首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diagnostic significance of serum glycated albumin in diabetic dogs   总被引:1,自引:0,他引:1  
Measurements of serum fructosamine, glycated hemoglobin, and glycated albumin (GA) are increasingly used to complement serum glucose concentration for better management of diabetes mellitus. Fructosamine tests are currently not performed in veterinary medicine in Japan. As such, the measurement of GA may serve as a replacement test. Therefore, in the current study, serum GA and fructosamine were evaluated for a positive correlation in dogs, and, depending on the correlation, a reference range of GA percentage would also be determined from healthy control dogs. The degree of glycemic control in diabetic dogs was determined by fructosamine concentration. A positive correlation between GA and fructosamine was observed with both normal and diabetic animals. In addition, the reference interval of serum GA percentage in control dogs was determined to be 11.4-11.9% (95% confidence interval). Interestingly, no significant difference in serum GA percentages was observed between samples from diabetic dogs with excellent glycemic control and control dogs. However, good, fair, and poor glycemic control diabetic dogs resulted in a significant increase in serum GA percentages in comparison with control dogs. These results suggest that serum GA may be a useful diagnostic indicator, substituting for fructosamine, to monitor glycemic control in diabetic dogs.  相似文献   

2.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

3.
The relation of the glycated serum protein, fructosamine, to serum protein, albumin, and glucose concentrations was examined in healthy dogs, dogs with hypo- or hyperproteinemia, and diabetic dogs. Fructosamine was determined by use of an adaptation of an automated kit method. The reference range for fructosamine in a composite group of control dogs was found to be 1.7 to 3.38 mmol/L (mean +/- SD, 2.54 +/- 0.42 mmol/L). Fructosamine was not correlated to serum total protein, but was highly correlated to albumin in dogs with hypoalbuminemia. To normalize the data with respect to albumin, it is suggested that the lower limit of the reference range for albumin concentration (2.5 g/dl) be used for adjustment of fructosamine concentration and only in hypoalbuminemic dogs. In 6 hyperglycemic diabetic dogs, fructosamine concentration was well above the reference range. It is concluded that although fructosamine may be a potentially useful guide to assess the average blood glucose concentration over the preceding few days in dogs, further study is required to establish its value as a guide to glucose control in diabetic dogs.  相似文献   

4.
Fructosamine and glycated hemoglobin (HbA1c) concentrations were measured simultaneously in 222 dogs (96 healthy and 126 sick dogs). The dogs were divided into 3 groups according to the glucose concentration: hypo, hyper and euglycaemic dogs. Serum fructosamine concentrations were measured by the reduction test with nitroblue tetrazolium. A turbidimetric inhibition immunoassay and specific polyclonal antibodies were used to evaluate glycated hemoglobin concentrations. A significant correlation was found between glucose concentration and either fructosamine (r = 0.63, p < 0.0001) or glycated hemoglobin (r = 0.82, p < 0.0001). The correlation was higher in hyperglycaemic dogs for fructosamine (r = 0.80, p < 0.0001) and in hypoglycaemic dogs for glycated hemoglobin (r = 0.91, p < 0.005). We found a significant correlation between serum fructosamine and glycated hemoglobin (r = 0.65, p < 0.0001 ) when all the dogs were studied. A significant correlation was observed between serum fructosamine and glycated hemoglobin only in hyperglycaemic dogs (r = 0.82, p < 0.0003). Thus, fructosamine and HbA1c may be considered for use in screening tests for diabetes mellitus in dogs and clinical tests for monitoring control and evaluation of the diabetic animal's response to treatment. The choice of the analytical assay depends on the characteristic and analytical opportunities of the laboratory, as well as the number of serum samples to be analysed.  相似文献   

