound to the 36 and 33 kDa proteins of Sunflower unifloral honey and to honey containing Sunflower pollen; and the antibodies anti-Eucalyptus sp. pollen bound to the 38 kDa proteins of Eucalyptus sp. unifloral honey in immunoblot assays. Satisfactory results were obtained in differentiating between the types of pollen analyzed and between Sunflower honey and Eucalyptus honey with less cross reactivity with other types of honey from different origin and also with good sensitivity in the detection. This immunoblot method opens an interesting field for the development of new antibodies from different plants, which could serve as an alternative or complementary method to the usual melissopalynological analysis to assess honey floral origin.  相似文献   

8.
Honey as rich source of enzymatic and nonenzymatic antioxidants serves as health-promoting nutrient in the human body. Here, we present the first time a comparative study of nutritional profiles (e.g., acidities, sugar, organic acid profile, total polyphenolic, flavonoid content) for different unifloral, multifloral honeys and their fermented products, in correlation with their antioxidant activity. Additionally, an optimized method for HPLC separation of organic acids from honey was established. The total phenolic content of honey samples varied widely among the honey types compared to fermented products. High amounts of total flavonoids were quantified in heather honey, followed by raspberry, multifloral, black locust, and linden honey. A positive correlation between the content of polyphenols, flavonoids, and antioxidant activity was observed in honey samples. After fermentation, the flavonoid content of dark honey fermented products decreased significantly. Black locust and linden honeys are more suitable for fermentation because the decrease in antioxidant substances is less pronounced.  相似文献   

9.
There is current interest in the use of naturally occurring flavonoids as antioxidants for the preservation of foods and the prevention of diseases such as atherosclerosis and cancers. To establish the molecular characteristics required for maximum antioxidant activity, electron spin resonance (ESR) spectroscopy has been used to determine the stoichiometry and kinetics of the hydrogen-donating ability of 15 flavonoids and d-alpha-tocopherol to galvinoxyl, a resonance-stabilized, sterically protected aryloxyl radical. The second-order reaction rates, which will be governed by O-H bond dissociation energies, were myricetin > morin > quercetin > fisetin approximately catechin > kaempferol approximately luteolin > rutin > d-alpha-tocopherol > taxifolin > tamarixetin > myricetin 3',4',5'-trimethyl ether > datiscetin > galangin > hesperitin approximately apigenin. Reactivity is highly dependant on the configuration of OH groups on the flavonoid B and C rings, there being little contribution from the A ring to antioxidant effectiveness. Highest reaction rates and stoichiometries were observed with flavonols capable of being oxidized to orthoquinones or extended paraquinones. However, rates and stoichiometries did not always correlate and the data suggest that kinetic factors may be of greater importance within a biological context.  相似文献   

10.
5,7,3',4'-Tetramethoxyflavone (TMF), one of the major polymethoxyflavones (PMFs) isolated from Kaempferia parviflor , has been reported possessing various bioactivities, including antifungal, antimalarial, antimycobacterial, and anti-inflammatory activities. Although several studies on the TMF have been reported, the information about the metabolism of TMF and the structures of TMF metabolites is still not yet clear. In this study, an isotope-labeling method was developed for the identification of TMF metabolites. Three isotope-labeled TMFs (5,7,3',4'-tetramethoxy[3'-D(3)]flavone, 5,7,3',4'-tetramethoxy[4'-D(3)]flavone, and 5,7,3',4'-tetramethoxy[5,4'-D(6)]flavone) were synthesized and administered to rats. The urine samples were collected, and the main metabolites were monitored by ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry. Five TMF metabolites were unambiguously identified as 3'-hydroxy-5,7,4'-trimethoxyflavone, 7-hydroxy-5,3',4'-trimethoxyflavone sulfate, 7-hydroxy-5,3',4'-trimethoxyflavone, 4'-hydroxy-5,7,3'-trimethoxyflavone, and 5-hydroxy-7,3',4'-trimethoxyflavone.  相似文献   

11.
The solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) was used for the analysis of phenolic and other aromatic compounds in honey samples from different floral origin. Different parameters affecting the efficiency of the extraction, such as the type of the stationary phase of the fiber, NaCl and acetic acid addition, and extraction time, were optimized for the detection of the maximum number of compounds in the shortest analysis time. A total of 31 compounds were detected, with most of them identified and quantified by GC-MS. The principal component analysis (PCA) was applied to the data matrix; the results allowed for the differentiation between honeydew and nectar honeys on the basis of the salicylic acid concentration. It was found that this acid has a high contribution in the honeydew group (71.2-705.9 microg/100 g of honey) compared to the nectar honey group (0-47.6 microg/100 g of honey). The comparison of data in each honey group enabled us to characterize the floral source of some honeys using some aromatic compounds as markers.  相似文献   

