首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anoectochilus formosanus (Orchidaceae) is a folk medicine in Asia. This study investigated the in vivo and in vitro prebiotic effects of an aqueous extract of A. formosanus (SAEAF) and of an indigestible polysaccharide (AFP) isolated from SAEAF. Chemical analyses showed AFP was mainly composed of arabinogalactan type II (AG-II), with an average molecular weight of 29 kDa. Following 4 weeks of oral administration to rats, SAEAF exhibited prebiotic effects including a decrease in cecum pH and increases of calcium absorption and fecal bifidobacteria. Furthermore, through a bioactivity-guided separation strategy, AFP was proven to be a bifidogenic component in vitro fecal strains fermentation and in vivo administration to mice. In RT-PCR analysis of Bifidobacterium , AFP increased the expression of ABC transporter related to nutrient uptake. Thus, AFP, a polysaccharide from A. formosanus, was demonstrated to be a prebiotic that has a positive health effect on gut microbiota.  相似文献   

2.
A great multiplicity of methods has been used to evaluate the activity of natural antioxidants by using different techniques of inducing and catalyzing oxidation and measuring the end point of oxidation for foods and biological systems. Antioxidant in vitro protocols for foods should be based on analyses at relatively low levels of oxidation under mild conditions and on the formation and decomposition of hydroperoxides. For antioxidant in vivo protocols, widely different methods have been used to test the biological protective activity of phenolic compounds. Unfortunately, many of these protocols have been based on questionable methodology to accurately measure oxidative damage and to assess relevant changes in biological targets. Many studies testing the ex vivo activity of phenolic compounds to inhibit human low-density lilpoprotein (LDL) oxidation have been difficult to evaluate because of the structural complexity of LDL particles and because a multitude of markers of oxidative damage have been used. Although studies with animal models of atherosclerosis have demonstrated the antioxidant effect of phenolic compounds in delaying the progress of this disease, human clinical trials of antioxidants have reported inconsistent and mixed results. Complex mixtures of plant polyphenols have been shown to be absorbed to varying degrees as metabolites in the intestine, but little is known about their interactions, bioavailability, and their in vivo antioxidant activity. Several metabolites identified in human plasma after consuming flavonoids need to be tested for possible nonantioxidant activities. More research and better-designed human studies are required to clarify the complex questions of bioavailability of polyphenols and the factors affecting their in vivo activities. Until we know what relevant in vivo activities to measure, any claims on the biological and health protective effects of natural polyphenolic compounds in our diet are premature.  相似文献   

3.
Arabinoxylans (AX) are the main dietary fiber (DF) polysaccharides in rye where they represent ≈55% of the total polysaccharides. Rye AX consist of a backbone of (1→4)‐β‐d ‐xylopyranosyl residues (X) mainly substituted with α‐l ‐arabinofuranosyl residues (A) to varying degrees at the O‐2 position, the O‐3 position, or both. The A/X ratio of total AX is 0.49–0.82 and extractable AX ratio is 0.34–0.85 in different studies. AX also contain small amounts of ferulate residues bound to arabinose as esters at its O‐5 position. The weight average molecular weight varies from 40,000 to 900,000 with an average of ≈200,000. AX influence physiology in different segments of the gastrointestinal tract. The complex molecular structure of rye AX makes them resistant against microbial modification in the small intestine; consequently, rye AX have a much higher influence on the viscosity in the small intestinal digesta than does β‐glucan from oats and barley. In spite of that, it has not been possible in studies with AX‐rich foods such as bread to demonstrate a significant effect on the postprandial glucose response, however, a significantly reduced insulin response has been seen. Nevertheless, addition of 6 g and 12 g of AX‐rich wheat fiber to a breakfast meal has significantly lowered postprandial glucose and insulin response. Studies with hypercholesterolemic pigs fed rye buns rich in AX have resulted in dramatic reductions in plasma total and LDL cholesterol, whereas a gender difference was seen in studies on the effect of AX on plasma lipids in humans. Only certain species of bacteria from the human gut produce the enzymes needed for the degradation of AX. Nevertheless, wheat AX stimulate prebiotic bacteria presumably brought about by cross feeding of lactobacilli and bifidobacteria with degradation products from versatile carbohydrate‐degrading bacteria. Soluble AX are readily fermented in the large intestine, the majority is broken down between the ileum and the cecum. AX, characterized by a low degree of substitution and virtually no doubly substituted xylose, are slowly degraded at more distal locations. The remaining AX, characterized by a high degree of substitution, are not degraded at all. Although the fermentation pattern of AX may vary in different experimental models, in vitro fermentation studies and in vivo intervention studies with animals and humans point to AX as substrates that enhance the formation of butyrate in the large intestine.  相似文献   