5.
This study reports on a spectrophotometric assay for the determination of serum fructosamine concentration. The assay was evaluated for use in canine serum samples by assessment of the precision, accuracy, detectability and stability of serum fructosamine during storage. To evaluate the diagnostic usefulness of the assay, both the effect of acute changes in blood glucose on serum fructosamine concentration and the serum fructosamine concentration in canine diabetes mellitus and other canine diseases were studied.The main conclusions can be summarized as follows: Determination of canine serum fructosamines may be achieved by a precise and accurate assay with a detection limit well below the serum fructosamine concentration normally found in canine sera. Storage for 5 days at +4°C or +25°C, or for 28 days at –20°C caused no significant change in serum fructosamine concentration. The concentration is not affected by acute changes in blood glucose. In diabetic dogs, serum fructosamine concentration is significantly greater than in dogs with other diseases.  相似文献   

6.
Fructosamine concentrations in hyperglycemic cats.   总被引:4,自引:1,他引:3       下载免费PDF全文
The aims of this study were 1) to establish a reference range for fructosamine in cats using a commercial fructosamine kit; 2) to demonstrate that the fructosamine concentration is not increased by transient hyperglycemia of 90 min duration, simulating hyperglycemia of acute stress; and 3) to determine what percentage of blood samples submitted to a commercial laboratory from 95 sick cats had evidence of persistent hyperglycemia based on an elevated fructosamine concentration. Reference intervals for the serum fructosamine concentration were established in healthy, normoglycemic cats using a second generation kit designed for the measurement of the fructosamine concentration in humans. Transient hyperglycemia of 90 min duration was induced by IV glucose injection in healthy cats. Multisourced blood samples that were submitted to a commercial veterinary laboratory either as fluoride oxalated plasma or serum were used to determine the percentage of hyperglycemic cats having persistent hyperglycemia. The reference interval for the serum fructosamine concentration was 249 to 406 mumol/L. Transient hyperglycemia of 90 min duration did not increase the fructosamine concentration and there was no correlation between fructosamine and blood glucose. In contrast, the fructosamine concentration was correlated with the glucose concentration in sick hyper- and normoglycemic cats. It is concluded that the fructosamine concentration is a useful marker for the detection of persistent hyperglycemia and its differentiation from transient stress hyperglycemia. Fructosamine determinations should be considered when blood glucose is 12 to 20 mmol/L and only a single blood sample is available for analysis.  相似文献   

7.
Differentiating transient hyperglycemia from diabetic hyperglycemia can be difficult in cats since single blood glucose measurements reflect only momentary glucose concentrations, and values may be elevated because of stress-induced hyperglycemia. Glycated protein measurements serve as monitors of longer-term glycemic control in human diabetics. Using an automated nitroblue tetrazolium assay, fructosamine concentration was measured in serum from 24 healthy control cats and 3 groups of hospitalized cats: 32 euglycemic, 19 transiently hyperglycemic, and 12 diabetic cats. Fructosamine concentrations ranged from 2.1 - 3.8 mmol/L in clinically healthy cats; 1.1 - 3.5 mmol/L in euglycemic cats; 2.0 - 4.1 mmol/L in transiently hyperglycemic cats; and 3.4 to >6.0 mmol/L in diabetic cats. Values for with-in-run precision at 2 fructosamine concentrations (2.64 mmol/L and 6.13 mmol/L) were 1.5% and 1.3%, respectively. Between-run coefficient of variation was 3.8% at a fructosamine concentration of 1.85 mmol/L. The mean fructosamine concentration for the diabetic group differed significantly (P=0.0001) from the mean concentrations of the other 3 groups. Poorly regulated or newly diagnosed diabetic cats tended to have the highest fructosamine values, whereas well-regulated or over-regulated diabetic cats had values approaching the reference range. As a single test for differentiating nondiabetic cats from diabetic cats, fructosamine was very sensitive (92%) and specific (96%), with a positive predictive value of 85% and a negative predictive value of 98%. Serum fructosamine concentration shows promise as an inexpensive, adjunct diagnostic tool for differentiating transiently hyperglycemic cats from poorly controlled diabetic cats.  相似文献   