12.
A screening method using LC-DAD-ESI/MS was applied to the analysis of flavonoids in celery, Chinese celery, and celery seeds (Apium graveolens L. and varieties). Fifteen flavonoid glycosides were detected in the three celery materials. They were identified as luteolin 7-O-apiosylglucoside, luteolin 7-O-glucoside, apigenin 7-O-apiosylglucoside, chrysoeriol 7-O-apiosylglucoside, chrysoeriol 7-O-glucoside, and more than 10 malonyl derivatives of these glycosides. The identification of the malonyl derivatives was confirmed by their conversion into glycosides upon heating and by comparison of some of the malonates with malonates that had previously been identified in red bell pepper and parsley. The concentrations of the glycosides and the malonyl glycosides in the three materials were estimated by comparison to aglycone standards. This is the first report of the presence of these glycosylated flavonoid malonates in celery.  相似文献   

13.
Fourier transform infrared spectroscopy (FTIR) and z-Nose were used as screening tools for the identification and classification of honey from different floral sources. Honey samples were scanned using microattenuated total reflectance spectroscopy in the region of 600-4000 cm(-1). Spectral data were analyzed by principal component analysis, canonical variate analysis, and artificial neural network for classification of the different honey samples from a range of floral sources. Classification accuracy near 100% was achieved for clover (South Dakota), buckwheat (Missouri), basswood (New York), wildflower (Pennsylvania), orange blossom (California), carrot (Louisiana), and alfalfa (California) honey. The same honey samples were also analyzed using a surface acoustic wave based z-Nose technology via a chromatogram and a spectral approach, corrected for time shift and baseline shifts. On the basis of the volatile components of honey, the seven different floral honeys previously mentioned were successfully discriminated using the z-Nose approach. Classification models for FTIR and z-Nose were successfully validated (near 100% correct classification) using 20 samples of unknown honey from various floral sources. The developed FTIR and z-Nose methods were able to detect the floral origin of the seven different honey samples within 2-3 min based on the developed calibrations.  相似文献   

14.
The flavonoids are plant polyphenols found frequently in fruits, vegetables, and grains. Divided into several subclasses, they include the anthocyanidins, pigments chiefly responsible for the red and blue colors in fruits, fruit juices, wines, and flowers; the catechins, concentrated in tea; the flavanones and flavanone glycosides, found in citrus and honey; and the flavones, flavonols, and flavonol glycosides, found in tea, fruits, vegetables, and honey. Known for their hydrogen-donating antioxidant activity as well as their ability to complex divalent transition metal cations, flavonoids are propitious to human health. Computer-controlled high-performance liquid chromatography (HPLC) has become the analytical method of choice. Many systems have been developed for the detection and quantification of flavonoids across one, two, or three subclasses. A summary of the various HPLC and sample preparation methods that have been employed to quantify individual flavonoids within a subclass or across several subclasses are tabulated in this review.  相似文献   

15.
An ethyl acetate-soluble extract of Chorizanthe diffusa was found to exhibit significant antioxidant activity, as judged by scavenging stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and inhibition of 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced free radical formation with cultured HL-60 cells. Bioassay-directed fractionation of this extract using the DPPH antioxidant assay as a monitor led to the isolation of five structurally related flavonoids (1-5), including the novel compound 5,8,3',4',5'-pentahydroxy-3, 7-dimethoxyflavone (1). Isolates 1-5 demonstrated varying degrees of antioxidant or antimutagenic activity. Two of the compounds, 5,7,3', 4'-tetrahydroxy-3-methoxyflavone (2) and quercetin (4), were subsequently found to inhibit carcinogen-induced preneoplastic lesions in a mouse mammary organ culture model. Inhibitory activity of this type is known to correlate with cancer chemopreventive effects in full-term models of tumorigenesis.  相似文献   

