首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Lower Rio Grande Valley (LRGV) of Texas, cotton regrows and produces fruit from undestroyed stalks throughout the winter, and in spring weevils from such locations become a serious threat. The success of the boll weevil eradication program, which was reintroduced in the LRGV in 2005, will be dependent on thorough stalk destruction following harvest. However, adverse weather conditions and conservation tillage often impede immediate and complete stalk destruction using typical tool implements, and alternative stalk control methods are needed. This study provides an examination of the efficacy for cotton stalk destruction of different herbicides (thifensulfuron-methyl + tribenuron-methyl, dicamba-diolamine, 2,4-D-dimethylammonium, flumioxazin, 2,4-DB-dimethylammonium and carfentrazone-ethyl) and their rates, spray volumes and application timings on shredded or standing cotton stalks after stripper or picker harvest. None of the tested herbicides, except 2,4-D-dimethylammonium, stopped post-harvest cotton regrowth and fruiting. 2,4-D-dimethylammonium sprayed once (0 or 7 days) after cotton was harvested at 1 lb AE acre(-1) (1.12 kg ha(-1)), in a spray volume of 10 gal water acre(-1) (93.5 L ha(-1)) with 5 mL L(-1) surfactant, was highly effective in stalk destruction (72-90%). The best results were achieved when the herbicide was applied immediately after the cotton was shredded, followed by standing stripper-harvested and standing picker-harvested cotton. 2,4-D-dimethylammonium applied twice, 0 and 14 (or 21) days after cotton harvest, was 100% effective in killing stalks, regardless of whether they were shredded or standing, or whether harvest was by stripper or picker. These findings showed that 2,4-D-dimethylammonium cotton stalk destruction eliminated food and reproductive opportunities for managing overwintering boll weevils [Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae)].  相似文献   

2.
The efficacy of the organic insecticide Diatect II against boll weevil (Anthonomus grandis Boheman) in cotton (Gossypium hirsutum L) in the Lower Rio Grande Valley of Texas were assessed in small-plot field trials and greenhouse cage tests using azinphos-methyl treatments as a standard for comparison. Plastic sheets were placed in the furrows of the treated plots to retrieve boll weevils which dropped from the plants after being killed by the insecticides. Samples of live weevils taken by a tractor-mounted vacuum sampler revealed a modest, but significant, reduction in boll weevil populations in Diatect II plots. However, samples of dead weevils indicated that this reduction was due to movement of weevils out of the plots rather than to mortality. This interpretation is supported by greenhouse cage studies, where mortality in Diatect II treated cages was no greater than that in untreated control cages. The effects of insecticide treatments in small plots can be confounded easily and quickly by interplot movement of target insects. Although the relative effects of various compounds can usually be assessed by sampling the populations in plots soon after treatment, the best measure of efficacy is obtained by directly sampling insects that have died in the plot. This parameter is insulated from the effects of interplot movement, unless the toxicant is slow to immobilize the target insect. Taken together, our results indicate little efficacy by Diatect II against boll weevil under our test conditions.  相似文献   

3.
Hard red winter wheat was treated with pirimiphos-methyl at 4, 6 and 8 mg kg(-1), synergized pyrethrins at 0.38, 0.75, 1.13 and 1.5 mg kg(-1), and combinations of the two insecticides, to conduct laboratory bioassays against four beetle pests of stored grain, red flour beetle Tribolium castaneum (Herbst), rusty grain beetle Cryptolestes ferrugineus (Stephens), lesser grain borer Rhyzopertha dominica (F), and rice weevil Sitophilus oryzae (L), and one moth pest, Indianmeal moth Plodia interpunctella (Hubner). Beetle adults and P interpunctella larvae survived well on control wheat, producing a large number of progeny (65-1037 insects per container). Kernel damage in control wheat among the insect species ranged from 9 to 99%. On pirimiphos-methyl-treated wheat, mortality of R dominica adults was > or =72%, but that of the other beetle species and P interpunctella larvae was 100%. Progeny were not produced on pirimiphos-methyl-treated wheat, and the kernel damage was negligible (< or =1%). Synergized pyrethrins were ineffective against the five insect pests. Pirimiphos-methyl combined with synergized pyrethrins was not superior to pirimiphos-methyl alone against the five insect pests. Pirimiphos-methyl is not registered in the USA for use on wheat, but our results suggest that it could be a viable grain protectant at rates of 4-8 mg kg(-1).  相似文献   