8.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

9.
OBJECTIVE: To correlate serum fructosamine concentrations with established measures of glycemic control and to compare serum fructosamine and blood glycosylated hemoglobin (GHb) concentrations as a means for assessing glycemic control in diabetic cats. DESIGN: Longitudinal cohort study. ANIMALS: 26 healthy cats, 5 cats with stress-induced hyperglycemia, 15 untreated diabetic cats, and 36 treated diabetic cats. PROCEDURE: Control of glycemia was classified and monitored and serum fructosamine and blood GHb concentrations were measured for 12 poorly controlled diabetic cats before and after improving glycemic control, 8 well-controlled treated diabetic cats before and after glycemic control deteriorated, and 5 cats with diabetes mellitus before and after onset of stress-induced hyperglycemia. RESULTS: Mean serum fructosamine and blood GHb concentrations were significantly higher in untreated diabetic cats, compared with healthy cats, and in 24 poorly controlled diabetic cats, compared with 12 well-controlled diabetic cats. Mean serum fructosamine and blood GHb concentrations decreased significantly in 12 poorly controlled diabetic cats after improving glycemic control and increased significantly in 8 well-controlled diabetic cats after glycemic control deteriorated. A significant stress-induced increase in mean blood glucose concentration was evident 12 hours after insulin administration, but not in 5 docile diabetic cats that became fractious. CLINICAL IMPLICATIONS: Serum fructosamine and blood GHb concentrations are clinically useful tools for monitoring control of glycemia in cats with diabetes mellitus.  相似文献   

10.
Background: Neutral Protamine Hagedorn human analogue insulin (Humulin N) is commonly used for treatment of canine diabetes mellitus (DM). However, blood glucose and serum insulin concentrations in Humulin N-treated dogs with naturally occurring DM have not been reported.
Objective: To investigate blood glucose and serum insulin concentrations in the clinical setting of client-owned Humulin N-treated dogs with naturally occurring, well-regulated DM.
Animals: Ten client-owned dogs with naturally occurring, well-regulated DM.
Methods: In this clinical study, blood glucose and serum insulin concentrations were measured when dogs received food and insulin (T0), at approximately every half hour for the next 2 hours, and then approximately every 2 hours for an additional 8 hours. Insulin duration of action was defined as the number of hours from T0 to the lowest blood glucose concentration and until blood glucose concentration returned to an interpolated value of 70% of basal blood glucose concentration (Glucoseb).
Results: Mean percent of insulin-induced blood glucose suppression was 49.9 ± 17.1% (median, 46%; range, 29–78%). Insulin duration of action ranged from 4 to 10 hours. Blood glucose concentration increased initially and returned to Glucoseb within 0.6–2.2 hours after T0 in 5 dogs. This initial blood glucose surge then was followed by blood glucose suppression in all 5 dogs.
Conclusions and Clinical Importance: These results suggest that Humulin N administered SC twice daily is an effective mode of treatment for dogs with naturally occurring DM. Postprandial hyperglycemia is present in some well-regulated diabetic dogs treated with Humulin N.  相似文献   

11.
The effect was studied of an acute and non-persistent hyperglycaemia on the serum fructosamine and blood glycated haemoglobin concentrations in canine samples. Five dogs were given glucose solution intravenously and blood samples were taken from each dog before and at 5, 15, 30, 60 and 120 min and 24 h after the infusion. There was an intense hyperglycaemia 5 min after the injection was given, but no statistically significant differences in the serum fructosamine and glycated haemoglobin were observed. It was concluded that an acute and transient hyperglycaemia does not cause significant changes in the glycated haemoglobin and fructosamine concentrations in healthy dogs.  相似文献   

