首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Racehorses in New Zealand predominantly train counter clockwise. This training pattern has been associated with between forelimb differences in bone mineral density profile and asymmetrical limb loading after training. At present, there is limited data on the hoof conformation of these racehorses. Distal forelimb and digital hoof conformation data were collected from 75 Thoroughbred racehorses (2–5 years old) from two training yards. Digital conformation was subjectively graded, and multiple hoof measurements were made with a modified tire gauge (sole and sulci depth) and from digital photographs. All the horses were shod by two registered master farriers within a median of 15 (interquartile range [IQR], 1–25) days before measurement. There were few distal limb conformation abnormalities scored. Most (62/75) horses presented with some deviation from normal hoof parameters, with 2 (IQR, 1–3) abnormalities reported per horse. The most common hoof abnormality was uneven sulci, which was identified in 43 horses and 59 affected hooves, followed by higher medial hoof wall height in 38 horses and 53 affected hooves. Many of the linear and hoof angle measurements and their ratios were within the bounds reported within the literature and indicative of a balanced foot. The length and width measurements increased with horse age. The dorsal hoof wall (DHW) length:heel length ratios were consistently less than 3:1, and the absolute difference between toe and heel angle was generally greater than 5°. Between limb hoof variation was identified for a number of the morphologic measurements including frog length and sole length and the ratio of sole width:sole length. Flat feet (lack of concave solar surface) were identified in 21/75 (28%) horses and in 28/150 (19%) forelimb hoofs. More horses had a flat left foot (10/75) than right foot (4/75), but seven horses had both feet classified as being flat. Flat feet had 2.4 (1.1–5.6, P = .036) greater odds of presenting with uneven sulci. These data indicate that uneven sulci depth and flatter hooves with may be a typical presentation of Thoroughbred feet. Asymmetry in measurements between limb may reflect the greater loading of the left forelimb when race training counter clockwise.  相似文献   

2.
OBJECTIVE: To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval. ANIMALS: 18 clinically sound Warmblood horses. PROCEDURES: Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes. Results-Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase. CONCLUSIONS AND CLINICAL RELEVANCE: Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.  相似文献   

3.
The shoe types most commonly applied to horses with navicular disease or other forms of palmar heel pain are shoes with heel wedges and eggbar shoes, although their efficacy has been a matter of debate among veterinarians and farriers for centuries. To quantify the effect of these different types of “navicular” shoeing on static hoof pressure distribution, 6 warmblood horses were shod with 6° wedge, eggbar, and plain shoes. While standing square with weight evenly distributed across both forelimbs, the center of pressure and pressures at selected areas of interest (AOI: toe, medial and lateral toe, medial and lateral heel) were measured using a Footscan (RsScan International, Belgium) pressure plate in a Latin square design using the plain shoe as a reference.Wedge shoes did not provide a significant shift in the center of pressure. The application of eggbar shoes did not alter the relative position of the center of pressure under the hoof. However, the absolute distance from the toe to the center of pressure was significantly larger with eggbar shoes (77 + 12 mm) compared with plain and wedged shoes (70 ± 8 mm, P < .05) resulting in an absolute, caudal shift of the center of pressure. When pressure (N/cm2) values at the five AOIs were averaged for each shoe type, the wedge and eggbar shoe recordings showed a significantly lower mean pressure than plain shoes (P < .05).In conclusion, mean AOI pressures decreased with wedge and eggbar shoes, and eggbar shoes provided a caudal shift in the center of pressure. These effects are believed to decrease the moment of the coffin joint and reduce the pressure on the navicular bone. Thus, the findings of this study might contribute to the scientific evidence of efficacy of the use of wedge and eggbar shoes in “navicular” lame horses.  相似文献   