4.
为了科学配制棉花脱叶催熟剂药液,通过室内和田间试验评价了 4 种脱叶催熟剂药液体系在不同放置时间内理化性质的变化及其对植保无人飞机(UAV)喷施作业效果的影响。结果表明:540 g/L噻苯 ? 敌草隆悬浮剂药液体系在配制后 0 h的悬浮率和持留量最优,分别为95.5%和 5.49 mg/cm2;68%噻苯 ? 敌草隆可湿性粉剂药液体系配制后0 h在棉花叶片上接触角最优(0°);81%噻苯 ? 敌草隆水分散粒剂药液体系和12%噻苯 ? 敌草隆可分散油悬浮剂药液体系中噻苯隆的稳定性均较好,配制后24 h分别降低了11.63%和14.47%。总体上,4种脱叶催熟剂药液体系的悬浮率、持留量和噻苯隆含量均随着放置时间的延长而降低,且在 0.5~1 h时内降幅最为显著。药液放置时间对UAV喷施后的雾滴体积中径 (VMD,Dv50)、雾滴覆盖率和均匀性均有不同程度的影响。4 种药液体系的田间脱叶率均随放置时间的延长而降低,在 0~1 h内下降最快,放置超过 1 h会对棉花脱叶率产生显著影响,其中 12 h后影响最大。该研究结果可为棉花脱叶催熟剂药液的科学配制和UAV喷施作业提供参考。  相似文献   

5.
The response to azinphos-methyl of different life-stages of the codling moth Cydia pomonella (L.) was studied. A similarity in response to azinphos-methyl (LC(50), LC(90)) was observed in neonate larvae obtained from the first and second generations of field populations. Mortality rates for neonate larvae of a field population cross-bred with a laboratory colony were lower (by a factor of 1.2-2.2) in comparison with field neonate larvae. The mortality rate of larvae from a laboratory colony exposed to artificial diet containing azinphos-methyl gradually decreased at older instars. The mortality rates of fifth-instar larvae were remarkably low when exposed to artificial diet mixed with azinphos-methyl or when topically treated with the insecticide. One- to three-day-old females were more sensitive than males of the same age, whereas the opposite was observed in 14-to 17-day-old adults. Mortality rates of 14- to 17-day-old adults were higher than those under 10 days old. No significant difference in sensitivity to the organophosphorus compound was noticed between the sexes of 7- to 10-day-old adults. Neonate larvae of the codling moth can serve as a target life-stage for various groups of pesticides, and the importance of using such a stage as a standardized methodology for monitoring resistance in the codling moth is discussed.  相似文献   

6.
A range of insecticides was applied at recommended application rates against populations of Myzus persicae (Sulzer) carrying various combinations of three insecticide resistance mechanisms (carboxylesterase-based metabolic resistance and two target-site mechanisms, known as MACE and kdr), supported on either Chinese cabbage or potatoes in field simulator cages. Patterns of response were similar on both host species. MACE conferred extreme resistance to pirimicarb and triazamate (dimethylcarbamate insecticides). The kdr mechanism was associated with resistance to lambda-cyhalothrin, cypermethrin and deltamethrin (pyrethroid insecticides). A mixture of pirimicarb plus lambda-cyhalothrin was only effective against M persicae not carrying kdr or carrying kdr and low carboxylesterase-based resistance. None of the insecticides tested was effective against M persicae carrying both MACE and kdr resistance. The implications of these findings for the formulation of control strategies, based on regular monitoring of resistance genotype frequencies, are discussed.  相似文献   