12.
The purpose of this study was to evaluate fructosamine concentrations in clinically healthy cats, sick cats with stress hyperglycemia, and untreated diabetic cats to determine the usefulness of this test in diagnosing diabetes mellitus in cats, and in differentiating the disease from stress-induced hyperglycemia. In addition, we evaluated if the degree of glycemic control in cats treated for diabetes influenced their serum fructosamine concentrations. In the 14 sick cats with stress hyperglycemia, the median serum fructosamine concentration (269 μmol/L) was not significantly different from the median value in the 26 clinically normal cats (252 μmol/L). Two of the 14 cats with stress hyperglycemia (14.3%) had serum fructosamine concentrations above the upper limit of the reference range (175 to 400 μmol/U; on the basis of these results, the test specificity was calculated as 0.86. In 30 cats with untreated diabetes mellitus, the median serum fructosamine concentration was 624 μmol/L, markedly higher than the value in either the normal cats or the cats with stress hyperglycemia. All but 2 of the 30 untreated diabetic cats (6.7%) had serum fructosamine concentration above the upper limit of the reference range; on the basis of these results, the sensitivity of serum fructosamine concentration as a diagnostic test for diabetes mellitus was 0.93. When 30 diabetic cats receiving treatment were divided into 3 groups according to their response to treatment (ie, poor, fair, and good), the 16 cats that had a good response to treatment had significantly lower serum concentrations of both glucose and fructosamine compared with cats that had either a fair or poor response to treatment. A significant correlation (rs= .70, n = 100, P < .001) was found between serum concentrations of glucose and fructosamine. Results of this study indicate that quantification of serum fructosamine concentration is a meaningful test for the diagnosis of diabetes, for differentiating diabetes from stress hyperglycemia; and for monitoring the metabolic control in treated diabetic cats.  相似文献   

13.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

14.
Blood glycated hemoglobin evaluation in sick dogs.   总被引:1,自引:0,他引:1       下载免费PDF全文
Blood glycated hemoglobin concentration reflects long-term serum glucose levels in dogs. In this study, the effects of several diseases on blood glycated hemoglobin levels have been evaluated. For this study, blood samples were drawn from 93 unhealthy dogs. The animals were distributed into 10 groups according to pathological process (group 1, digestive problems; group 2, leishmaniasis; group 3, anemia; group 4, dermatological disorders; group 5, urinary problems; group 6, cardiorespiratory problems; group 7, diabetes mellitus; group 8, insulinoma; group 9, general diseases; group 10, control group). Blood glucose and glycated hemoglobin concentrations and hemoglobin and hematocrit values were analyzed in all the animals. In diabetic dogs, a strong increase in blood glycated hemoglobin was observed when compared with the other groups (P < 0.01). In contrast, dogs with insulinoma showed a decrease in blood glycated hemoglobin, though significant differences were not reported in all cases. No change in blood glycated hemoglobin concentrations were reported in dogs affected by other diseases. So, we can suppose that only the chronic alterations in glucose metabolism (chronic hyper- or hypoglycemia) can induce significant changes on the blood glycated hemoglobin concentrations in dogs.  相似文献   

15.
BACKGROUND: The total glycated protein (fructosamine) concentration in serum consists mainly of glycated albumin and lipoproteins. Measurement of fructosamine is used to diagnose and monitor diabetes mellitus in cats. OBJECTIVE: The aims of this study were to measure glycated proteins in diabetic and healthy (nondiabetic) cats using a semiquantitative technique and to determine whether measurement of any of the fractions of glycated protein could be potentially advantageous for the diagnosis and monitoring of diabetic cats. METHODS: Serum samples from 6 cats with diabetes mellitus and 10 clinically healthy adult cats were assayed for total glycated protein using a nitroblue tetrazolium (NBT) fructosamine assay. Serum proteins were separated by agarose gel electrophoresis and stained with NBT to identify individual glycated proteins within the bands. Gels were scanned by densitometry at 525 nm and the glycated protein content was calculated with reference to the total glycated protein content of the sample. RESULTS: Diabetic cats with increased total fructosamine concentrations had higher concentrations of glycated albumin and glycated alpha- and beta-lipoproteins compared with healthy cats. The concentration of glycated proteins in each of the fractions had a positive linear association with the total glycated protein content of serum, but there was large variation in the relative contributions of the 3 protein fractions to the total glycated protein concentration. CONCLUSIONS: Based on the results of this study, measurement of individual glycated fractions does not seem to offer any potential diagnostic advantage over measurement of total glycated protein (fructosamine) concentration alone. In some diabetic and healthy cats, glycated lipoproteins formed the major part of the total glycated protein, whereas in other cats albumin was the major contributor.  相似文献   