4.
Biological activity tests were performed on alpha-galactoside preparations obtained from Lupinus angustifolius L. cv. Mirela (alkaloid-rich) and Pisum sativum L. cv. Opal seeds. The studies included the following tests: acute toxicity, cytotoxic test, delayed type hypersensitivity (DTH), plaque-forming cell number (IgM-PFC), and influence on the growth of bifidobacteria and coliform presence in rat colon. Results of these studies showed that alpha-galactosides from lupin and pea seeds were essentially nontoxic. Their acute toxicity (LD(50)) in mice was >4000 mg kg(-1) of body weight. alpha-galactoside preparations were not cytotoxic for mouse thymocytes in vitro. The in vitro test shows that oligosaccharides from lupin and pea are utilized by selected beneficial colon bacterium strains. The in vivo experiment demonstrated that alpha-galactosides from legume significantly influenced the growth of bifidobacteria in rats colon. Simultaneously, the decrease of the coliform presence was observed. The chemical composition of the tested preparations had no significant effect on their biological activity.  相似文献   

5.
β-Glucans obtained from barley, seaweed, bacteria, and mushroom sclerotia were incubated with pure cultures of Bifidobacterium infantis, Bifidobacterium longum, and Bifidobacterium adolescentis for a 24 h batch fermentation to evaluate their bifidogenic effect with inulin as the positive control. The pH value in all culture media was decreased by 0.5-1.5 units. All β-glucans supported the growth of the three bifidobacteria with B. infantis, having a relatively larger increase in populations (3-4 log(10) colony forming units). B. infantis produced almost double the amount of total short-chain fatty acids (SCFAs) than the other two bifidobacteria. The SCFA profile of B. infantis had a relatively higher proportion of propionic and butyric acid but less acetic acid than the other bifidobacteria. The utilization of all the β-glucans isolated from different sources regardless of their differences in glycosidic linkages and molecular weight by all three bifidobacteria was comparable to that of inulin.  相似文献   

6.
Whole plant foods, including fruit, vegetables, and whole grain cereals, protect against chronic human diseases such as heart disease and cancer, with fiber and polyphenols thought to contribute significantly. These bioactive food components interact with the gut microbiota, with gut bacteria modifying polyphenol bioavailability and activity, and with fiber, constituting the main energy source for colonic fermentation. This paper discusses the consequences of increasing the consumption of whole plant foods on the gut microbiota and subsequent implications for human health. In humans, whole grain cereals can modify fecal bacterial profiles, increasing relative numbers of bifidobacteria and lactobacilli. Polyphenol-rich chocolate and certain fruits have also been shown to increase fecal bifidobacteria. The recent FLAVURS study provides novel information on the impact of high fruit and vegetable diets on the gut microbiota. Increasing whole plant food consumption appears to up-regulate beneficial commensal bacteria and may contribute toward the health effects of these foods.  相似文献   

7.
Anthocyanins are polyphenol antioxidants that have been shown to prevent many chronic diseases, including colon cancer. The compounds are largely metabolized by various enzymes and bacteria in the large intestine, and the health benefits of consuming foods rich in anthocyanins could be due mostly to the effects of these metabolites. In this study, the contents of the large intestine of pigs were used to model anthocyanin metabolism because pig and human intestinal microflora are similar. An anthocyanin extract from Cabernet Sauvignon grapes that contained delphinidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, and malvidin-3-glucoside was employed. The extract was incubated anaerobically in the contents of the large intestine of freshly slaughtered pigs for 0, 0.5, and 6 h (final concentrations of 20.9, 28.2, 61.4, and 298.0 microM of the above anthocyanin compounds, respectively, at t = 0 h). Anthocyanins and their metabolites were measured by LC-ESI-MS. After 6 h, anthocyanins were no longer detected, and three metabolites were identified as 3-O-methylgallic acid, syringic acid, and 2,4,6-trihydroxybenzaldehyde. Results from this study suggest that consumption of Cabernet Sauvignon grape anthocyanins could lead to the formation of specific metabolites in the human gut, and it is possible that these metabolites offer the protective effect against colon cancer attributed to anthocyanin consumption.  相似文献   

