首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microparasites play an important role in the demography, ecology and evolution of Pacific salmonids. As salmon stocks continue to decline and the impacts of global climate change on fish populations become apparent, a greater understanding of microparasites in wild salmon populations is warranted. We used high‐throughput, quantitative PCR (HT‐qRT‐PCR) to rapidly screen 82 adult Chinook salmon from five geographically or genetically distinct groups (mostly returning to tributaries of the Fraser River) for 45 microparasite taxa. We detected 20 microparasite species, four of which have not previously been documented in Chinook salmon, and four of which have not been previously detected in any salmonids in the Fraser River. Comparisons of microparasite load to blood plasma variables revealed some positive associations between Flavobacterium psychrophilum, Cryptobia salmositica and Ceratonova shasta and physiological indices suggestive of morbidity. We include a comparison of our findings for each microparasite taxa with previous knowledge of its distribution in British Columbia.  相似文献   

2.
3.
In response to concerns that novel infectious agents were introduced through the movement of eggs as Atlantic salmon aquaculture developed in British Columbia (BC), Canada, we estimated the prevalence of infectious agents in archived return‐migrating Sockeye salmon, from before and during aquaculture expansion in BC (1985–94). Of 45 infectious agents assessed through molecular assays in 652 samples, 23 (7 bacterial, 2 viral and 14 parasitic) were detected in liver tissue from six regions in BC. Prevalence ranged from 0.005 to 0.83 and varied significantly by region and year. Agent diversity ranged from 0 to 12 per fish (median 4), with the lowest diversity observed in fish from the Trans‐Boundary and Central Coast regions. Agents known to be endemic in Sockeye salmon in BC, including Flavobacterium psychrophilum, Infectious haematopoietic necrosis virus, Ceratonova shasta and Parvicapsula minibicornis, were commonly observed. Others, such as Kudoa thyrsites and Piscirikettsia salmonis, were also detected. Surprisingly, infectious agents described only recently in BC salmon, Ca. Branchiomonas cysticola, Parvicapsula pseudobranchicola and Paranucleospora theridion, were also detected, indicating their potential presence prior to the expansion of the aquaculture industry. In general, our data suggest that agent distributions may not have substantially changed because of the salmon aquaculture industry.  相似文献   

4.
Piscine orthoreovirus genotype 1 (PRV‐1) is widespread in farmed Atlantic salmon (Salmo salar L.) populations in northern Europe, Canada and Chile. PRV‐1 occurs in wild fish in Norway and Canada; however, little information of its geographical distribution in wild populations is currently available, and the effect of PRV‐1 infection in wild populations is currently unknown. In this study, we present the findings of a survey conducted on 1,130 wild salmonids sampled in Denmark, Sweden, Ireland, Faroe Islands, France, Belgium and Greenland between 2008 and 2017. PRV‐1 is reported for the first time in wild salmonids in Denmark, Sweden, Faroe Island and Ireland. The annual PRV‐1 prevalence ranged from 0% in France, Belgium and Greenland to 43% in Faroe Islands. In total, 66 samples tested positive for PRV‐1, including Atlantic salmon broodfish returning to spawn and Atlantic salmon collected at the feeding ground north of Faroe Islands. The phylogenetic analysis of S1 sequences of the PRV‐1 isolates obtained in this survey did not show systematic geographical distribution. This study sheds light on the spread and genetic diversity of the virus identified in populations of free‐living fish and provides rationale for screening wild broodfish used in restocking programmes.  相似文献   

5.
Infections of Ichthyophonus hoferi, a cosmopolitan parasite of marine fish, have recently been reported in rockfish, Sebastes spp., from the north‐eastern Pacific. Because I. hoferi also infects Pacific herring, Clupea pallasi Valenciennes, and salmonids in this region, we wanted to determine if Ichthyophonus parasites from rockfishes, Pacific herring and chinook salmon, Oncorhynchus tshawytscha (Walbaum), were the same. Small subunit ribosomal deoxyribonucleic acid sequence data revealed two haplotypes that were fixed among host species in geographic sympatry, one from rockfish and the other from both Pacific herring and salmon. These isolated populations of Ichthyophonus could be part of the same species that are ecologically separated because of host behaviours, or they could be distinct species that are host specific. Dietary patterns of the hosts indicate that ecological separation among hosts is possible, but the presence of distinct species may better explain the observed Ichthyophonus haplotype association with host species.  相似文献   