16.
OBJECTIVE: To evaluate the reliability of history and physical examination findings for assessing control of glycemia in insulin-treated diabetic dogs. DESIGN: Retrospective study. ANIMALS: 53 insulin-treated dogs with diabetes mellitus. PROCEDURE: Medical records of insulin-treated diabetic dogs from June 1995 to June 1998 were reviewed, and information on owner perception of their dog's response to insulin treatment, physical examination findings, body weight, insulin dosage, and concentrations of food-withheld (i.e., fasting) blood glucose (FBG), mean blood glucose (MBG) during an 8-hour period, blood glycosylated hemoglobin (GHb), and serum fructosamine was obtained. Owner's perception of their dog's response to insulin treatment, physical examination findings, and changes in body weight were used to classify control of glycemia as good or poor for each dog. The FBG, MBG/8 h, blood GHb, and serum fructosamine concentrations were compared between well-controlled and poorly controlled insulin-treated diabetic dogs. RESULTS: Presence or absence of polyuria, polydipsia, polyphagia, lethargy, and weakness were most helpful in classifying control of glycemia. Mean FBG and MBG/8 h concentrations, blood GHb concentrations, and serum fructosamine concentrations were significantly decreased in 25 well-controlled diabetic dogs, compared with 28 poorly controlled diabetic dogs. Most well-controlled diabetic dogs had concentrations of FBG between 100 and 300 mg/dl, MBG/8 h < or = 250 mg/dl, blood GHb < or = 7.5%, and serum fructosamine < or = 525 mumol/L, whereas most poorly controlled diabetic dogs had results that were greater than these values. CONCLUSIONS AND CLINICAL RELEVANCE: Reliance on history, physical examination findings, and changes in body weight are effective for initially assessing control of glycemia in insulin-treated diabetic dogs.  相似文献   

17.
Oxidative stress parameters; thiobarbituric acid reaction substances (RBC-TBARS), catalase (RBC-CAT) and reduced glutathione (RBC-GSH)) and the intraerythrocytic concentrations of electrolytes; sodium and potassium (RBC-Na and RBC-K) were determined in 18 well- controlled (WC) and 22 poorly-controlled diabetic mellitus (DM). Dogs with DM had significant higher blood glucose concentration (P < 0.001), haemoglobin A1c (P < 0.01) and fructosamine (P < 0.001) compared to normal healthy dogs (n = 19). Diabetic dogs in both groups had higher RBC-CAT (P < 0.05) while RBC-TBARS were higher significantly only in poorly-controlled DM group (P < 0.05). The RBC-K was significantly higher in both DM groups (P < 0.001). No changes in RBC-GSH and RBC-Na were found between DM and control healthy dogs. By linear regression analysis, the relationship were found between degree of diabetic mellitus and RBC-CAT, RBC-TBARS, RBC-Na and RBC-K. The relationship was also found between oxidative stress parameters and intraerythrocytic K+. The results suggest that in diabetic dogs, oxidative stress occurs which related to the severity of disease and may affect potassium homeostasis.  相似文献   