8.
This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon.  相似文献   

9.
In vivo experiments were conducted to verify whether arabinoxylooligosaccharides (AXOS) obtained as low molecular mass compounds by enzymic hydrolysis from wheat bran arabinoxylan (AX) can exert nutritional effects. Two feeding trials were performed on chickens fed diets with either wheat or maize as the main component. Supplementation of bran AXOS at either 0.5% (w/w) to the wheat‐based diet or at 0.25% (w/w) to the maize‐based diet diets significantly (P < 0.05) improved the feed conversion rate without increasing the body weight of the animals, thus pointing to improved nutrient utilization efficiency. The positive effect of bran AXOS supplementation on feed utilization efficiency was similar to that obtained by adding an AX‐degrading xylanase directly to the wheat‐based diet. No significant effect on feed utilization efficiency was obtained with another type of nondigestible oligosaccharide such as fructooligosaccharides (FOS) derived from chicory roots. Bran AXOS significantly increased the level of bifidobacteria but not total bacteria in the caeca of the chickens, an effect not observed with either xylanase or FOS addition. These data suggest that bran AXOS have beneficial nutritional effects and may act as prebiotics.  相似文献   

10.
Hydroxycinnamic acids are antioxidant phenolic compounds which are widespread in plant foods, contribute significantly to total polyphenol intakes, and are absorbed by humans. The extent of their putative health benefit in vivo depends largely on their bioavailability. However, the mechanisms of absorption and metabolism of these phenolic compounds have not been described. In this study, we used the in vitro Caco-2 model of human small intestinal epithelium to investigate the metabolism of the major dietary hydroxycinnamates (ferulate, sinapate, p-coumarate, and caffeate) and of diferulates. The appearance of metabolites in the medium versus time was monitored, and the various conjugates and derivatives produced were identified by HPLC-DAD, LC/MS, and enzyme treatment with beta-glucuronidase or sulfatase. Enterocyte-like differentiated Caco-2 cells have extra- and intracellular esterases able to de-esterify hydroxycinnamate and diferulate esters. In addition, intracellular UDP-glucuronosyltransferases and sulfotransferases existing in Caco-2 cells are able to form the sulfate and the glucuronide conjugates of methyl ferulate, methyl sinapate, methyl caffeate, and methyl p-coumarate. However, only the sulfate conjugates of the free acids, ferulic acid, sinapic acid, and p-coumaric acid, were detected after 24 h. The O-methylated derivatives, ferulic and isoferulic acid, were the only metabolites detected following incubation of Caco-2 cells with caffeic acid. These results show that the in vitro model system differentiated Caco-2 cells have the capacity to metabolize dietary hydroxycinnamates, including various phase I (de-esterification) and phase II (glucuronidation, sulfation, and O-methylation) reactions, and suggests that the human small intestinal epithelium plays a role in the metabolism and bioavailability of these phenolic compounds.  相似文献   

11.
Whole grains contain all parts of the grain: the endosperm, germ, and bran. Whole grains are rich in fermentable carbohydrates that reach the gut: dietary fiber, resistant starch, and oligosaccharides. Most research that supports the importance of grains to gut health was conducted with isolated fiber fractions, rather than whole grains. Whole grains are an important source of dietary fiber and grain fibers such as wheat, oats, barley, and rye increase stool weight, speed intestinal transit, get fermented to short chain fatty acids, and modify the gut microflora. Wheat bran is particularly effective in increasing stool weight; wheat bran increases stool weight by a ratio of 5:1. In contrast, many novel fibers that are easily incorporated into beverages and foods increase stool weight only on a ratio of 1:1. In vitro fermentation studies with whole grains have been published. Carbohydrates of oat bran (rich in β‐glucan) were consumed by bacteria faster than those of rye and wheat brans (rich in arabinoxylan). Grain fibers were fermented more slowly than inulin, causing less gas production. Wheat is particularly high in fructo‐oligosaccharides, while wheat germ is high in raffinose oligosaccharides. Some in vivo studies show the prebiotic potential of whole grains. Whole grain breakfast cereal was more effective than wheat bran breakfast cereal as a prebiotic, increasing fecal bifidobacteria and lactobacilli in human subjects. Wheat bran consumption increased stool frequency. Thus, the gut enhancing effects of cereal fibers are well known. Limited data exist that whole grains alter gut health.  相似文献   

