首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated an in-field near-infrared (NIR) instrument to predict the contents of total nitrogen (TN), organic carbon (OC), potassium (K), sulfur (S), phosphorus (P), pH, and electric conductivity (EC) in soil vineyard samples (n = 70) sourced from three wine regions of Australia. Samples were analyzed using a portable NIR spectrophotometer (ASD FieldSpec III, 350–1800 nm). Partial least squares (PLS) regressions yield a coefficient of determination in calibration (R2) and a standard error in cross validation (SECV) of 0.74 (0.03) for TN, 0.92 (2.19) for S, 0.81 (0.42) for OC, 0.70 (109.2) for K, 0.84 (0.03) for EC, 0.83 (0.44) for pH, and 0.69 (24.6) for P, respectively. This study showed that it is possible to measure soil chemical properties in the vineyard, and the main advantages of this approach will be the speed, low cost, and ability to better manage and monitor soil fertility.  相似文献   

2.
The development of accurate calibration models for selected soil properties is a crucial prerequisite for successful implementation of visible and near infrared (Vis‐NIR) spectroscopy for soil analysis. This paper compares the performance of calibration models developed for individual farms with that of general models valid for three farms in three European countries. Fresh soil samples collected from farms in the Czech Republic, Germany and Denmark were scanned with a fibre‐type Vis‐NIR spectrophotometer. After dividing spectra into calibration (70%) and validation (30%) sets, spectra in the calibration set were subjected to partial least squares regression (PLSR) with leave‐one‐out cross‐validation to establish calibration models of soil properties. Except for the Czech Republic farm, individual farm models provided successful calibration for total carbon (TC), total nitrogen (TN) and organic carbon (OC), with coefficients of determination (R2) of 0.85–0.93 and 0.74–0.96 and residual prediction deviations (RPD) of 2.61–3.96 and 2.00–4.95 for the cross‐validation and independent validation respectively. General calibration models gave improved prediction accuracies compared with models of farms in the Czech Republic and Germany, which was attributed to larger ranges in the variation of soil properties in general models compared with those in individual farm models. The results revealed that larger standard deviations (SDs) and wider variation ranges have resulted in larger R2 and RPD, but also larger root mean square errors of prediction (RMSEP). Therefore, a compromise solution, which also results in small RMSEP values, should be found when selecting soil samples for Vis‐NIR calibration to cover a wide variation range.  相似文献   

3.
对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm-1)对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)方法进行基线校正,然后分别应用偏最小二乘回归(PLSR)和支持向量机(SVM)两种方法进行建模,探讨了可见-近红外和中红外光谱对土壤全氮(TN)、全磷(TP)、全钾(TK)和碱解氮(AN)、有效磷(AP)、速效钾(AK)共六种土壤养分的预测效果。结果表明:(1)无论基于可见-近红外光谱还是中红外光谱,PLSR模型的预测精度整体均优于SVM模型。(2)中红外光谱对TN、TK和AN的预测精度均显著高于可见-近红外光谱,可见-近红外和中红外光谱均可以可靠地预测TN和TK(性能与四分位间隔距离的比率(RPIQ)大于2.10),中红外光谱可相对较可靠地预测AN(RPIQ=1.87);但两类光谱对TP、AP和AK的预测效果均较差(RPIQ<1.34)。(3)当变量投影重要性得分(VIP)大于1.5时,PLSR模型在中红外光谱区域预测TN和TK的重要波段多于可见-近红外光谱区域,TN的重要波段主要集中于可见-近红外光谱区域的1910和2207 nm附近,中红外光谱区域的1 120、1 000、960、910、770和668 cm-1附近;TK的重要波段主要集中于可见-近红外光谱区域的540、2176、2225和2268 nm附近,中红外光谱区域的1 040、960、910、776、720和668 cm-1附近。因此,中红外光谱技术结合PLSR模型对土壤养分预测效果较好,可快速准确预测土壤TN和TK,可为指导适时施肥提供技术支撑。  相似文献   

