首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal, rheological, and microstructural properties of myosin (1 and 2% protein) were compared to mixtures of 1% myosin and 1% heat-denatured beta-lactoglobulin aggregates (myosin/HDLG) and 1% myosin and 1% native beta-lactoglobulin (myosin/beta-LG) in 0.6 M NaCl and 0.05 M sodium phosphate buffer, pH 6.0, 6.5, and 7.0 during heating to 71 degrees C. Thermal denaturation patterns of myosin and myosin/HDLG were similar except for the appearance of an endothermic peak at 54-56 degrees C in the mixed system. At pH 7.0, 2% myosin began to gel at 48 degrees C and had a storage modulus (G') of 500 Pa upon cooling. Myosin/HDLG (2% total protein) had a gel point of 48 degrees C and a G' of 650 Pa, whereas myosin/beta-LG had a gel point of 49 degrees C but the G' was lower (180 Pa). As the pH was decreased, the gel points of myosin and myosin/HDLG decreased and the G' after cooling increased. The HDLG was incorporated within the myosin gel network, whereas beta-LG remained soluble.  相似文献   

2.
The denaturation, aggregation, and rheological properties of chicken breast muscle myosin, beta-lactoglobulin (beta-LG), and mixed myosin/beta-LG solutions were studied in 0.6 M NaCl, 0.05 mM sodium phosphate buffer, pH 7.0, during heating. The endotherm of a mixture of myosin and beta-LG was identical to that expected if the endotherm of each protein was overlaid on the same axis. The maximum aggregation rate (AR(max)) increased, and the temperature at the AR(max) (T(max)) and initial aggregation temperature (T(o)) decreased as the concentration of both proteins was increased. The aggregation profile of <0.5% myosin was altered by the presence of 0.25% beta-LG. Addition of 0.5-3.0% beta-LG decreased storage moduli of 1% myosin between 55 and 75 degrees C, but increased storage moduli (G') when heated to 90 degrees C and after cooling. beta-LG had no effect on the gel point of > or =1.0% myosin, but enhanced gel strength when heated to 90 degrees C and after cooling. After cooling, the G' of 1% myosin/2%beta-LG gels was about 1.7 times greater than that of gels prepared from 2% myosin/1% beta-LG.  相似文献   

3.
When turkey breast muscle and isolated myofibrillar protein and myosin of cod or turkey (pH approximately 7) were subjected to pressures up to 800 MPa for 20 min, DSC and electrophoresis (SDS-PAGE) indicated that high pressure-induced denaturation of myosin led to the formation of structures that contained hydrogen bonds and were additionally stabilized by disulfide bonds. Disulfide bonds were also important in heat-induced myosin gels. Hardness of whole cod muscle, estimated by texture profile analysis, showed pressure-treated samples (400 MPa) to be harder than cooked (50 degrees C) or cooked and then pressure-treated or pressure-treated and then cooked samples, supporting the suggestion that pressure induces the formation of heat labile hydrogen-bonded structures while heat treatment gives rise to structures that are primarily stabilized by disulfide bonds and hydrophobic interactions. As expected, turkey myosin is more stable than that of cod; however, it seems their pressure-induced gelation mechanisms are similar.  相似文献   

4.
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 degrees C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 degrees C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 degrees C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 degrees C, unlike actin, which completely denatured only above 70 degrees C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 degrees C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 degrees C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.  相似文献   

5.
Soybeans contain oil bodies that are coated by a layer of oleosin proteins. In nature, this protein coating protects the oil bodies from environmental stresses and may be utilized by food manufacturers for the same purpose. In this study, oil bodies were extracted from soybean using an aqueous extraction method that involved blending, dispersion (pH 8.6), filtration, and centrifugation steps. The influence of NaCl (0-250 mM), thermal processing (30-90 degrees C, 20 min) and pH (2-8) on the properties and stability of the oil bodies was analyzed using zeta-potential, particle size, and creaming stability measurements. The extracted oil bodies were relatively small ( d 32 approximately 250 nm), and their zeta-potential went from around +12 mV to -20 mV as the pH was increased from 2 to 8, with an isoelectric point around pH 4. The oil bodies were stable to aggregation and creaming at low (pH = 2) and high (pH >/= 6) pH values but were unstable at intermediate values (3 相似文献   