6.
In 2016, the Norwegian health monitoring programme for wild salmonids conducted a real‐time PCR‐based screening for salmon gill poxvirus (SGPV) in anadromous Arctic char (Salvelinus alpinus L.), anadromous and non‐anadromous Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.). SGPV was widely distributed in wild Atlantic salmon returning from marine migration. In addition, characteristic gill lesions, including apoptosis, were detected in this species. A low amount of SGPV DNA, as indicated by high Ct‐values, was detected in anadromous trout, but only in fish cohabiting with SGPV‐positive salmon. SGPV was not detected in trout and salmon from non‐anadromous water courses, and thus seems to be primarily linked to the marine environment. This could indicate that trout are not a natural host for the virus. SGPV was not detected in Arctic char but, due to a low sample size, these results are inconclusive. The use of freshwater from anadromous water sources may constitute a risk of introducing SGPV to aquaculture facilities. Moreover, SGPV‐infected Atlantic salmon farms will hold considerable potential for virus propagation and spillback to wild populations. This interaction should therefore be further investigated.  相似文献   

7.
Conservation of migratory salmonids requires understanding their ecology at multiple scales, combined with assessing anthropogenic impacts. We present a case‐study from over 100 years of data for the endemic landlocked Atlantic salmon (Salmo salar, Salmonidae) and brown trout (Salmo trutta, Salmonidae) in Lake Vänern, Sweden. We use this case‐study to develop life history‐based research and monitoring priorities for migratory salmonids. In Vänern, small wild populations of salmon and trout remain only in the heavily regulated Rivers Klar (Klarälven) and Gullspång (Gullspångsälven), and commercial and sport fisheries are maintained by hatchery stocking. These populations represent some of the last remaining large‐bodied (up to 20 kg) landlocked salmon stocks worldwide. We found that one of four stocks of wild fish has increased since 1996; the other three remain critically low. Hatchery return rates for three of four stocks appear stable at roughly 1% and annual fisheries catch is roughly 75 metric tons, with an estimated 7.5% of hatchery smolts being recruited to the fishery; this also appears relatively stable since 1990. Our analysis reveals much uncertainty in key data requirements, including both river return and fisheries catch rates, estimates of wild smolt production and survival, and hatchery breeding and genetics protocols. These uncertainties, coupled with a lack of information on their riverine and lacustrine ecology, preclude effective management of these unique populations. We conclude with a framework for a life history‐based approach to research and monitoring for Vänern salmon and trout, which should be applicable for all endemic, migratory salmonid populations.  相似文献   

8.
The aquatic orthomyxovirus infectious salmon anaemia virus (ISAV) causes a severe disease in farmed Atlantic salmon, Salmo salar L. Although some ISA outbreaks are caused by horizontal transmission of virus between farms, the source and reservoir of the virus is largely unknown and a wild host has been hypothesized. Atlantic salmon are farmed in open net‐pens, allowing transmission of pathogens from wild fish and the surrounding environment to the farmed fish. In this study, a large number of fish species were investigated for ISAV host potential. For orthomyxoviruses, a specific receptor binding is the first requirement for infection; thus, the fish species were investigated for the presence of the ISAV receptor. The receptor was found to be widely distributed across the fish species. All salmonids expressed the receptor. However, only some of the cod‐like and perch‐like fish did, and all flat fish were negative. In the majority of the positive species, the receptor was found on endothelial cells and/or on red blood cells. The study forms a basis for further investigations and opens up the possibility for screening species to determine whether a wild host of ISAV exists.  相似文献   

9.
Beginning in 1992, three epidemic waves of infectious hematopoietic necrosis, often with high mortality, occurred in farmed Atlantic salmon Salmo salar L. on the west coast of North America. We compared the virulence of eleven strains of infectious hematopoietic necrosis virus (IHNV), representing the U, M and L genogroups, in experimental challenges of juvenile Atlantic salmon in freshwater. All strains caused mortality and there was wide variation within genogroups: cumulative mortality for five U‐group strains ranged from 20 to 100%, four M‐group strains ranged 30‐63% and two L‐group strains varied from 41 to 81%. Thus, unlike Pacific salmonids, there was no apparent correlation of virulence in a particular host species with virus genogroup. The mortality patterns indicated two different phenotypes in terms of kinetics of disease progression and final per cent mortality, with nine strains having moderate virulence and two strains (from the U and L genogroups) having high virulence. These phenotypes were investigated by histopathology and immunohistochemistry to describe the variation in the course of IHNV disease in Atlantic salmon. The results from this study demonstrate that IHNV may become a major threat to farmed Atlantic salmon in other regions of the world where the virus has been, or may be, introduced.  相似文献   