4.
We investigate the potential of near-infrared (NIR) spectroscopy to predict some heavy metals content (Zn, Cu, Pb, Cr and Ni) in several soil types in Stara Zagora Region, South Bulgaria, as affected by the size of calibration set using partial least squares (PLS) regression models. A total of 124 soil samples from the 0–20 and 20–40 cm layers were collected from fields with different cropping systems. Total Zn, Cu, Pb, Cr and Ni concentrations were determined by Atomic Absorption Spectrometry. Spectra of air dried soil samples were obtained using an FT-NIR Spectrometer (spectral range 700–2,500 nm). PLS calibration models were developed with full-cross-validation using calibration sets of 90 %, 80 %, 70 % and 60 % of the 124 samples. These models were validated with the same prediction set of 12 samples. The validation of the NIR models showed Cu to be best predicted with NIR spectroscopy. Less accurate prediction was observed for Zn, Pb and Ni, which was classified as possible to distinguish between high and low concentrations and as approximate quantitative. The worst model performance in cross-validation and prediction was for Cr. Results also showed that values of root mean square error in cross-validation (RMSEcv) increased with decreasing number of samples in calibration sets, which was particularly clear for Cu, Pb, Ni and Cr content. A similar tendency was observed in the prediction sets, where RMSEP values increased with a decrease in the number of samples, particularly for Pb, Ni and Cr content. This tendency was not clear for Zn, while even an increase in RMSEP for Cu with the sample size was observed. It can be concluded that NIR spectroscopy can be used to measure heavy metals in a sample set with different soil type, when sufficient number of soil samples (depending on variability) is used in the calibration set.  相似文献   

5.
This paper reports on the influence of the number of samples used for the development of farm‐scale calibration models for moisture content (MC), total nitrogen (TN) and organic carbon (OC) on the prediction error expressed as root mean square error of prediction (RMSEP) for visible and near infrared (vis‐NIR) spectroscopy. Fresh (wet) soil samples collected from four farms in the Czech Republic, Germany, Denmark and the UK were scanned with a fibre‐type vis‐NIR, AgroSpec spectrophotometer with a spectral range of 305–2200 nm. Spectra were divided into calibration (two thirds) and prediction (one third) sets and the calibration spectra were subjected to a partial least squares regression (PLSR) with leave‐one‐out cross‐validation using Unscrambler 7.8 software. The RMSEP values of models with a large sample number (46–84 samples from each farm) were compared with those of models developed with a small sample number (25 samples selected from the large sample set of each farm) for the same variation range. Both large‐set and small‐set models were validated by the same prediction set for each property. Further PLSR analysis was carried out on samples from the German farm, with different sample numbers of the calibration set of 25, 50, 75 and 100 samples. Results showed that the large‐size dataset models resulted in smaller RMSEP values than the small‐size dataset models for all the soil properties studied. The results also demonstrated that with the increase in sample number used in the calibration set, RMSEP decreased in almost linear fashion, although the largest decrease was between 25 and 50 samples. Therefore, it is recommended that the number of samples should be chosen according to the accuracy required, although 50 soil samples is considered appropriate in this study to establish calibration models of TN, OC and MC with smaller expected prediction errors as compared with smaller sample numbers.  相似文献   

6.
Abstract

The use of ultraviolet (UV), visible (VIS), near infrared reflectance (NIR), and midinfrared (MIR) spectroscopy techniques have been found to be successful in determining the concentration of several chemical properties in soils. The aim of this study was to evaluate the effect of two reference methods, namely Bray and Resins, on the VIS and NIR calibrations to predict phosphorus in soil samples. Two hundred (n=200) soil samples were taken in different years from different locations across Uruguay with different physical and chemical characteristics due to different soil types and management. Soil samples were analyzed by two reference methods (Bray and Resins) and scanned using an NIR spectrophotometer (NIRSystems 6500). Partial least square (PLS) calibration models between reference data and NIR data were developed using cross‐validation. The coefficient of determination in calibration (R2) and the root mean square of the cross validation (RMSECV) were 0.58 (RMSECV: 3.78 mg kg?1) and 0.61 (RMSECV: 2.01 mg kg?1) for phosphorus (P) analyzed by Bray and Resins methods, respectively, using the VIS and NIR regions. The R2 and RMSECV for P using the NIR region were 0.50 (RMSECV: 3.78 mg kg?1) and 0.58 (RMSECV: 2.01 mg kg?1). This study suggested that differences in accuracy and prediction depend on the method of reference used to develop an NIR calibration for the measurement of P in soil.  相似文献   