4.
OBJECTIVE: To define relationships between hoof-acceleration patterns of galloping horses and dynamic properties of the track. ANIMALS: 8 Thoroughbred horses without lameness. PROCEDURE: Acceleration-time curves were recorded by use of accelerometers attached to each hoof as each horse galloped over the track straightaway. Four sessions were conducted for each horse, with the track surface modified by sequentially adding water before each session. These acceleration-time curves were analyzed to determine peak accelerations during the support phase of the stride. Track dynamic properties (hardness, rebound, deceleration rate, rebound rate, and penetration) were recorded with a track-testing device. Moisture content and dry density were measured from soil samples. Stepwise multiple regression was used to identify relationships between hoof-acceleration variables and track dynamic properties. RESULTS: Track rebound rate was most consistently related to hoof variables, especially through an inverse relationship with negative acceleration peaks for all hooves. Also, rebound rate was related to initial acceleration peak during propulsion of the hooves of the forelimb and the nonlead hind limb as well as to the second acceleration peak during propulsion of the lead hooves of the hind limb and nonlead forelimb. CONCLUSIONS AND CLINICAL RELEVANCE: The inverse relationship between track rebound rate and negative acceleration peaks for all hooves reflects the most important dynamic property of a track. Any factor that reduces negative acceleration of the hooves will increase stride efficiency by allowing smoother transition from retardation to propulsion and therefore may be important in determining the safety of racing surfaces.  相似文献   

5.
There is limited information documenting hind foot conformation. The objectives of the study were to describe the shape of the hoof capsule of hindlimbs from the lateral aspect in horses of variable breeds, and, within horses, to compare the conformation of the hoof capsule of forelimbs and hindlimbs and determine the orientation of the distal phalanx within the hoof capsule in hindlimbs. Lateral photographs of the fore and hind feet (n = 225) and lateromedial radiographs of the hind feet (n = 29) were obtained. Differences among breed and shoeing status groups were assessed using multivariable mixed-effects linear regression models. Angular parameters and ratios of linear measurements were compared between fore and hind feet; angular radiological variables and photographic parameters of the hind feet were compared. The mean dorsal hoof wall angle for hind feet (50.9°±3.7°) was smaller than forefeet (51.8°±3.9°) (P = 0.04). The mean heel angles for hind feet (36.4°±9.6°) were smaller than forefeet (40.1°±9.3°; P < 0.001). Dorsal hoof wall (P < 0.001) and heel (P = 0.002) angles were larger in unshod than shod feet. In the hind feet, the dorsal hoof wall was parallel to the dorsal aspect of the distal phalanx. The median angle of the distal phalanx to the horizontal (angle S) was 0.6° (interquartile range: −1.4, 2.3°). There was a positive relationship between angle S and the hoof wall angle (W); each 1° increase in angle S was associated with 0.6° increase in angle W (P < 0.001). Angle S was also positively associated with photographic heel angle; each degree increase in the angle S was associated with 1.8° increase in the heel angle (P < 0.001). It was concluded that the angle of the distal phalanx to the horizontal in hindlimbs is smaller than published values for forelimbs. The orientation of the distal phalanx in hindlimbs is correlated with external characteristics of the hoof capsule.  相似文献   

6.
Objective To monitor changes in hoof morphology in response to barefoot trimming. Methods Seven horses were trimmed every 6 weeks according to barefoot trimming principles, which involved levelling the hoof to live sole, lowering the heels, bevelling the toe and rounding the peripheral wall, while leaving the sole, frog and bars intact. A 4‐month period was allowed to lower the heels sufficiently to achieve a hoof shape representative of the barefoot trim. This was regarded as the starting point for morphological adaptations in response to maintenance of the trim. Hoof morphology was measured from lateral, dorsal and solar view photographs and lateromedial radiographs taken at 0, 4 and 16 months. Changes from 0 to 4 months represented differences between a natural hoof shape and the trim, while changes from 4 to 16 months represented adaptive effects during hoof growth. Results Establishment of the barefoot trim involved significant shortening of the toe, heel and medial and lateral walls, with increases in angulation at the toe, medial and lateral walls, but not at the heel. Maintenance of the trim resulted in a palmar/plantar migration of the heels, with increases in support length, heel angle and solar angle of the distal phalanx (P3). Conclusions Bevelling the toe and engaging the frog and bars in the weight‐bearing function of the foot resulted in elevation of the heel angle and solar angle of P3. These changes may be beneficial in treating under‐run heels and negative solar plane angulation of P3.  相似文献   