7.
Five insecticides (pyriproxifen, imidacloprid, deltamethrin + heptenophos, lambda-cyhalothrin and Bacillus thuringiensis Berliner subsp. tenebrionis) were examined in the laboratory for their acute detrimental side-effects at field rates on adult seven-spot ladybird beetle, Coccinella septempunctata L. The toxicity of the preparations was determined by measuring the acute surface contact effects (dried spray on leaves of Philadelphus coronarius L.), except for B. thuringiensis where mixed pollen was treated. Four to six concentrations were tested (pyriproxifen 12.5, 25, 50, 100, 200, 400 mg AI litre(-1); imidacloprid 62.4, 125, 250, 500 mg AI litre(-1); deltamethrin + heptenophos 26.4, 53.1, 106.3, 212.5 mg AI litre(-1); lambda-cyhalothrin 1.1, 3.4, 10, 30 mg AI litre(-1); B. thuringiensis 1.5, 3.0, 12.0, 48, 192, 768 mg AI litre(-1)), with 22 adults exposed per concentration. All tests were conducted in the laboratory of the Plant Protection Department (University of Debrecen, Hungary) at 22-25 degrees C, 40-60% RH, under a 16:8 h light:dark photoperiod in 1998-1999. Data were analyzed by probit analysis, probit transformation and analysis of variance. According to different categories of evaluation, pyriproxifen, imidacloprid and B. thuringiensis subsp. tenebrionis seem to be safe for C. septempunctata adults but the other two preparations were moderately harmful to them, which requires further semi-field or field tests to measure their real effect under field conditions.  相似文献   

8.
Although it is well known that judicious use of adjuvants can increase the performance of foliage-applied sprays of many agrochemicals, little information is available in the public domain about their ultimate effects on pesticide residues in treated crops. In the present work, the influence of Agral (polyoxyethylene nonylphenols), Toil (methyl esters of rapeseed fatty acids) and Bond (styrene-butadiene copolymers) on surface and crop residues of diclofop-methyl/diclofop and propiconazole in wheat and field beans was investigated using a model system simulating field practice. Pesticides were applied as commercial formulations, diclofop-methyl 378 g litre(-1) EC (Hoegrass) and propiconazole 250 g litre(-1) EC (Tilt), at their maximum approved rates, 1135 g AI ha(-1) and 125 g AI ha(-1), respectively, both in the presence or absence of the maximum rate recommended for each candidate adjuvant. No detectable residues of diclofop-methyl or propiconazole were found in wheat 35 days after any of the four applications. However, residues of diclofop were present in this crop, and those from applications containing Agral (0.07 mg kg(-1) fresh weight (FW)) or Bond (0.08 mg kg(-1) FW) were significantly lower than those with no adjuvant (0.14 mg kg(-1) FW) or Toil (0.16 mg kg(-1) FW). Unlike wheat, residues of both diclofop and propiconazole were detected in field beans after harvest. Significantly higher residues of the former were recorded from the applications with Agral or Bond (ca 0.32 mg kg(-1) FW) than with those with no adjuvant or Toil (ca 0.15mg kg(-1) FW). All the propiconazole applications containing adjuvants showed a similar significant increase in residues (0.10-0.16 mg AI kg(-1) FW) over the no-adjuvant treatment (0.05 mg kg(-1) FW) in this crop. There appeared to be little agreement between the apparent amounts of uptake, as indicated by the rates of decline of surface residues up to 5 days after application, and final residues in either target species. On wheat, surface residues of diclofop-methyl decreased from initially ca 20 to as little as 0.02 mg kg(-1) FW using adjuvants; the corresponding values for propiconazole were ca 2 to ca 0.03 mg kg(-1) FW. Recoveries of diclofop-methyl from the surfaces of field beans were much higher than those from wheat, declining from ca 30 to only ca 6 mg kg(-1) FW during the course of 5 days; the corresponding residues for propiconazole were ca 2 mg to 0.15 mg kg(-1) FW. These findings are discussed in relation to uptake results obtained with radiolabelled pesticides and adjuvants in the laboratory, and to the mandatory requirements for pesticide residue data for the authorised use of adjuvants in the UK.  相似文献   