12.
The Eph tyrosine kinase receptors and their ephrin ligands play a central role in human cancer as their deregulated expression induces tumorigenesis with aggressive phenotypes. To evaluate their potential contribution to EphA2-ephrinA1 modulation, several colonic catabolites of dietary (poly)phenolics, known to be generated in vivo, were screened using an ELISA-based binding assay. Some of the catabolites inhibited the binding in a dose-dependent manner (IC(50) values from 0.26 to 43 μM). Functional studies on prostate adenocarcinoma cells revealed that pyrogallol and protocatechuic acid specifically antagonized ephrinA1-Fc-induced EphA2 phosphorylation at concentrations that were not cytotoxic. The active concentrations of pyrogallol appear to be close to what can be reached in vivo under physiological conditions. Finally, because of the roles played by the Eph-ephrin system not only in cancer development but also in neurodegeneration and diabetes, pyrogallol and protocatechuic acid are candidates for more detailed functional studies to elucidate their role in these pathophysiological processes.  相似文献   

13.
For decades, quality of starch‐based foods has been associated with the in vivo measured glycemic index or the in vitro digestion rate‐based categories of rapidly digestible, slowly digestible, and resistant starch (RS). Glycemic index has been related to health‐based endpoints mostly through correlative or observational studies, with mechanisms proposed but not well established. Here, we bring forth the concept of locational delivery of glucose from dietary starches to the distal small intestine to elicit an ileal brake effect, as well as short‐chain fatty acid production from RS fermentation to cause a colonic brake. Both effects slow gastric emptying and, in turn, extend nutrient (i.e., energy) delivery to the body and may decrease appetite and promote weight management. Slowly digestible starches are currently a popular topic of research, although where they are digested and the released glucose is delivered in the small intestine is not known. A proposal is to further study and establish this mechanism of appetite and food intake regulation so that starch‐based ingredients and foods can be developed that promote both the ileal and colonic brake mechanisms.  相似文献   

14.
The fermentation of three arabinoxylan (AX) fractions from wheat by the human fecal microflora was investigated in vitro. Three AX fractions, with average molecular masses of 354, 278, and 66 kDa, were incorporated into miniature-scale batch cultures (with inulin as a positive prebiotic control) with feces from three healthy donors, aged 23-29. Microflora changes were monitored by the culture-independent technique, fluorescent in situ hybridization, and short chain fatty acid (SCFA) and lactic acid production were measured by high-performance liquid chromatography. Total cell numbers increased significantly in all treated cultures, and the fermentation of AX was associated with a proliferation of the bifidobacteria, lactobacilli, and eubacteria groups. Smaller but statistically significant increases in bacteroides and clostridia groups were also observed. All AX fractions had comparable bifidogenic impacts on the microflora at 5 and 12 h, but the 66 kDa AX was particularly selective for lactobacilli. Eubacteria increased significantly on all AX fractions, particularly on 66 kDa AX. As previously reported, inulin gave a selective increase in bifidobacteria. All supplemented cultures showed significant rises in total SCFA production, with a particularly high proportion of butyric acid being produced from AX fermentation. The prebiotic effect, that is, the selectivity of AX for bifidobacteria and lactobacilli groups, increased as the molecular mass of the AX decreased. This suggests that molecular mass may influence the fermentation of AX in the colon.  相似文献   

15.
Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye and wheat brans. Hydrolysis by intestinal esterase(s) is very likely the major route for release of antioxidant hydroxycinnamic acids in vivo.  相似文献   