7.
OBJECTIVE: To determine whether kinematic changes induced by heel pressure in horses differ from those induced by toe pressure. ANIMALS: 10 adult Quarter Horses. PROCEDURE: A shoe that applied pressure on the cuneus ungulae (frog) or on the toe was used. Kinematic analyses were performed before and after 2 levels of frog pressure and after 1 level of toe pressure. Values for stride displacement and time and joint angles were determined from horses trotting on a treadmill. RESULTS: The first level of frog pressure caused decreases in metacarpophalangeal (fetlock) joint extension during stance and increases in head vertical movement and asymmetry. The second level of frog pressure caused these changes but also caused decreases in stride duration and carpal joint extension during stance as well as increases in relative stance duration. Toe pressure caused changes in these same variables but also caused maximum extension of the fetlock joint to occur before midstance, maximum hoof height to be closer to midswing, and forelimb protraction to increase. CONCLUSION AND CLINICAL RELEVANCE: Decreased fetlock joint extension during stance and increased head vertical movement and asymmetry are sensitive indicators of forelimb lameness. Decreased stride duration, increased relative stance duration, and decreased carpal joint extension during stance are general but insensitive indicators of forelimb lameness. Increased forelimb protraction, hoof flight pattern with maximum hoof height near midswing, and maximum fetlock joint extension in cranial stance may be specific indicators of lameness in the toe region. Observation of forelimb movement may enable clinicians to differentiate lameness of the heel from lameness of the toe.  相似文献   

8.
AIMS: To determine the frontal plane position of the ground reaction force vector at its centre of pressure under the hoof of walking horses, and its projection through the distal limb joints, and to relate this to hoof geometric measurements.

METHODS: Reflective markers were glued to the forelimb hooves and skin of 26 horses, over palpable landmarks representing centres of the coffin, fetlock and carpal joints, and the dorsal toe at its most distal point. A 4-camera kinematic system recorded the position of these markers as the horse walked in hand across a force platform, to generate a frontal plane representation of the ground reaction force vector passing between the markers at the joints. The position of the vector was calculated as the relative distance between the lateral (0%) and medial (100%) markers at each joint. Digital photos were taken of the hoof in frontal and sagittal views to determine hoof geometric measurements. Associations between these and the position of the force vector at each joint were examined using Pearson correlation coefficients.

RESULTS: Mean vector position for both forelimbs at the toe, coffin, fetlock and carpal joint was 50.1 (SD 8.9), 53.0 (SD 9.2), 54.6 (SD 11.4) and 50.5 (SD17.3)%, respectively, of the distance between the lateral and medial sides of the joint in the frontal plane. Across all four joints, the vector position was slightly more medial (2–4%) for the right than left limb (p>0.05). Medial hoof wall angle was correlated (p<0.05) with force vector position at the fetlock (r=?0.402) and carpal (r=?0.317) joints; lateral hoof wall angle with vector position at the toe (r=0.288) and carpal (r=?0.34) joint, and medial hoof wall height with vector position at the fetlock (r=?0.306) and carpal (r=?0.303) joints.

CONCLUSION: The position of the two-dimensional frontal plane ground reaction force vector at the toe, and at the fetlock and carpal joints was associated with hoof shape. Mediolateral hoof balance has been shown in vitro to affect articular forces, which may be a factor in development of joint disease. The effect of hoof shape needs to be evaluated at faster gaits to determine the potential for joint injury in the presence of larger forces.  相似文献   