6.
The thermodynamic properties of myosin and its C-terminal fragment, light meromyosin (LMM), from walleye pollack, a typical cold-water fish efficiently utilized on an industrial scale, were analyzed by using differential scanning calorimetry (DSC) and circular dichroism (CD) spectrometry. Recombinant walleye pollack LMM expressed in Escherichia coli was also subjected to DSC and CD measurements for reference. The two proteins prepared from frozen surimi showed three endothermic peaks, the transition temperatures (T(m)) of which were quite similar, although overall DSC patterns differed considerably from one another. Their alpha-helical contents determined by CD were low compared to values reported before for other species. On the other hand, recombinant LMM gave four endothermic peaks at 27.4, 30.8, 36.5, and 43.4 degrees C in DSC and showed an alpha-helical content of approximately 80%. The peak at 27.4 degrees C could not be observed in walleye pollack LMM prepared from frozen surimi and thus was possibly attributed to its C terminus, because this extreme C-terminal region is supposedly truncated during preparation of LMM by tryptic digestion.  相似文献   

7.
Hydrolyses of fenamiphos, fipronil, and trifluralin were studied in aqueous buffer solutions of pH 4.1, 7.1, and 9.1 at different temperatures, 5, 22 +/- 1, 32 +/- 1, and 50 +/- 1 degrees C. Fenamiphos, fipronil, and trifluralin were found to be more stable in acidic and neutral buffer solutions at temperatures of 5 and 22 +/- 1, and dissipation is rapid at 50 +/- 1 degrees C. In basic buffer and at higher temperature, degradation of fenamiphos was found to be very rapid when compared with fipronil and trifluralin. The rate constants calculated at 32 degrees C for fenamiphos were 2349.4 x 10(-)(8) (pH 4.1), 225.2 x 10(-)(8) (pH 7.1), and 30476.0 x 10(-)(8) (pH 9.1); for fipronil 1750.0 x 10(-)(8) (pH 4.1), 3103.0 x 10(-)(8) (pH 7.1), and 3883.0 x 10(-)(8) (pH 9.1); and for trifluralin 2331.0 x 10(-)(8) (pH 4.1), 2360.0 x 10(-)(8) (pH 7.1), and 3188.0 x 10(-)(8) (pH 9.1). On the basis of rate constant values, these pesticides appeared to be more susceptible to hydrolysis than synthetic organophosphorus compounds such as chlorpyriphos, diazinon, malathion, and ronnel. DT(50) values calculated at 32 degrees C were 228 (pH 4.1), 5310.24 (pH 7.1), and 37.68 (pH 9.1) h for fenamiphos; 608.6 (pH 4.1), 373.9 (pH 7.1), and 270.2 (pH 9.1) h for fipronil; and 502.1 (pH 4.1), 496.8 (pH 7.1), and 355.7 (pH 9.1) h for trifluralin.  相似文献   

8.
Heat-induced morphological change in myosin filaments was observed using atomic force microscope. The thickness of fixed native myosin filament was estimated to be 95 +/- 5 nm. When myosin filaments in 0.1 M NaCl at pH 6.0 were heated at 40, 55, and 70 degrees C for 10 min, the particulate structure appeared spirally on the surface of the filament at 40 degrees C, and the thickness of the filament was 75 +/- 10 nm. When myosin filaments were treated at 55 degrees C, several filaments were formed associated with side-by-side interaction through projected myosin heads to form a strand. The surface of the strand looked knobby. The thickness of thermally denatured filaments at 55 degrees C was 48 +/- 5 nm, and that of strands was about 80-110 nm, indicating the involvement of several filaments in a strand. The strands became to be rope-like at 70 degrees C, and the individual filaments in a strand were not distinguishable.  相似文献   

9.
Hemoglobin plays an important role in the color and oxidative stability of seafoods. A recent practice in the seafood industry is to stabilize muscle color by the application of gases containing carbon monoxide. The goal of this study was to examine and compare the properties of tilapia hemoglobin complexed to either O(2) (Oxy-Hb) or CO (CO-Hb) at pH 6.5, which reflects the tilapia muscle postmortem pH. CO-Hb was significantly (p < 0.01) more stable against autoxidation compared to Oxy-Hb when kept at 4 and -30 degrees C for 23 days. Almost no loss of CO was detected for both temperatures according to the UV-vis spectra of Hb. This stabilization was also believed to play a role in increased protein structure stabilization (p < 0.001) since less protein aggregation was seen for CO-Hb. The higher protein stabilization for Hb was linked to the heme group, which was maintained in its reduced state longer for CO-Hb vs Oxy-Hb and was likely less exposed to solvent. CO-Hb had significantly (p < 0.01) less peroxidase activity than Oxy-Hb and thus reactivity with H(2)O(2). The pro-oxidative activity of CO-Hb was significantly (p < 0.01) reduced in a linoleic acid micelle system compared to that of Oxy-Hb, while smaller differences in activity were seen in a washed cod and tilapia muscle model system.  相似文献   