16.
Several different Microbial source tracking methods (MSTs) can be used to distinguish human from animal fecal contamination in water; In this study, experiments were carried out to test the effectiveness and reliability of three bacteria based approaches (the fecal coliforms to fecal streptococci ratio, antibiotic-resistant Clostridium perfringens, and human bifidobacteria) in a simulated groundwater micro-environment. The methods were evaluated in three phases: initially, the specificity of each indicator was validated on groundwater samples affected by known pollution source; then the variation of performance with time of each method was determined, and finally, the die-off coefficients for pure species of Clostridium perfringens and Bifidobacterium adolescentis were measured. The results indicate that only the determination of human bifidobacteria concentration can be considered reliable in distinguishing human from animal pollution in groundwater at the conditions applied. Nevertheless, human bifidobacteria were detectable only for two weeks after the contamination event. This study also shows that antibiotic resistant Clostridium perfringens detected using the Shahidi-Ferguson medium is not source specific, whereas it confirms that this species can be useful for timing general fecal contamination events.  相似文献   

17.
Phenols present in olive oil may contribute to the health effects of the Mediterranean lifestyle. Olive oil antioxidants increase the resistance of low-density lipoproteins (LDL) against oxidation in vitro, but human intervention studies have failed to demonstrate similar consistent effects. To better mimic the in vivo situation, plasma was incubated with either individual olive oil phenols or olive oil extracts with different phenolic compositions, and LDL was subsequently isolated and challenged for its resistance to oxidation. The results show that the ortho-dihydroxy phenols (hydroxytyrosol and oleuropein-aglycone) are more efficient than their mono-hydroxy counterparts (tyrosol and ligstroside-aglycone) in increasing the resistance of LDL to oxidation. However, the concentration of antioxidants required to inhibit LDL oxidation when added to whole plasma was substantially higher as compared to previous data where antioxidants are directly added to isolated LDL. In conclusion, this study supports the hypothesis that extra virgin olive oil phenols protect LDL in plasma against oxidation. The explanation that in vitro studies show protective effects in contrast to the lack of effect in the majority of human studies may be that the dose of the phenols and thus their plasma concentration in humans was too low to influence ex vivo LDL oxidizability. Further studies are required to gain a better understanding of the potential health benefits that extra virgin olive oil may provide.  相似文献   

18.
There has been considerable debate regarding the nutritional benefits of pollen and the propolis produced by bees, although most contributions have lacked scientific soundness. This paper describes the possible beneficial effect of their use in pharmacological products in cases of anemic syndrome. We studied the effect of these two natural products on the digestive utilization of iron, calcium, phosphorus, and magnesium, using control rats and rats with nutritional ferropenic anemia. The addition of these products to the diet produced a positive effect on weight gain; this fact could constitute a scientific basis for the application of pollen and propolis as fortifiers. They improve the digestive utilization of iron and the regeneration efficiency of hemoglobin, especially during recovery from an anemic syndrome. They also have a positive effect on phosphocalcic metabolism and maintain an appropiate level of magnesium metabolism. Furthermore, in iron-deficient rats, these natural products palliate, to a large extent, the adverse effects of iron deficiency on calcium and magnesium metabolism as a result of the improvement in the digestive utilization of these minerals.  相似文献   

19.
Genistein, like other phytochemicals, has beneficial health effects, but its bioavailability is limited. This research studied the effect of complexation of genistein with starch on genistein bioavailability. Genistein release from these complexes was tested in vitro under simulated intestinal conditions and in vivo in rats fed high-amylose corn starch (HACS)-genistein complexes (experimental group) as compared to those fed a physical mixture of HACS and genistein (controls). In vitro results showed that genistein release is sustained and fits the normal transit time of food in the intestine. The genistein concentration in the plasma was twice as high in the experimental group versus controls; the genistein concentration in the urine was also higher in the experimental group but lower in the feces. These results indicate that starch-genistein complexes increase genistein bioavailability and suggest that starch can affect the bioavailability of additional food components.  相似文献   

20.
The literature addresses dietary fiber (DF) and antioxidants (AOX) separately as nonrelated compounds. This paper proposes to show that DF and AOX could be approached jointly in nutrition and health studies because around 50% of the total dietary antioxidants, mainly polyphenolics, traverse the small intestine linked to dietary fiber. These antioxidants have received little attention so far. They release the fiber matrix in the colon by the action of the bacterial microbiota, producing metabolites and an antioxidant environment. The content of polyphenols associated with DF in different foods and their potential health-related properties, including animal experiments and human trials, are reviewed. It is concluded that the transportation of dietary antioxidants through the gastrointestinal tract may be an essential function of DF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号