7.
基于近红外光谱和支持向量机的土壤参数预测   总被引:7,自引:5,他引:2  
应用支持向量机算法对实时土壤光谱数据进行处理,获得了土壤全氮和有机质的回归模型并研究了模型随参数变化的规律。从中国农业大学试验田采集了150个土样,用光谱仪获取了原始土壤样本的近红外光谱,用实验室分析法获取了各样本的全氮和有机质含量。以近红外光谱数据为自变量对2个土壤参数进行了回归建模并评价了算法各参数对模型的影响。研究表明土壤参数适合于全谱支持向量回归。对于土壤全氮,基于小波降噪NIR光谱的SVM回归模型的标定R2为0.9224,验证R2为0.3667;对于土壤有机质,基于原始NIR光谱的SVM回归模型  相似文献   

8.
近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量   总被引:18,自引:2,他引:18  
运用偏最小二乘法(PLS)和人工神经网络(ANN)方法分别建立了0.9 mm筛分风干黑土土壤碱解氮、速效磷和速效钾含量预测的近红外光谱(NIRS)分析模型。使用偏最小二乘算法建立的碱解氮、速效磷和速效钾校正模型的决定系数R2分别为0.9520、0.8714和0.7300,平均相对误差分别为3.42%、13.40%和7.40%。人工神经网络方法建立的碱解氮、速效磷和速效钾校正模型的决定系数分别为0.9563、0.9493和0.9522,相对误差分别为2.67%、6.48%和2.27%,测试集仿真的相对误差分别为5.44%、16.65%和7.87%。结果表明,人工神经网络方法所建立的校正模型均优于偏最小二乘法所建模型;用近红外光谱分析法预测土壤碱解氮含量是可行的,而速效磷、速效钾模型的测试集样品仿真的相对误差较大,其预测可行性还需做进一步研究。  相似文献   

9.
The present study aims to evaluate the potential of near-infrared reflectance (NIR) spectroscopy to determine the carbon and nitrogen content in soils and also to assess the effectiveness of NIR spectroscopy to predict carbon and nitrogen content in freshly collected soil samples. Soil samples (n = 179) were collected from different locations in India. Soil carbon and nitrogen contents were successfully predicted (R2 = 0.90 for carbon and R2 = 0.85 for nitrogen) by NIR spectroscopy. The root mean square error (RMSE) and ratio performance deviation (RPD) for the validation of predicted equations for carbon and nitrogen were 0.83 and 2.83 and 0.01 and 6.98, respectively. The efficacy of NIR spectroscopy on the prediction of carbon and nitrogen content in Indian soils is highly reliable. Water content in soil samples could affect the NIR absorbance spectra and in turn affect the quantification of carbon and nitrogen.  相似文献   

10.
玉米非淀粉组分是可再生的生物质资源,为实现玉米皮渣中纤维素及半纤维含量的快速检测,该研究以偏最小二乘法(PLS)建立数学模型,探讨一阶导数及二阶导数平滑等预处理对建模的影响,建立玉米皮渣中纤维素及半纤维素近红外分析模型.研究结果表明,纤维素模型的定标集和验证集相关系数为0.9806和0.9799,定标集标准偏差(SEE...  相似文献   