10.
Adding maltodextrins to minced blue whiting muscle inhibited formaldehyde production during storage at -10 and -20 degrees C. Sucrose, however, was effective only at -20 degrees C. These results were not proportional to the difference between the storage temperature and the ice-melting onset (T(m)'), and freeze-concentration had to be considered. In the face of serious limitations to do this, resource was made to the state diagram for the sucrose-water binary system and the percentage variation of the ice-melting endotherm area of the different samples. A higher T(m)' and a lower freeze-concentration would account for the inhibiting effects of maltodextrins, whereas sucrose, despite diminishing T(m)', had an effect nearly as great as maltodextrins at -20 degrees C but had hardly any at -10 degrees C. The reason for this seems to lie in a lower freeze-concentration of solutes in the unfrozen water phase. Similarly, the differences found between sucrose and maltodextrins, as well as among maltodextrins, were also explained in terms of T(m)' and freeze-concentration.  相似文献   

11.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

12.
Zearalenone is an endocrine disruptor with estrogenic activity, produced primarily by Fusarium graminearum, a common cause of corn ear rot and Fusarium head blight or scab in wheat. Zearalenone can be a contaminant of both corn and wheat and may survive thermal food processes. This study was done to determine the heat stability of zearalenone. Reduction of zearalenone was measured during heating at different temperatures (100, 125, 150, 175, 200, and 225 degrees C) in an aqueous buffer solution at different pH values. The rate and extent of zearalenone reduction increased with processing temperature. Less than 23% of zearalenone was lost when heated to /=175 degrees C, and complete reduction of zearalenone was observed in less than 30 min at 225 degrees C, regardless of pH. Overall, zearalenone was most stable at pH 7 followed by that at pH 4 and 10, and the greatest losses occurred above 175 degrees C.  相似文献   

13.
The functional properties of cod myosin and washed cod mince (myofibrillar protein fraction) treated at high (11) and low (2.5) pH were investigated after pH readjustment to 7.5. The solubility of refolded myosin was essentially the same as the native myosin. The pH-treated myofibrillar proteins had increased solubility over the whole ionic strength range studied. Acid and alkali treatment gave myosin and myofibrillar proteins improved emulsification properties, which were correlated with an increase in surface hydrophobicity and surface/interfacial activity. Enhanced gel strength was observed with acid- and alkali-treated myosin compared to native myosin, while the same treatment did not significantly improve the gel strength of acid- and alkali-treated myofibrillar proteins. The acid- and alkali-treated protein samples unfolded and gelled at a lower temperature than did the native proteins, suggesting a less conformationally stable structure of the refolded proteins. Functional studies show that acid and alkali treatment, which leads to partial unfolding of myosin may improve functional properties of cod myosin and myofibrillar proteins, with the greatest improvement being from the alkali treatment. The results also show that improvements in functionality were directly linked to the extent of partial unfolding of myosin on acid and alkali unfolding and refolding.  相似文献   

14.
Physicochemical changes of myosin during heating were investigated to elucidate the mechanism of heat-induced gelation of arrowtooth flounder (ATF) myosin at high ionic strength. Changes in dynamic properties indicated ATF myosin formed a gel in three different stages as shown by the first increase in G' (storage modulus) at 28 degrees C, followed by the decrease at 35 degrees C and the second increase at 42 degrees C. DSC thermogram showed the onset of myosin denaturation at 25 degrees C with two maximum transition temperatures at 30 and 36 degrees C. The decrease in alpha-helical content indicated ATF myosin began to unfold at 15 degrees C and the unfolding continued until it reached 65 degrees C. Turbidity measurement showed myosin began to aggregate at 23 degrees C and the aggregation was complete at 40 degrees C. Surface hydrophobicity increased consistently in the temperature range studied, 20-65 degrees C. Sulfhydryl contents decreased significantly at 20-30 degrees C due to the formation of disulfide linkages but remained constant at temperatures >30 degrees C. ATF myosin was shown to be extremely sensitive to heat, resulting in denaturation at lower temperature than other fish myosin. Denaturation was initiated by unfolding of the alpha-helical region in myosin followed by exposure of hydrophobic and sulfhydryl residues, which are subsequently involved in aggregation and gelation processes.  相似文献   