10.
Despite long‐standing interest in foraging modes as an important element of animal space use, few studies document and compare individual foraging mode differences among species and ecological conditions in the wild. We observed and compared foraging modes of 61 wild Arctic charr, Salvelinus alpinus, 42 brown trout, Salmo trutta, and 50 Atlantic salmon, Salmo salar, in their first growing season over a range of habitats in 10 Icelandic streams. We found that although stream salmonids typically sit‐and‐wait to ambush prey from short distances, Arctic charr were more mobile during prey search and prior to prey attack than Atlantic salmon, whereas brown trout were intermediate. In all three species, individuals that were mobile during search were more likely to be moving when initiating attacks on prey, although the strength and the slope of this relationship differed among species. Arctic charr also differed from salmon and trout as more mobile individuals travelled longer distances during prey pursuits. Finally, coupled with published data from the literature, salmonid foraging mobility (both during search and prior to attack) clearly decreased from still water habitats (e.g., brook charr), to slow‐running waters (e.g., Arctic charr) to fast‐running waters (e.g., Atlantic salmon). Hence, our study suggests that foraging mode of young salmonids can vary distinctly among related species and furthers our understanding of the behavioural mechanisms shaping the geographical distribution of wild salmonids.  相似文献   

11.
The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids.  相似文献   

12.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

13.
Atlantic salmon in the North Pacific   总被引:1,自引:0,他引:1  
The first catches of Atlantic salmon, Salmo salar L., in British Columbia (BC) waters occurred in 1987. The first reported escape of Atlantic salmon (2000 individuals) occurred in 1988. From 1988 to 1995, 97 799 Atlantic salmon were reported escaped from net pens in BC but the true number was higher as not all escapes are reported. Since 1987 a total of 9096 Atlantic salmon was caught in the coastal marine waters of BC, Washington and Alaska, and 188 were caught in fresh water. Most catches occurred in the Johnstone Strait area, where the abundance of salmon farms is highest. The most distant recovery occurred in 1994 when an Atlantic salmon was caught near the western end of the Alaska Peninsula. There have been no reports of successful reproduction of Atlantic salmon in the wild and no feral juveniles have been found. Atlantic salmon caught in the ocean in BC have substantial amounts of adipose tissue and they are heavier at length than fish caught in Alaska. The proportion of fish with prey items in their stomachs is generally low but higher in Alaska (13.1%) than in BC (5.8%). Most fish caught in fresh water are either maturing or mature.  相似文献   

14.
Simultaneous trawling at surface and at depth at one location off the Columbia River, Oregon, in June 2000 identified the depth distribution of juvenile salmonids and associated fishes. Juvenile salmon off the Columbia River were distributed primarily near the surface, within the upper 12 m. Highest densities of subyearling chinook salmon (Oncorhynchus tshawytscha) off the Columbia River were associated with high surface currents and decreasing tidal levels, with time of day possibly a co‐factor. Densities of yearling chinook salmon increased with higher turbidity. Pacific herring (Clupea pallasi) was the most abundant and commonly caught forage fish, with density increasing at night, probably related to diel vertical migration. Catches of juvenile salmonids were not associated with catches of forage fishes. Daytime surface trawling appears to be an appropriate method for assessing the distribution and abundance of juvenile salmonids in marine habitats.  相似文献   

15.
In 2017, a PCR‐based survey for Piscine orthoreovirus‐3 (PRV‐3) was conducted in wild anadromous and non‐anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR‐positive, with Ct‐values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR‐negative. Neither non‐anadromous trout (brown trout) nor landlocked salmon were PRV‐3 positive. Altogether, these findings suggest that in Norway PRV‐3 is more prevalent in the marine environment. In contrast, PRV‐3 is present in areas with intensive inland farming in continental Europe. PRV‐3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.  相似文献   

16.
There is concern that expanding beaver (Castor fiber) populations will negatively impact the important economic, recreational and ecological resources of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) populations in Europe. We studied how beaver dams influenced habitat, food resources, growth and movement of juvenile Atlantic salmon and trout on three paired beaver-dammed and beaver-free (control) tributaries of important salmon rivers in central Norway. Lotic reaches of beaver-dammed and control sites were similar in habitat and benthic prey abundance, and ponds were small (<3,000 m2). Though few juvenile salmonids were detected in ponds, trout and salmon were present in habitats below and above ponds (comprising 9%–31% and 0%–57% of the fish collected respectively). Trout dominated control sites (79%–99%), but the greatest proportion of Atlantic salmon were upstream of beaver ponds (0%–57%). Growth rates were highly variable, with no differences in growth between lotic reaches of beaver-dammed and control sites. The condition and densities of juvenile salmon and trout were similar in lotic reaches of beaver-dammed and control sites, though one beaver-dammed site with fine sediment had very few juvenile salmonids. Beaver dams did not block the movement of juvenile salmonids or their ability to use upstream habitats. However, the degree of repeated movements and the overall proportion of fish moving varied between beaver-dammed and control sites. The small scale of habitat alteration and the fact that fish were able to move past dams makes it unlikely that beaver dams negatively impact the juvenile stage of salmon or trout populations.  相似文献   