9.
Reasons for performing study: Mechanical characterisation of the high speed gallop has significant importance for animal welfare and basic biology. Kinematic parameters such as the velocity of each foot at contact can inform theories of why animals gallop, and supplant epidemiological investigation into the mechanisms of musculoskeletal injury. Objective: To determine the velocity at which the fore and hind hooves of elite galloping horses impact the surface. Methods: High speed videography was used to measure the horizontal and vertical velocity of the hoof immediately prior to impact, and the subsequent sink (vertical) and slip (horizontal) distances travelled by the hoof into the surface. Horse speed ranged from 11–19 m/s. In total 170 forelimb and 168 hindlimb foot falls from 89 horses were analysed. Results: Horizontal and vertical hoof velocity increased with speed (P<0.001). Horizontal hoof velocity was significantly greater in the hindlimbs compared to the forelimbs (P<0.001) and was greater in the nonlead limbs compared to the lead limbs (P<0.001). Vertical hoof velocity was significantly greater in the lead limb than the nonlead limb (P<0.001). Overall, forelimbs contacted the ground with a more acute velocity vector angle than hindlimbs (P<0.001). Lead limbs contacted the ground at more acute angles than nonlead limbs (P<0.001). Vertical and horizontal velocities were highly correlated to sink and slip distance. Conclusion: Hindlimbs impact the surface at higher velocity than forelimbs, which is likely to result in higher peak impact forces in the hindlimbs. This runs counter to the finding of lower incidence of injury in hindlimbs. Potential relevance: Explanations consistent with these findings include the hindlimbs more effectively dampening peak impact forces, or that other injury mechanisms, such as limb vibration and limb load at mid stance, play an important role in injury.  相似文献   

10.
OBJECTIVE: To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover). Animals-10 adult horses. PROCEDURE: A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim-no shoe) and after 2 treatments by a farrier (treatment 2, trim-standard shoe; and treatment 3, trim-contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits. RESULTS: Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2 degrees and 2.5 degrees during the first half of breakover when trotting, compared with values for no trim-no shoe and trim-standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe. CONCLUSIONS AND CLINICAL RELEVANCE: A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover.  相似文献   

11.
Platelet-rich plasma (PRP) is a widely used hemocomponent that holds great promise in equine medicine due to its feasible production and regenerative therapy potential. Its use has been considered as a treatment for chronic laminitis, mainly in terms of its analgesic properties and because it can induce growth in affected hooves. The aim of this study was to evaluate the effect on hoof growth attributable to PRP applied in the coronary band of clinically healthy horses by comparing the responses to PRP, saline, and trimming alone. After randomization, the forelimbs of 9 horses received specific treatment at intervals of 33 days and were trimmed, measured, and radiographed at the same time. Neither hoof growth nor hoof angles were different between the treatment groups at any time point. The application of PRP in the coronary band of horses may be a safe procedure; however, it had no effect on the growth or conformation of hooves in clinically healthy horses.  相似文献   

12.
OBJECTIVE: To evaluate using strain gauges, a hoof cast with heel wedge, and a therapeutic shoe with unsupported toe for their effectiveness in redistribution of load from the dorsal hoof wall. STUDY DESIGN: In vitro biomechanical study. SAMPLE POPULATION: Twenty forelimb specimens. METHODS: Rosette strain gauges were placed on the dorsal and lateral hoof wall of 20 normal shaped hooves. Limbs were loaded vertically using a tensile testing machine with a 1 Hz sinusoidally cycling load up to 3000 N during 15 seconds. Mean values of principal strain and direction at 2500 N load were calculated for 3 experimental conditions (unshod, therapeutic shoe with unsupported toe, and hoof cast with heel elevation) and tested by ANOVA (P<.05). RESULTS: Vertical limb loading in an unshod hoof leads to a biaxial compression of the dorsal wall with high longitudinal compression (epsilon2 = -1515 microm/m). Principal strain at the dorsal wall (epsilon2) was decreased by 23% with the therapeutic shoe and by 59% with the hoof cast. On the lateral hoof wall principal strain was unchanged with the shoe, but increased by 34% with the cast. CONCLUSIONS: Strain measurements indicate unloading of the dorsal hoof wall by both methods with the cast being more effective than the shoe. CLINICAL RELEVANCE: The hoof cast with wedge offers substantial unloading of the dorsal wall, but increases load on the quarter. Therefore a hoof cast would likely be most helpful in acute laminitis when palmar structures can still bear load. The therapeutic shoe offers rehabilitation and regrowth of the dorsal wall without increased load on the quarter wall.  相似文献   

13.
为了确定应用手持式红外线测温仪筛选奶牛蹄部不同部位的温度用于奶牛跛行的诊断价值,本研究在奶牛修蹄前进行跛行评分,修蹄后用手持式红外线测温仪分别测量奶牛右后蹄系部、右后蹄外侧趾远轴侧蹄壁和右后蹄外侧趾蹄底三角区的温度,分析其与奶牛跛行程度的相关性,并绘制不同部位蹄部温度的ROC曲线,确定其诊断作用和最佳临界值.结果显示,...  相似文献   