15.
Five red shikonin pigments, deoxyshikonin, shikonin, acetylshikonin, isobutylshikonin, and beta-hydroxyisovalerylshikonin, were isolated from the roots of Lithospermum erythrorhizon cultivated in Korea. The purified pigments were red, purple, and blue at acidic, neutral, and alkaline pH values, respectively. Physical stability of the purified pigments against heat and light in an aqueous solution was examined for possible value-added food colorants. The thermal degradation reactions were carried out at pH 3.0 (50 mM glycine buffer) in 50% EtOH/H(2)O. Deoxyshikonin (t(1/2) = 14.6 h, 60 degrees C) and isobutylshikinin (t(1/2) = 19.3 h, 60 degrees C) are relatively less stable than other shikonin derivatives (t(1/2) = 40-50 h, 60 degrees C). Activation energies of thermal degradation of the isolated pigments were calculated. The activation energy of deoxyshikonin was the highest (12.5 kcal mol(-)(1)) and that of beta-hydroxyisovalerylshikonin was the lowest (1.71 kcal mol(-)(1)) value. Light stabilities of the pigments were similar to each other in that the half-life values of photodegradation for 20000 lx light intensity were 4.2-5.1 h.  相似文献   

16.
The pro-oxidative activity of trout hemoglobin was significantly increased at low pH (2.5-3.5) in a washed fish muscle (WFM) system. It was found that the more unfolded the hemoglobin was the more exposed its heme group was, which increased its pro-oxidative activity. The amount of oxidation products produced (TBARS) were, however, lower at low pH vs neutral pH. At pH 10.5-11, the pro-oxidative activity of hemoglobin was greatly suppressed. The conformation of hemoglobin was significantly more stable at high pH as compared to pH 7 as judged by its visible absorption spectrum. Hemoglobin readjusted from low pH to pH 7 had a higher pro-oxidative activity (i.e., more rapid oxidation) in WFM than native hemoglobin at pH 7, even though TBARS values were lower than in the untreated sample at pH 7. The results suggest that the WFM becomes slightly more susceptible to oxidation after low pH treatment but also produces less TBARS. The increased pro-oxidative activity after pH readjustment correlated well with an incomplete recovery in the native structure on pH readjustment. A longer unfolding time and a lower pH led to a less refolded hemoglobin with increased pro-oxidative activity. Hemoglobin was less pro-oxidative at low pH in the presence of 500 mM NaCl. The presence of salt did, however, increase the pro-oxidative properties of hemoglobin after readjustment to pH 7. The treatment of washed fish muscle at alkaline pH followed by adjustment to pH 7 led to a slight delay in hemoglobin-mediated lipid oxidation in WFM as compared to native hemoglobin at pH 7. The results suggest that WFM becomes less susceptible toward oxidation after pH readjustment from alkaline pH. These results clearly show that for muscle protein extraction/isolation processes requiring highly alkaline or acidic conditions, alkaline conditions are preferred if the lipid oxidation originating from hemoglobin is to be minimized.  相似文献   

17.
The influence of sucrose (0--40 wt %) on the thermal denaturation and gelation of bovine serum albumin (BSA) in aqueous solution has been studied. The effect of sucrose on heat denaturation of 1 wt % BSA solutions (pH 6.9) was measured using ultrasensitive differential scanning calorimetry. The unfolding process was irreversible and could be characterized by a denaturation temperature (T(m)), activation energy (E(A)), and pre-exponential factor (A). As the sucrose concentration increased from 0 to 40 wt %, T(m) increased from 72.9 to 79.2 degrees C, E(A) decreased from 314 to 289 kJ mol(-1), and ln(A/s(-1)) decreased from 104 to 94. The rise in T(m) was attributed to the increased thermal stability of the globular state of BSA relative to its native state because of differences in their preferential interactions with sucrose. The change in preferential interaction coefficient (Delta Gamma(3,2)) associated with the native-to-denatured transition was estimated. The dynamic shear rheology of 2 wt % BSA solutions (pH 6.9, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C, held at 90 degrees C for either 15 or 120 min, and then cooled to 30 degrees C. Sucrose increased the gelation temperature due to thermal stabilization of the native state of the protein. The complex shear modulus (G) of cooled gels decreased with sucrose concentration when they were held at 90 degrees C for 15 min because the fraction of irreversibly denatured protein decreased. On the other hand, G of cooled gels increased with sucrose concentration when they were held at 90 degrees C for 120 min because a greater fraction of irreversibly denatured protein was formed and the strength of the protein-protein interactions increased.  相似文献   