17.
The demographic structure of populations is affected by life history strategies and how these interact with natural and anthropogenic factors such as exploitation, climate change, and biotic interactions. Previous work suggests that the mean size and age of some North American populations of Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are declining. These trends are of concern because Chinook salmon are highly valued commercially for their exceptional size and because the loss of the largest and oldest individuals may lead to reduced population productivity. Using long‐term data from wild and hatchery populations, we quantified changes in the demographic structure of Chinook salmon populations over the past four decades across the Northeast Pacific Ocean, from California through western Alaska. Our results show that wild and hatchery fish are becoming smaller and younger throughout most of the Pacific coast. Proportions of older age classes have decreased over time in most regions. Simultaneously, the length‐at‐age of older fish has declined while the length‐at‐age of younger fish has typically increased. However, negative size trends of older ages were weak or non‐existent at the southern end of the range. While it remains to be explored whether these trends are caused by changes in climate, fishing practices or species interactions such as predation, our qualitative review of the potential causes of demographic change suggests that selective removal of large fish has likely contributed to the apparent widespread declines in average body sizes.  相似文献   

18.
This research was initiated in conjunction with a systematic, multiagency surveillance effort in the United States (U.S.) in response to reported findings of infectious salmon anaemia virus (ISAV) RNA in British Columbia, Canada. In the systematic surveillance study reported in a companion paper, tissues from various salmonids taken from Washington and Alaska were surveyed for ISAV RNA using the U.S.‐approved diagnostic method, and samples were released for use in this present study only after testing negative. Here, we tested a subset of these samples for ISAV RNA with three additional published molecular assays, as well as for RNA from salmonid alphavirus (SAV), piscine myocarditis virus (PMCV) and piscine orthoreovirus (PRV). All samples (n = 2,252; 121 stock cohorts) tested negative for RNA from ISAV, PMCV, and SAV. In contrast, there were 25 stock cohorts from Washington and Alaska that had one or more individuals test positive for PRV RNA; prevalence within stocks varied and ranged from 2% to 73%. The overall prevalence of PRV RNA‐positive individuals across the study was 3.4% (77 of 2,252 fish tested). Findings of PRV RNA were most common in coho (Oncorhynchus kisutch Walbaum) and Chinook (O. tshawytscha Walbaum) salmon.  相似文献   

19.
Fecundity is an important demographic parameter that contributes to the productivity of anadromous fish stock dynamics. Yet, studies on fecundity patterns in Pacific salmon (Oncorhynchus spp.) often only include a few years of data, limiting our ability to understand spatio-temporal trends. Here, we used data on 43 hatchery Chinook salmon (Otshawytscha, Salmonidae) populations in Washington State to evaluate whether average fecundity changed over the past three decades. We then used data from a subset of stocks (18) to evaluate the relationship between fecundity and body length. Our results revealed significant changes in fecundity across the 25-year study period with most stocks showing declines in fecundity over the past decade. Results further showed that Chinook salmon have decreased in length over this same period and that annual variation in mean length explains a majority (62%) of annual variation in mean fecundity. Specifically, we estimated that a 1-mm reduction in length results in 7.8 fewer eggs (95% CI = 6.6–8.9). Given that the majority of Pacific Northwest Chinook salmon in the environment and harvested in fisheries originate from hatchery releases and that nearby hatchery and wild populations generally have similar ocean distributions, these results likely reflect patterns for many populations not included. Combined, our results highlight the need to consider changes in body size and egg production when assessing the dynamics of anadromous fish populations and designing management or conservation plans, particularly for depressed populations.  相似文献   

20.
The abundance and stomach contents of salmonids (Oncorhynchus spp.) and the biomass of prey organisms were examined in the central subarctic Pacific and Bering Sea in the summer of 1991 and 1992. Salmonids were caught by surface longline using the same level of fishing effort. Chum (O. keta) and pink (O. gorbuscha) salmon were the predominant species, representing 44% and 36% sof the total catch (n = 1275) in 1991. In 1992, chum salmon composed 85% of the total catch (n = 603), but the catch of pink salmon decreased to 1% of the total catch due to the odd/even year fluctuation of Asian pink salmon abundance in the study area. It was found that chum salmon changed their dominant diet from gelatinous zooplankton (pteropods, appendicular-ians, jellyfishes, chaetognaths, polychaetes and unidentified materials) in 1991, when pink salmon were abundant, to a diet of crustaceans (euphausiids, cope-pods, amphipods, ostracods, mysids and decapods) in 1992, when pink salmon were less abundant. Local crustacean biomass (wet weight; mg m-3) had significant negative correlation with the CPUE (catch number per 30 hachi) of pink salmon in 1991 (r = -0.586; P = 0.026) and that of chum salmon in 1992 (r =–0.616; P = 0.014). There may be a limitation in the available prey resource for production of salmonids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号