9.
Hessian fly was controlled to a maximum of 95% with organophosphate insecticides, in terms of the number of puparia and percentage tiller infestation at harvest. Granules: phorate at 1.68 kg/ha (1 1/2 lb/acre) as 10% granules in the seed furrow was most effective on durum wheat in 1967–8, with 69–92%, control, of tillers infested. 1.12 kg/ha gave 74–89% control, 0.56 kg/ha in the seed furrow 35–54%. Seed furrow treatment was more effective than band or broadcast treatment over young plants, although granules broadcast over young barley at 1.68 kg/ha of phorate gave 74% control in 1967–8. Fonofos (Dyfonate) granules at 1.55 kg fonofos/ha were most effective on barley in 1968–9, with 66% control. After fonofos and phorate, disulfoton at 1.68 kg disulfoton/ha was next in effect, with up to 86%, control in 1967-8 and 24% in 1968–9, but variable and not much more effective than at 0.56 kg/ha. Other insecticides were less effective. Seed dressings: disulfoton was the most effective, giving 79% control in 1967-8 on wheat and 77% on barley at a high rate of application that was phytotoxic in 1968–9. Diazinon, bromophos and ethion gave 15–38%, control and chlorfenvinphos and dimethoate less. Carbaryl dust at 1.12 kg carbaryl/ha gave 32% control. Yields were poor, but grain yield was increased by up to 33% in wheat in 1967-8, averaging about 15%. Barley yield was increased by 7% in 1967–8, and from 9–23% in 1968-9 by fonofos and phorate granules. Insect control reduced the number of tillers, increased the number of heads and increased the grain weight per head. In observation plots, chlormequat (CCC) spray alone at the 5-leaf stage reduced infestation of wheat by between 22% and 43%, but CCC with fertilizer, and fertilizer alone had no conclusive effect. High fly populations are partly due to leaving crop residues in the field at harvest. When these can be ploughed in, infestation should decrease. The use of insecticides may not be economic unless more consistent increases in yield can be obtained.  相似文献   

10.
The effects of sub-lethal residues of azinphos-methyl on pheromone production, calling, female attractiveness and the ability of males to locate sources of natural and synthetic pheromone were compared in azinphos-methyl-susceptible (susceptible) and azinphos-methyl-resistant (resistant) obliquebanded leafrollers, Choristoneura rosaceana (Harris). The amount of pheromone in susceptible females was reduced by 29-33% after exposure to azinphos-methyl; this treatment did not affect the pheromone content of resistant females. Azinphos-methyl-treated resistant females contained 39-43% less pheromone than azinphos-methyl-treated susceptible females. Resistant females that were not treated with azinphos-methyl contained 35-56% less pheromone than susceptible females that were not treated with insecticide. The incidence of calling was reduced by 67-100% in azinphos-methyl-treated susceptible females; the incidence of calling by resistant females was not affected by exposure to azinphos-methyl. The incidence of calling by azinphos-methyl-treated susceptible females was 58-100% lower than that of azinphos-methyl-treated resistant females. There was no difference in the incidence of calling between susceptible and resistant females that had not been treated with insecticide. In a flight tunnel, treatment with insecticide reduced the attractiveness of susceptible females by 38%; treatment with insecticide did not affect the attractiveness of resistant females. There was no difference in the proportion of males attracted to susceptible and resistant females that had, or had not been treated with insecticide. In an apple orchard, the attractiveness of susceptible and resistant females treated with azinphos-methyl was reduced by 84 and 12%, respectively. The proportion of males attracted to azinphos-methyl-treated susceptible females was 58% lower than the proportion attracted to azinphos-methyl-treated resistant females, whereas, if females were not treated with insecticide, the proportion attracted to resistant females was 57% lower than the proportion attracted to susceptible females. In a flight tunnel, azinphos-methyl did not affect the ability of susceptible or resistant males to locate a source of pheromone gland extract. Likewise, in an apple orchard, the insecticide treatment had no effect on the ability of susceptible or resistant males to locate a source of synthetic pheromone. In a flight tunnel, there was no difference in the proportion of azinphos-methyl-treated susceptible and resistant males locating a source of pheromone gland extract; however, in the orchard, 39% fewer azinphos-methyl-treated resistant males located a source of synthetic pheromone than azinphos-methyl-treated susceptible males. A similar proportion of susceptible and resistant males that had not been treated with insecticide located a source of pheromone gland extract in the flight tunnel, but in the orchard, the proportion of resistant males not treated with azinphos-methyl that located the source of synthetic pheromone was 32% lower than the proportion of susceptible males not treated with this insecticide. The implications of the differences in the effect of sub-lethal residues of azinphos-methyl on the pheromone communication system of susceptible and resistant moths are discussed in relation to the theory of the development of insecticide resistance, the detection of resistance in feral populations of moths using sex pheromone-baited traps, and the control of moths using sex pheromone-mediated mating disruption.  相似文献   