14.
The understanding of the normal position of the third phalanx (P3) and the distal sesamoid bone in relation to the size and shape of the hoof capsule in sound horses is helpful in the diagnosis of equine foot lameness. Some measurements on radiographs used to define the position of the pedal bone within the hoof capsule are significantly influenced by hoof trimming and the height of the withers. In this study, the front hooves of 40 Warmblood horses were radiographed twice, eight weeks apart, both before and after their hooves were trimmed by an experienced farrier. Using the software programme Metron PX, 22 parameters on the lateromedial view and 16 parameters on the dorsopalmar view were measured and the effect of hoof trimming and height of the withers were calculated, respectively. Some of the hoof parameters showed mild positive correlation with the height of the withers. In 70% of the horses the left hoof capsule and P3 were significantly larger than the right. Hoof trimming had a remarkable influence on hoof conformation, especially for parameters in the toe region. Of all the measurements that describe the position of the third phalanx (P3) in relation to the hoof capsule, the distances between the distal tip of P3 to the solar surface of the foot, P3 to the tip of the toe and P3 to the point of break-over showed the greatest differences before and after trimming. The database of the present study can be used by farriers and veterinarians as a guideline for routine and corrective shoeing of Warmblood horses.  相似文献   

15.
Horseshoeing is a common practice, but effects on the hoof wall are poorly understood. Strain gauges were used to document and compare hoof behavior in vitro during flat weight bearing and after artificial heel elevation. Ten front limbs of Thoroughbred race horses, shod with conventional flat shoes, were used. Eight strain gauges were symmetrically distributed around the toe, quarters, and heels. Each limb was mounted to a testing machine (Kratos K5002; Kratos Dynamômetros, Ltda., Cotia-SP-Brazil) and subjected to a load equivalent to 30% of the donor's body weight. Strains (μ) were acquired by means of a computerized system and the results compared using Friedman and Wilcoxon statistical tests. There was greater strain variation when the heels were elevated. Compression predominated during flat weight bearing, with a tendency to horizontal traction after heel elevation. The changes in strain caused by heel elevation were not always symmetrical. Elevation of the heels tensed the toe and the medial quarter horizontally, increased load at the posterior portion of the hoof capsule, and hindered its expansion.  相似文献   

16.
Hoof balance and conformation have been researched extensively in performance horses. The aim of this study was to describe the solar length, width, area, and symmetry of fore and hind hooves of young Catalan Pyrenean horses (Cavall Pirinenc Català) reared under semi-extensive conditions and lacking any hoof care, trimming, or shoeing. Measurements were performed on the isolated limbs. Solar length, width, and surface area of 128 distal limbs obtained from 32 yearlings demonstrated no significant differences between left and right forelimbs or hind limbs for any variable (P = .413, .975, and .486, respectively). There were no significant differences between fore and hind limbs for length (P = .831), whereas the forehoof width and area were significantly larger than those of the hind limb (P < .001). Interindividual variability was low for hoof width and length (coefficient of variation, <10%) and slightly larger for solar area (coefficient of variation, <15%). All variables had very high left-right symmetry (≥98%). No relevant laterality could be identified (directional asymmetry indices <2%). Notwithstanding the absence of regular hoof care, young Catalan Pyrenean horses reared under semi-extensive conditions present homogenous hoof sizes and a high level of symmetry for hoof length, width, and solar area.  相似文献   