11.
Methods to quantify organic carbon (OC) in soil fractions of different stabilities often involve time-consuming physical and chemical treatments. The aim of the present study was to test a more rapid alternative, which is based on the spectroscopic analysis of bulk soils in the mid-infrared region (4000-400 cm−1), combined with partial least-squares regression (PLS). One hundred eleven soil samples from arable and grassland sites across Switzerland were separated into fractions of dissolved OC, particulate organic matter (POM), sand and stable aggregates, silt and clay particles, and oxidation resistant OC. Measured contents of OC in each fraction were then correlated by PLS with infrared spectra to obtain prediction models. For every prediction model, 100 soil spectra were used in the PLS calibration and the residual 11 spectra for validation of the models. Correlation coefficients (r) between measured and PLS-predicted values ranged between 0.89 and 0.97 for OC in different fractions. By combining different fractions to one labile, one stabilized and one resistant fraction, predictions could even be improved (r=0.98, standard error of prediction=16%). Based on these statistical parameters, we conclude that mid-infrared spectroscopy in combination with PLS is an appropriate and very fast tool to quantify OC contents in different soil fractions.  相似文献   

12.
Abstract

The objective of this study was to compare mid‐infrared (MIR) an near‐infrared (NIR) spectroscopy (MIRS and NIRS, respectively) not only to measure soil carbon content, but also to measure key soil organic C (SOC) fractions and the δ13C in a highly diverse set of soils while also assessing the feasibility of establishing regional diffuse reflectance calibrations for these fractions. Two hundred and thirty‐seven soil samples were collected from 14 sites in 10 western states (CO, IA, MN, MO, MT, ND, NE, NM, OK, TX). Two subsets of these were examined for a variety of C measures by conventional assays and NIRS and MIRS. Biomass C and N, soil inorganic C (SIC), SOC, total C, identifiable plant material (IPM) (20× magnifying glass), the ratio of SOC to the silt+clay content, and total N were available for 185 samples. Mineral‐associated C fraction, δ13C of the mineral associated C, δ13C of SOC, percentage C in the mineral‐associated C fraction, particulate organic matter, and percentage C in the particulate organic matter were available for 114 samples. NIR spectra (64 co‐added scans) from 400 to 2498 nm (10‐nm resolution with data collected every 2 nm) were obtained using a rotating sample cup and an NIRSystems model 6500 scanning monochromator. MIR diffuse reflectance spectra from 4000 to 400 cm?1 (2500 to 25,000 nm) were obtained on non‐KBr diluted samples using a custom‐made sample transport and a Digilab FTS‐60 Fourier transform spectrometer (4‐cm?1 resolution with 64 co‐added scans). Partial least squares regression was used with a one‐out cross validation to develop calibrations for the various analytes using NIR and MIR spectra. Results demonstrated that accurate calibrations for a wide variety of soil C measures, including measures of δ13C, are feasible using MIR spectra. Similar efforts using NIR spectra indicated that although NIR spectrometers may be capable of scanning larger amounts of samples, the results are generally not as good as achieved using MIR spectra.  相似文献   

13.
赵化兵  王洁  董彩霞  徐阳春 《土壤》2014,46(2):256-261
利用可见/近红外反射光谱定量分析技术对梨树鲜叶钾素含量进行快速测定研究。对150个梨树叶片样本进行光谱扫描,其中120个做建模集,30个做验证集。通过对样品的可见/近红外光谱进行多种预处理,并建立钾素预测模型,探讨了可见/近红外光谱数据预处理对预测精度的影响。结果表明,通过原始光谱与S-G(3)平滑相结合的预处理方法,用17个主成分建立的偏最小二乘法模型最好,其交叉验证集和预测集模型的决定系数(R2)分别为0.722 7和0.679 1,交叉验证均方根误差(RMSECV)为1.171,预测的平均相对误差为6.81%,能高效、快速地预测梨树叶片钾素含量,为梨树钾素快速测定提供了新的手段。  相似文献   

14.
Near-infrared reflectance spectroscopy (NIRS) has the potential to be a reliable method for accurately quantifying soil organic carbon (SOC). The objective of this study was to evaluate NIRS as a method for predicting SOC. Partial least squares (PLS) regression was used to predict SOC from soil reflectance values or the first derivative of the reflectance values. Two model validation techniques were evaluated: One was a full cross-validation and in the other 30 percent of the samples were removed from the calibration data set and then tested using the calibrated model. Significant relationships were observed for predicted SOC when compared to laboratory-measured SOC for all models evaluated, regardless of validation technique. The prediction models using the first derivative of the reflectance values outperformed prediction models using the reflectance values alone. In conclusion, NIRS can be used as a quick and accurate method for measuring SOC.  相似文献   