11.
The interactions between six insecticides (indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl, tebufenozide and chlorfenapyr) and three potential synergists, (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by dietary exposure in a multi-resistant and a susceptible strain of the obliquebanded leafroller, Choristoneura rosaceana (Harris). The synergists did not produce appreciable synergism with most of the insecticides in the susceptible strain. Except for tebufenozide, PBO synergized all the insecticides to varying degrees in the resistant strain. A very high level of synergism by PBO was found with indoxacarb, which reduced the resistance level from 705- to 20-fold when PBO was administered alone and to around 10-fold when used in combination with DEF. DEF also synergized indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl and tebufenozide in the resistant strain. DEM produced synergism of indoxacarb, chlorpyrifos, azinphos-methyl and chlorfenapyr in the resistant strain. DEM was highly synergistic to cypermethrin, and to some extent to tebufenozide in both the susceptible and resistant strains equally, implying that detoxification by glutathione S-transferases was not a mechanism of resistance for these insecticides. The high level of synergism seen with DEM in the case of cypermethrin may be due to an increase in oxidative stress resulting from the removal of the antioxidant, glutathione. These studies indicate that enhanced detoxification, often mediated by cytochrome P-450 monooxygenases, but with probable esterase and glutathione S-transferase contributions in some cases, is the major mechanism imparting resistance to different insecticides in C. rosaceana.  相似文献   

12.
脱叶剂对棉花抗氧化酶及内源激素的影响   总被引:3,自引:0,他引:3  
为了筛选出适宜的脱叶剂喷施时间及脱叶效果较好的脱叶剂,研究了大田条件下脱叶剂喷施时间及脱叶剂种类对棉花叶片内源激素含量、抗氧化酶活性及丙二醛含量的影响,并探讨了脱叶剂对棉花生理效应的影响。采用裂区试验设计,以脱叶剂喷施时间为主区,脱叶剂种类为副区进行试验。结果表明:喷施540 g/L脱吐隆悬浮剂(主要成分为18%噻苯隆和36%敌草隆)及5.5%噻苯隆悬浮剂后,棉花叶片中脱落酸(ABA)含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均呈先升高后降低的趋势,丙二醛(MDA)含量升高,生长素(3-吲哚乙酸,IAA)含量下降,其中脱吐隆对叶片膜系统破坏严重;在棉花吐絮率为50%时喷施540 g/L脱吐隆悬浮剂,25 d后棉花脱叶率和吐絮率分别可达90.1%和99.9%。  相似文献   

13.
Azinphos-methyl was applied to Shiraz winegrapes by commercial high-volume and hand-held sprayers during seasons 1993/94 and 1994/95. Residue levels in grapes resulting from treatments applied by commercial sprayer were below the maximum residue level (MRL) of 2 mg kg-1 for grapes in Australia, whereas residues resulting from treatments applied by hand-held sprayer still exceeded the MRL five weeks after final application. There was a strong correlation for most treatments between treatment concentration of azinphos-methyl and residue level in grapes, and in wine made from treated grapes. Applied at the recommended rate (1·2 g litre-1 wettable powder (WP) and 2·4 ml litre-1 suspension concentrate (SC)) by commercial high-volume sprayer, azinphos-methyl residue levels in wine were well below the MRL, and below the MRLs of most importing countries, except Denmark and Sweden. When applied by hand-held sprayer, residue levels in wine were 5·9–29·6 fold higher than those previously obtained by commercial application of insecticide. Since wines are often blends from different grape blocks and grape-growing districts, in practice, this is unlikely to be of concern. Wine made from grapes treated by commercial sprayer showed no detectable residues of azinphos-methyl after one year of storage. In both years, residue levels in grapes of both formulations of azinphos-methyl fluctuated during the five-week post-treatment period, although there was an overall downward trend. Previously unrecorded systemicity in azinphos-methyl was demonstrated in laboratory studies with barley seedlings, and this may explain these fluctuating data in grapes. The reduction of azinphos-methyl residues in grapes over time appears to be a complex phenomenon involving translocation of active ingredient combined with an increase in the size and weight of berries, producing fluctuating residue levels. © 1998 SCI  相似文献   