17.
REASONS FOR PERFORMING STUDY: Collapsed heels conformation has been implicated as causing radical biomechanical alterations, predisposing horses to navicular disease. However, the correlation between hoof conformation and the forces exerted on the navicular bone has not been documented. HYPOTHESIS: The angle of the distal phalanx in relation to the ground is correlated to the degree of heel collapse and foot conformation is correlated to the compressive force exerted by the deep digital flexor tendon on the navicular bone. METHODS: Thirty-one shod Irish Draught-cross type horses in routine work and farriery care were trotted over a forceplate, with 3-dimensional (3D) motion analysis system. A lateromedial radiograph of the right fore foot was obtained for each horse, and various measurements taken. Correlation coefficients were determined between hoof conformation measurements and between each of these and the force parameters at the beginning (15%) of stance phase, the middle of stance (50%) and at the beginning of breakover (86% of stance phase). Significance was defined as P<0.05. RESULTS: The force exerted on the navicular bone was negatively correlated (P<0.05) to the angle of the distal phalanx to the ground and to the ratio between heel and toe height. This was attributed to a smaller extending moment at the distal interphalangeal joint. There was not a significant correlation between the angle of the distal phalanx and the degree of heel collapse, and heel collapse was not significantly correlated to any of the force parameters. CONCLUSIONS: Hoof conformation has a marked correlation to the forces applied to the equine foot. Heel collapse, as defined by the change in heel angle in relation to toe angle, appears to be an inaccurate parameter. The forces applied on the foot are well correlated to the changes in the ratio of heel to toe heights and the angles of the distal phalanx. POTENTIAL RELEVANCE: Assessment of hoof conformation should be judged based on these parameters, as they may have clinical significance, whereas parallelism of the heel and toe is of less importance.  相似文献   

18.
Horses that had been trimmed and shod by apprentice farriers were sourced from the Royal School of Military Engineering, Melton Mowbray (37 horses) and from the Household Cavalry, Knightsbridge (54 horses). The lateral and medial hoof wall angles of both forelimbs were measured using a Ruidoso hoof gauge by the same operator. The difference between the lateral and medial hoof wall angles for each horse was calculated and the results were compared between right-handed and left-handed farriers using the Mann-Whitney U test (P<0.05). There was a significant difference in the mediolateral hoof balance obtained between right-handed and left-handed farriers for each forelimb (P<0.001). Right-handed farriers were shown to create an imbalance in 47 per cent of left forelimbs and 46 per cent of right forelimbs assessed, while left-handed farriers created an imbalance in 41 per cent of left forelimbs and 71 per cent of right forelimbs. The tendency was for right-handed farriers to over-trim the medial (inner) aspect of the left forelimb and the lateral (outer) aspect of the right forelimb; the reverse was demonstrated for left-handed farriers. Performing a risk ratio confirmed these findings.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Comprehensive understanding of the 3-dimensional (3D) kinematics of the distal forelimb and precise knowledge of alterations induced by dorsopalmar foot imbalance remains incomplete because in vivo studies performed with skin markers do not measure the actual movements of the 3 digital joints. OBJECTIVE: To quantify the effects of 6 degree heel or toe wedges on the 3D movements of the 4 distal segments of the forelimb in horses trotting on a treadmill. METHODS: Three healthy horses were equipped with ultrasonic markers fixed surgically to the 4 distal segments of the left forelimb. The 3D movements of these segments were recorded while horses were trotting on a treadmill. Rotations of the digital joints were calculated by use of a joint coordinate system. Data obtained with 6 degree heel or toe wedges were compared to those obtained with flat standard shoes. RESULTS: Use of heel wedges significantly increased maximal flexion and decreased maximal extension of the proximal (PIPJ) and distal (DIPJ) interphalangeal joints. Inverse effects (except for PIPJ maximal extension) were observed with the toe wedges. In both cases, neither flexion-extension of the metacarpophalangeal joint nor extrasagittal motions of the digital joints were statistically different between conditions. CONCLUSIONS: At a slow trot on a treadmill, heel and toe wedges affect the sagittal plane kinematics of the interphalangeal joints. POTENTIAL RELEVANCE: Better understanding of the actual effects of toe and heel wedges on the 3D kinematics of the 3 digital joints may help to improve clinical use of sagittal alteration of hoof balance in the treatment of distal forelimb injuries.  相似文献   

20.
Over a 10-month period, 24 randomly selected riding horses were fed various amounts of biotin. Statistically significant improvements in growth rates and hardness of hooves were produced by biotin supplementation. Greater growth rates and hardness were achieved at a daily dose of 15 mg than at 7.5 mg. Increased hoof hardness was greatest in the hoof quarters and toe. No ring formation occurred in hooves of horses fed biotin intermittently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号