18.
Purification of a lipoxygenase enzyme from the cultivar Tresor of durum wheat semolina (Triticum turgidum var. durum Desf) was reinvestigated furnishing a new procedure. The 895-fold purified homogeneous enzyme showed a monomeric structure with a molecular mass of 95 +/- 5 kDa. Among the substrates tested, linoleic acid showed the highest k(cat)/K(m) value; a beta-carotene bleaching activity was also detected. The enzyme optimal activity was at pH 6. 8 on linoleic acid as substrate and at pH 5.2 for the bleaching activity on beta-carotene, both assayed at 25 degrees C. The dependence of lipoxygenase activity on temperature showed a maximum at 40 degrees C for linoleic acid and at 60 degrees C for bleaching activity on beta-carotene. The amino acid composition showed the presence of only one tryptophan residue per monomer. Far-UV circular dichroism studies carried out at 25 degrees C in acidic, neutral, and basic regions revealed that the protein possesses a secondary structure content with a high percentage of alpha- and beta-structures. Near-UV circular dichroism, at 25 degrees C and at the same pH values, pointed out a strong perturbation of the tertiary structure in the acidic and basic regions compared to the neutral pH condition. Moreover, far-UV CD spectra studying the effects of the temperature on alpha-helix content revealed that the melting point of the alpha-helix is at 60 degrees C at pH 5.0, whereas it was at 50 degrees C at pH 6.8 and 9.0. The NH(2)-terminal sequence allowed a homology comparison with other lipoxygenase sequences from mammalian and vegetable sources.  相似文献   

19.
Physicochemical changes and in vitro digestibility of chicken breast myosin oxidized with a nonenzymic free-radical-generating system (FeCl(3)/H(2)O(2)/ascorbate) were studied by SDS-PAGE, differential scanning calorimetry, and o-phthaldialdehyde assay. Oxidation caused fragmentation and polymerization of myosin. Myosin polymers were cross-linked mainly through disulfide bonds. Hydroxyl radicals destabilized myosin, lowering its denaturation temperature by up to 4 degrees C. Oxidized myosin also produced a new thermal transition in the 60-80 degrees C temperature range, which could be attributed to the formation of disulfide-stabilized polymers. The proteolytic susceptibility of myosin to pepsin, trypsin, and chymotrypsin was increased by oxidation. Under nonreducing conditions, however, oxidized myosin showed decreased digestibility. The results may help explain variations in the functionality and nutritional quality of muscle foods in meat processing in which oxidation is involved.  相似文献   

20.
Polyphenol oxidase (PPO) was purified and characterized from Chinese cabbage by ammonium sulfate precipitation and DEAE-Toyopearl 650M column chromatography. Substrate staining of the crude protein extract showed the presence of three isozymic forms of this enzyme. The molecular weight of the purified enzyme was estimated to be approximately 65 kDa by gel filtration on Toyopearl HW-55F. On SDS-PAGE analysis, this enzyme was composed of a subunit molecular weight of 65 kDa. The optimum pH was 5.0, and this enzyme was stable at pH 6.0 but was unstable below pH 4.0 or above pH 7.0. The optimum temperature was 40 degrees C. Heat inactivation studies showed temperatures >40 degrees C resulted in loss of enzyme activity. PPO showed activity to catechol, pyrogallol, and dopamine (K(m) and V(max) values were 682.5 mM and 67.6 OD/min for catechol, 15.4 mM and 14.1 OD/min for pyrogallol, and 62.0 mM and 14.9 OD/min for dopamine, respectively). The most effective inhibitor was 2-mercaptoethanol, followed in decreasing order by ascorbic acid, glutathione, and L-cysteine. The enzyme activity of the preparation was maintained for 2 days at 4 degrees C but showed a sudden decreased after 3 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号