14.
Populations of Choristoneura rosaceana (Harris) from orchards in Ontario were shown to be resistant to azinphos-methyl and to other types of organophosphorus insecticides. Resistance extended to methyl carbamates and to methomyl. The laboratory population used for these assays and selected with azinphosmethyl was also resistant to the pyrethroid, cypermethrin. Resistance was associated with increased esterase activity and was reduced by the addition of the synergist DEF. IEF studies of esterases also indicated increased activity in resistant populations, but did not identify any unique esterases associated with the resistance. Resistance was highly correlated (r = 0.78) with elevated esterases but not with increased glutathione-S transferase activity (r = 0.13). Other mechanisms did not appear to be related.  相似文献   

15.
Three insect growth regulators (IGR), the chitin synthesis inhibitors (CSI) teflubenzuron and hexaflumuron and the juvenile hormone mimic (JHM) pyriproxyfen, as well as the organophosphate (OP) pirimiphos-methyl, were evaluated for their activity against the cowpea weevil, Callosobruchus maculatus (F), in cowpea seeds stored for up to 8 months post-treatment. The initial activity data showed that, based on LC50 level, teflubenzuron had strong ovicidal activity (LC50 = 0.056 mg kg(-1)) followed by pirimiphos-methyl (1.82 mg kg(-1)) and pyriproxyfen (91.9 mg kg(-1)). The residual activity data showed that none of the IGRs tested had strong activity when applied at 200 mg kg(-1) in reducing the oviposition rates of C maculatus at various storage intervals up to 8 months post-treatment. However, teflubenzuron reduced adult emergence (F1 progeny), achieving control ranging from 96.2% at 1 month to 94.3% at 8 months. Hexaflumuron showed a similar trend in its residual activity, ranging between 93.8% control at 1 month to 88.2% control at 8 months post-treatment. However, pyriproxyfen was more active than the CSIs tested and caused complete suppression (100% control) of adult emergence at all storage intervals. Unlike the IGRs tested, pirimiphos-methyl applied at 25 mg kg(-1) was more effective in reducing oviposition rates of C maculatus up to 8 months post-treatment. A strong reduction of adult emergence was also observed at various bimonthly intervals (98.6% control at 1 month to 91.6% control at 8 months post-treatment). The persistence of hexaflumuron and pirimiphos-methyl in cowpea seeds was also studied over a period of 8 months. The loss of hexaflumuron residue in treated cowpeas (200 mg kg(-1)) was very slow during the first month post-treatment (4.43%). At the end of 8 months, the residue level had declined significantly to 46.4% of the initial applied rate. The loss of pirimiphos-methyl residue in treated cowpeas (25 mg kg(-1)) was relatively high during the first month post-treatment (36.7%) and increased to 81.6% after 8 months.  相似文献   

16.
Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae.In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1-16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.  相似文献   

17.
Abstract

Further work with the herbicide C 19490 (S-(2-methyl-1-piperidyl-carbonylmethyl)-O,O-di-N-propyl dithiophosphate) in the mixture C 288 with the triazine C 18898 in the ratio 4:1, and with 2,4-D isopropyl ester (2,4-D IPE) in the ratios 2:1 and 3:2 have been completed. New toxicological data show that the risk of toxicity hazards to the user or to other mammals by contamination is low. Residue work shows that C 19490 leaves very low or undetectable residues in rice grain and soil, though C 18898 was detected in both, but never at more than 0.28 ppm in soil or more than 0.04 ppm in grain. There was no interaction between either C 19490 or C 288 and commonly used insecticides. Uptake of the products by plants was shown to be preferentially through emerging shoots, and less through roots.