15.
A total of 73 soil samples were initially analyzed for lead (Pb) concentration as an indicator of the environment impact of smelter activity in the Port Pirie, South Australia. Chemometric techniques were used to assess the ability of near-infrared (NIR) reflectance spectroscopy to predict soil Pb using spectrally active soil characteristics such as soil carbon (C). The result indicated a strong linear relationship between log-transformed data of soil Pb and spectral reflectance in the range between 500 and 612 nm with R2 = 0.54 and a low root-mean-square error (RMSEv = 0.38) for the validation mode with an acceptable ratio of performance to deviation and ratio of error range (1.6 and 7.7, respectively). This study suggested that NIR spectroscopy based on auxiliary spectrally active components is a rapid and noninvasive assessment technique and has the ability to determine Pb contamination in urban soil to be useful in environmental health risk assessment.  相似文献   

16.
Alluvial soils constitute significant portion of cultivated land in India and it contributes towards food grain production predominantly. The objectives of this study were to assess the spatial variability of soil pH, organic carbon (OC), available (mineralizable) nitrogen (N), available phosphorus (P), available potassium (K) and available zinc (Zn) of alluvial floodplain soils of Kadwa block, Katihar district, Bihar, India. A total of 85 soil samples, representative of the plough layer (0–25 cm depth from surface) were randomly collected from the study area. The values of soil pH, OC, N, P, K and Zn varied from4.4 to 8.4, 0.20% to 1.20%, 141 to 474, 2.2 to 68.2, 107 to 903 kg ha–1 and 0.22 to 1.10 mg kg–1, respectively. The coefficient of variation value was highest for available P (94.3%) and lowest for soil pH (11.3%). Spherical model was found to be the best fit for N, P and Zn contents, while exponential model was the best fit for OC, and Gaussian model was the best-fit model for pH and K. The nugget/sill ratio indicates that except pH and available K all other soil properties were moderately spatially dependent (25–57%). Soil properties exhibited different distribution pattern. It was observed that the use of geostatistical method could accurately generate the spatial variability maps of soil nutrients in alluvial soils.  相似文献   

17.
The capture and storage of soil organic carbon (OC) should improve the soil's quality and function and help to offset the emissions of greenhouse gases. However, to measure, model or monitor changes in OC caused by changes in land use, land management or climate, we need cheaper and more practical methods to measure it and its composition. Conventional methods are complex and prohibitively expensive. Spectroscopy in the visible and near infrared (vis–NIR) is a practical and affordable alternative. We used samples from Australia's Soil Carbon Research Program (SCaRP) to create a vis–NIR database with accompanying data on soil OC and its composition, expressed as the particulate, humic and resistant organic carbon fractions, POC, HOC and ROC, respectively. Using this database, we derived vis–NIR transfer functions with a decision‐tree algorithm to predict the total soil OC and carbon fractions, which we modelled in units that describe their concentrations and stocks (or densities). Predictions of both carbon concentrations and stocks were reliable and unbiased with imprecision being the main contributor to the models' errors. We could predict the stocks because of the correlation between OC and bulk density. Generally, the uncertainty in the estimates of the carbon concentrations was smaller than, but not significantly different to, that of the stocks. Approximately half of the discriminating wavelengths were in the visible region, and those in the near infrared could be attributed to functional groups that occur in each of the different fractions. Visible–NIR spectroscopy with decision‐tree modelling can fairly accurately, and with small to moderate uncertainty, predict soil OC, POC, HOC and ROC. The consistency between the decision tree's use of wavelengths that characterize absorptions due to the chemistry of soil OC and the different fractions provides confidence that the approach is feasible. Measurement in the vis–NIR range needs little sample preparation and so is rapid, practical and cheap. A further advantage is that the technique can be used directly in the field.  相似文献   