18.
OBJECTIVE: To evaluate effect of acarbose on control of glycemia in dogs with diabetes mellitus. DESIGN: Prospective randomized crossover controlled trial. ANIMALS: 5 dogs with naturally acquired diabetes mellitus. PROCEDURE: Dogs were treated with acarbose and placebo for 2 months each: in 1 of 2 randomly assigned treatment sequences. Dogs that weighed < or = 10 kg (22 lb; n = 3) or > 10 kg (2) were given 25 or 50 mg of acarbose, respectively, at each meal for 2 weeks, then 50 or 100 mg of acarbose, respectively, at each meal for 6 weeks, with a 1-month interval between treatments. Caloric intake, type of insulin, and frequency of insulin administration were kept constant, and insulin dosage was adjusted as needed to maintain control of glycemia. Serum glucose concentrations, blood glycosylated hemoglobin concentration, and serum fructosamine concentration were determined. RESULTS: Significant differences in mean body weight and daily insulin dosage among dogs treated with acarbose and placebo were not found. Mean preprandial serum glucose concentration, 8-hour mean serum glucose concentration, and blood glycosylated hemoglobin concentration were significantly lower in dogs treated with insulin and acarbose, compared with insulin and placebo. Semisoft to watery feces developed in 3 dogs treated with acarbose. CONCLUSIONS AND CLINICAL RELEVANCE: Acarbose may be useful as an adjunctive treatment in diabetic dogs in which cause for poor glycemic control cannot be identified, and insulin treatment alone is ineffective.  相似文献   

19.
Chromium is an essential dietary trace mineral involved in carbohydrate and lipid metabolism. Chromium is required for cellular uptake of glucose, and chromium deficiency causes insulin resistance. Chromium supplementation may improve insulin sensitivity and has been used as adjunct treatment of diabetes mellitus in humans. In this study, 13 dogs with naturally acquired diabetes mellitus were treated with insulin for 3 months, then with insulin and chromium picolinate for 3 months. Dogs weighing <15 kg (33 lb: n = 9) were administered 200 microg of chromium picolinate PO once daily for I month, then 200 microg of chromium picolinate twice daily for 2 months. Dogs weighing >15 kg (n = 4) received 200 microg of chromium picolinate once daily for 2 weeks, then 200 microg twice daily for 2 weeks, then 400 microg twice daily for 2 months. Type of insulin, frequency of insulin administration, and diet were kept constant, and insulin dosage was adjusted, as needed, to maintain optimal control of glycemia. Mean body weight, daily insulin dosage, daily caloric intake, 10-hour mean blood glucose concentration, blood glycated hemoglobin concentration, and serum fructosamine concentration were not markedly different when dogs were treated with insulin and chromium picolinate, compared with insulin alone. Adverse effects were not identified with chromium picolinate administration. Results of this study suggest that, at a dosage range of 20-60 microg/kg/d, chromium picolinate caused no beneficial or harmful effects in insulin-treated diabetic dogs.  相似文献   

20.
The aim of this study was to estimate the long-term (month-to-month) between-dog, within-dog and analytical components of variance for fasting plasma glucose and serum fructosamine in healthy dogs to assess the usefulness of a single measurement of these analytes in a single dog.Fasting plasma glucose and serum fructosamine were measured in blood samples collected every month for 9 months from 23 clinically healthy dogs, and the results were subjected to nested analysis of variance. The between-dog variation, the within-dog variation, and the analytical variation were 3.8%, 9.5% and 3.7%, respectively, for plasma glucose and 4.2%, 11.1% and 2.8%, respectively, for serum fructosamine.The maximum allowable analytical imprecision, analytical inaccuracy and difference between analytical methods were 4.8%, 2.6% and 3.2%, respectively, for plasma glucose and 5.6%, 3.0% and 3.7%, respectively, for serum fructosamine.The index of individuality, 2.7 for both analytes, indicated that the test results from single dogs can be compared usefully to the corresponding population-based reference intervals.The number of samples required to estimate the true individual mean value ±5% for a single dog was 16 for fasting plasma glucose and 20 for serum fructosamine.The one- and two-sided critical differences expressing the difference needed for two serial results from the same dog to be significantly different at a 5% level was 24% and 28%, respectively, for plasma glucose and 27% and 32%, respectively, for serum fructosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号