Field trials resulted in recommendations for around 2 kg C 288 total a.i./ha in Japan, optimum timing depending on the prevailing temperature. Successful control was achieved in Taiwan with C 288 at 1 kg a.i./ha in both the cool and warm season crops, applied 7–12 days after transplanting. In equatorial Asia, mixtures worked well: C 288 at 0.75–1.25 kg a.i./ha, C 19490 at 0.75–1.0 + 2,4-D IPE at 0.5 kg a.i./ha and the 3:2 mixture at 0.75 + 0.5 kg a.i./ha (granular), applied four DAT on dense weed stands, but up to ten DAT on stands comprising predominantly moderate infestations of Echinochloa crusgalli, Monochoria vaginalis and annual Cyperus spp. These recommendations resulted in yields which were never significantly different from those of hand-weeded areas. On light, permeable soils, e.g. in Pakistan, C 288 at 1.0–1.25 kg a.i./ha, 8–10 DAT was less harmful to the crop than lower rates applied earlier, and was better than the 2,4-D IPE mixture for weed control. In Egypt, C 19490 + 2,4-D IPE at only 0.375 + 0.25 kg a.i./ha was successful, because of the susceptible weed flora.  相似文献   

18.
为明确河南省不同地区灰飞虱田间种群对12种常用杀虫剂的抗性现状,于2020—2021年,采用稻苗浸渍法分别测定了河南新乡、濮阳、开封、驻马店及信阳等地区灰飞虱田间种群对12种杀虫剂的抗性水平。结果表明:河南省灰飞虱田间种群对噻嗪酮产生了中等水平抗性,抗性倍数 (RR) =14.9~91.1;对吡蚜酮 (RR=6.91~16.7) 和毒死蜱 (RR=8.48~70.0) 产生了低至中等水平抗性;对三唑磷 (RR=1.29~11.1) 处于敏感至中等水平抗性;对噻虫嗪 (RR=0.95~5.19) 和高效氯氟氰菊酯 (RR=3.31~7.24) 处于敏感至低水平抗性;对吡虫啉 (RR=0.89~3.92)、啶虫脒 (RR=1.11~2.33)、烯啶虫胺 (RR=0.16~0.64)、呋虫胺 (RR=1.87~3.86)、异丙威 (RR=0.47~1.37) 和氟啶虫酰胺 (RR=1.63~4.33) 均仍处于敏感水平。研究结果可为河南省田间灰飞虱的可持续性防控以及杀虫剂的科学合理使用提供参考。  相似文献   

19.
The resistance of Cydia pomonella (L.) to organophosphates is widespread throughout the pome fruit growing areas. The lethal effects of two insecticides inhibitors of the acetylcholine esterase, azinphos-methyl and carbaryl, were evaluated in adults of five and four field populations of the codling moth, respectively. The lethal concentrations (LC50 and LC90) of these insecticides were determined in a susceptible strain from Spain (S_Spain). Topical bioassays using the approximate LC90 values (3000 mg (a.i.)/L of carbaryl and 2000 mg (a.i.)/L of azinphos-methyl) that were obtained in S_Spain were tested as diagnostic concentrations. The enzymatic activities of mixed-function oxidases (MFO), glutathione S-transferases (GST) and esterases (EST) were measured to investigate their potential role in the detoxification of these insecticides.Carbaryl and azinphos-methyl caused ?53% and ?39% corrected mortality, respectively, in field populations, although the diagnostic concentrations applied were twofold and fourfold higher than the maximum concentration registered in Spain, respectively. The activities of MFO and GST were 7.3- to 16.1-fold higher and 2.5- to 3.7-fold higher in all the field populations compared to those in S_Spain, respectively.  相似文献   

20.
Acute and chronic effects of spring application of 2,4-D on adult C. horridus (Panzer) were examined by determining dose-mortality response and adult vitality. LC50 values for males (70.2 kg/ha) and females (61.4 kg/ha) corresponded to 41.7 and 36.6 times, respectively, the recommended application rate of 1.68 kg/ha. Survival of weevils treated with 1.68 kg/ha was not different from untreated controls, but higher doses (16.8–147.8 kg/ha) caused significantly greater mortality. Adult vitality, measured by number of feeding marks per weevil and rate of weight change. was unaffected by the herbicide. When thistle infested fields were sprayed with 1.68 or 2.24 kg/ha of 2,4-D the host plants died, but the survival, reproduction, and population increase of C. horridus were not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号