18.
Near-infrared (NIR) spectroscopy has been used in foods for the rapid assessment of several macronutrients; however, little is known about its potential for the evaluation of the utilizable energy of foods. Using NIR reflectance spectra (1104-2494 nm) of ground cereal products (n = 127) and values for energy measured by bomb calorimetry, chemometric models were developed for the prediction of gross energy and available energy of diverse cereal food products. Standard errors of cross-validation for NIR prediction of gross energy (range = 4.05-5.49 kcal/g), energy of samples after adjustment for unutilized protein (range = 3.99-5.38 kcal/g), and energy of samples after adjustment for unutilized protein and insoluble dietary fiber (range = 2.42-5.35 kcal/g) were 0.053, 0.053, and 0.088 kcal/g, respectively, with multiple coefficients of determination of 0.96. Use of the models on independent validation samples (n = 58) gave energy values within the accuracy required for U.S. nutrition labeling legislation. NIR spectroscopy, thus, provides a rapid and accurate method for predicting the energy of diverse cereal foods.  相似文献   

19.
Government regulatory agencies recommend nutrient management plans (NMPs) for animal operations to reduce non-point source pollution. These plans require manure analysis for total nitrogen (TN) and total phosphorus (TP), and use indices to determine nutrient availability. This study evaluated a rapid on-farm method to predict TN and TP concentrations of swine slurries. A field investigation based on this rapid assessment procedure was used to evaluate the effect of a NMP on corn yield and soil fertility. Manure grab samples were collected to validate the rapid on-farm model for predicting TN and TP. A corn crop was raised on two phosphorus (P) soil test levels (medium and excessive) using three randomized complete blocks with two replications of three treatments. Rapid on-farm models were accurate (P ≤ 0.05) for predicting manure TN and TP. The rapid model manure application rate produced grain yields that were significantly higher than inorganic-N fertilization treatments (13,000 kg ha?1 versus 9,000 kg ha?1) (P ≤ 0.05). Potassium chloride extractable soil P and ammonium were not significantly different (P ≥ 0.05) in manure treatments compared with the inorganic-N treatment. Analysis of ear leaf N, P, and K and grain yields demonstrated that the rapid model manure application developed by a NMP met crop requirements.  相似文献   

20.
Visible–near infrared (vis–NIR) spectroscopy can be used to estimate soil properties effectively using spectroscopic calibrations derived from data contained in spectroscopic databases. However, these calibrations cannot be used with proximally sensed (field) spectra because the spectra in these databases are recorded in the laboratory and are different to field spectra. Environmental factors, such as the amount of water in the soil, ambient light, temperature and the condition of the soil surface, cause the differences. Here, we investigated the use of direct standardization (DS) to remove those environmental factors from field spectra. We selected 104 sensing (sampling) sites from nine paddy fields in Zhejiang province, China. At each site, vis–NIR spectra were recorded with a portable spectrometer. The soils were also sampled to record their spectra under laboratory conditions and to measure their soil organic matter (SOM) content. The resulting data were divided into training and validation sets. A subset of the corresponding field and laboratory spectra in the training set (the transfer set) was used to derive the DS transfer matrix, which characterizes the differences between the field and laboratory spectra. Using DS, we transferred the field spectra of the validation samples so that they acquired the characteristics of spectra that were measured in the laboratory. A partial least squares regression (PLSR) of SOM on the laboratory spectra of the training set was then used to predict both the original field spectra and the DS‐transferred field spectra. The assessment statistics of the predictions were improved from R2 = 0.25 and RPD = 0.35 to R2 = 0.69 and RPD = 1.61. We also performed independent predictions of SOM on the DS‐transferred field spectra with a PLSR derived using the Chinese soil spectroscopic database (CSSD), which was developed in the laboratory. The R2 and RPD values of these predictions were 0.70 and 1.79, respectively. Predictions of SOM with the DS‐transferred field spectra were more accurate than those treated with external parameter orthogonalisation (EPO), and more accurate than predictions made by spiking. Our results show that DS can effectively account for the effects of water and environmental factors on field spectra and improve predictions of SOM. DS is conceptually straightforward and allows the use of calibrations made with laboratory‐measured spectra to predict soil properties from proximally sensed (field) spectra, without needing to recalibrate the models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号