16.
Cholinesterases are key enzymes that play important roles in cholinergic transmission. Nine flavonoids displaying cholinesterase inhibitory activity were isolated from the root bark of Morus lhou L., a cultivated edible plant. The isolated compounds were identified as a new flavone (1), 5'-geranyl-5,7,2',4'-tetrahydroxyflavone (2), kuwanon U (3), kuwanon E (4), morusin (5), morusinol (6), cyclomorusin (7), neocyclomorusin (8), and kuwanon C (9). All compounds apart from compound 6 inhibited cholinesterase enzyme in a dose-dependent manner with K(i) values ranging between 3.1 and 37.5 μM and between 1.7 and 19.1 μM against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, respectively. The new compound was charactierized as 5'-geranyl-4'-methoxy-5,7,2'-trihydroxyflavone (1). It showed the most potent inhibitory activity (K(i) = 3.1 μM for AChE, K(i) = 1.74 μM for BChE). Lineweaver-Burk and Dixon plots and their secondary replots indicated that flavones (5-9) with prenyl substitution on C-3 were noncompetitive inhibitors, whereas those unsubstituted (1-4) at C-3 were mixed inhibitors of both AChE and BChE. In conclusion, this is the first study to demonstrate that alkylated flavonoids of M. lhou have potent inhibitory activities against AChE and BChE.  相似文献   

17.
Polyphenolic compounds in cranberries have been investigated to determine their role in protection against cardiovascular disease and some cancers. Extracts of whole fruit were assayed for radical-scavenging activity and tumor growth inhibition using seven tumor cell lines. Selective inhibition of K562 and HT-29 cells was observed from a methanolic extract in the range of 16-125 microg/mL. Radical-scavenging activity was greatest in an extract composed primarily of flavonol glycosides. Seven flavonol glycosides were isolated and purified from whole fruit for further evaluation; the anthocyanin cyanidin 3-galactoside was also purified for comparison with the flavonoids. Three flavonol monoglycosides were newly identified by (13)C NMR as myricetin 3-alpha-arabinofuranoside, quercetin 3-xyloside, and 3-methoxyquercetin 3-beta-galactoside (isorhamnetin); the other four isolated were the previously identified myricetin 3-beta-galactoside, quercetin 3-beta-galactoside, quercetin 3-alpha-arabinofuranoside, and quercetin 3-alpha-rhamnopyranoside. These compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and ability to inhibit low-density lipoprotein oxidation in vitro. Most of the flavonol glycosides showed antioxidant activity comparable or superior to that of vitamin E; cyanidin 3-galactoside showed activity superior to that of the flavonoids as well as vitamin E or Trolox in both antioxidant assays.  相似文献   

18.
The antiradical activities of some flavonols (kaempferol, quercetin, robinetin, quercetagetin, and myricetin), flavones (apigenin, baicalein, and luteolin), flavanones (naringenin and dihydroquercetin), and flavanols [(+)-catechin and (-)-epicatechin] were determined by measuring the reaction kinetics with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and alpha,gamma-bisdiphenylene-beta-phenylallyl (BDPA) radicals. The reactions, which follow the mixed second-order rate law, were investigated under pseudo-first-order conditions by use of a large excess of flavonoids, and their stoichiometry was determined by spectrophotometric titration. The results confirm stoichiometric factors of 1, 2, and 3 for flavonoids with one, two, and three hydroxyl groups in the B-ring, respectively, excluding kaempferol, which, despite a single OH group in the B-ring, has a factor of 2, which is explained by the 3-OH group supporting the reaction with free radicals. Structure-activity considerations indicate for the present series of flavonoids the importance of multiple OH substitutions and conjugation. The logarithms of reaction rate constants with the OH, DPPH, and BDPA radicals correlate well with the reduction potential of the flavonoids.  相似文献   

19.
With the aim of finding methods that could constitute a solid alternative to melissopalynological and physicochemical analyses to determine the botanical origin (floral or honeydew) of honeys, the free amino acid content of 46 honey samples has been determined. The honeys were collected in a small geographic area of approximately 2000 km(2) in central Spain. Twenty-seven honey samples were classified as floral and 19 as honeydew according to their palynological and physicochemical analyses. The resulting data have been subjected to different multivariant analysis techniques. One hundred percent of honey samples have been correctly classified into either the floral or the honeydew groups, according to their content in glutamic acid and tryptophan. It is concluded that free amino acids are good indicators of the botanical origin of honeys, saving time compared with more tedious analyses.  相似文献   

20.
Analysis of organic acids in strawberry-tree (Arbutus unedo) honey showed the presence of an unknown acid as the main constituent. This compound was isolated and identified as homogentisic acid (2, 5-dihydroxyphenylacetic acid) by MS and NMR techniques. Its average content in honey was 378 +/- 92 mg/kg. Analysis of nectar confirmed the floral origin of the compound found in honey. Since this acid was not detected in any of the different monofloral honeys, it could be used as a marker of strawberry-tree (A. unedo) honey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号