首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed and validated three different sample preparation and extraction methods followed by HPLC-MS/MS (negative electrospray ionization) analysis for the quantification of estrogenic isoflavones (formononetin, daidzein, equol, biochanin A, and genistein) and coumestrol in red clover, soil, and manure. Plant and manure samples were solid-liquid extracted, whereas soil was extracted with accelerated solvent extraction. Absolute recoveries were between 80 and 93%, 20 and 30%, and 14 and 91% for plant, soil, and manure samples, respectively. Relative recoveries ranged from 75 to 105% for all matrices, indicating that isotope-labeled internal standards (13C?-formononetin, 13C?-daidzein, 13C?-equol, 13C?-biochanin A, and 13C?-genistein) were capable to compensate for losses during analysis. The limits of detection in red clover, soil, and manure were 3-9 μg/g(dryweight(dw)), 0.6-8.2 ng/g(dw), and 34.2 ng/g(dw) to 17.0 μg/g(dw), respectively. Formononetin was the most dominant compound in red clover plants (up to 12.5 mg/g(dw)) and soil (up to 3.3 μg/g(dw)), whereas equol prevailed in manure (up to 387 μg/g(dw)).  相似文献   

2.
The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), “Dano” compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm3) of heavy metals in the leachate were as follows: Cd (3.6–11.5)?<?Mn (4.8–15.4)?<?Cu (13.4–35.5)?<?Zn (27.5–48.0)?<?Cr (36.7–96.5)?<?Ni (24.4–165.8)?<?Pb (113.8–187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.  相似文献   

3.
We studied the effects of different composts made of different mixtures of sewage sludge and Acacia plants on the soil biochemical and chemical properties. The proportions of mixed acacia plant and sewage sludge were: AL1/1 (50% acacia/50% sewage sludge), AL1/2 (33.3% acacia/66.6% sewage sludge), and AL1/3 (25% acacia/75% sewage sludge). Composts were added to the soil at a rate of 2%. Soil samples were collected during 150 days and analyzed for soil enzyme activities and chemical properties. An unamended soil was used as the control. Compared to the AL1/1 treatment, soil dehydrogenase, urease, phosphatase and β-glucosidase activities decreased respectively by 14.6%, 15.4%, 12.5%, and 19.3% for AL1/2 treatment and by 20.7%, 25.6%, 23.7%, and 28.4% for AL1/3 treatment. Soil water-soluble carbohydrates and polyphenols were the greatest in AL1/1. The lowest contents of heavy metals in the AL1/1 compost may be responsible for the increase of soil biochemical and chemical properties.  相似文献   

4.
The liquid chromatographic determination of alpha-zearalenol and zearalenone in corn was collaboratively studied. Each of 13 collaborators received 7 corn samples; 2 were blanks and 5 were spiked to contain 50, 100, and 200 ng alpha-zearalenol/g and 50, 100, 500, 1000, and 4000 ng zearalenone/g. Four sets (including blanks) of blind duplicates were included in the study. Five naturally contaminated corn samples (one in duplicate) were also provided. All collaborators detected both mycotoxins at 50 ng/g. Average recoveries reported by all collaborators ranged from 81.9% at 200 ng/g to 100.3% at 50 ng/g for alpha-zearalenol and from 77.8% at 1000 ng/g to 123% at 50 ng/g for zearalenone. Three collaborators reported false positives for both alpha-zearalenol and zearalenone. The within-laboratory CV values based on blind duplicates were 22.6% for alpha-zearalenol and 31.4% for zearalenone. The CV values based on laboratory-sample interaction were 25.6 and 33.8% for alpha-zearalenol and zearalenone, respectively. The CV values for naturally contaminated samples (including duplicates) were 47.0% for alpha-zearalenol and 37.7% for zearalenone. The method has been adopted official first action.  相似文献   

5.
江苏省集约化养殖畜禽粪便盐分含量及分布特征分析   总被引:8,自引:0,他引:8  
该文针对目前畜禽粪便中盐分含量较高、在农用过程中可能对农田土壤次生盐渍化构成威胁等问题,在江苏省采集和分析了150家养殖场(户)的180个畜禽粪便样品中的盐分含量,比较了不同畜禽种类以及不同区域之间粪便盐分含量的差异。研究结果表明,江苏省畜禽粪便中盐分含量(干粪)平均值为9.7 g/kg,检出范围1.8~24.2 g/kg;不同畜禽种类粪便中盐分含量为鸡粪(14.8 g/kg)〉猪粪(8.1 g/kg)〉牛粪(6.0 g/kg),三者之间差异达到显著水平(p〈0.05);蛋鸡粪盐分含量(16.7 g/kg)显著高于肉鸡粪(12.0 g/kg);江苏省盐分含量环境背景值较高的沿海地区、徐淮地区猪粪、鸡粪中盐分含量显著高于盐分含量环境背景值较低的苏锡常地区、沿江地区。因此,在施用盐分含量较高的畜禽粪便以及在盐分含量环境背景值较高的地区施用畜禽粪便时,应关注畜禽粪便施用对农田土壤次生盐渍化的影响。  相似文献   

6.
Soil management practices that result in increased soil carbon (C) sequestration can make a valuable contribution to reducing the increase in atmospheric CO2 concentrations. We studied the effect of poultry manure, cattle slurry, sewage sludge, NH4NO3 or urea on C cycling and sequestration in silage grass production. Soil respiration, net ecosystem exchange (NEE) and methane (CH4) fluxes were measured with chambers, and soil samples were analysed for total C and dissolved organic C (DOC). Treatments were applied over 2 years and measurements were carried out over 3 years to assess possible residual effects. Organic fertilizer applications increased CO2 loss through soil respiration but also enhanced soil C storage compared with mineral fertilizer. Cumulative soil respiration rates were highest in poultry manure treatments with 13.7 t C ha?1 in 2003, corresponding to 1.6 times the control value, but no residual effect was seen. Soil respiration showed an exponential increase with temperature, and a bimodal relationship with soil moisture. The greatest NEE was observed on urea treatments (with a CO2 uptake of ?4.4 g CO2 m?2 h?1). Total C and DOC were significantly greater in manure treatments in the soil surface (0–10 cm). Of the C added in the manures, 27% of that in the sewage pellets, 32% of that in the cattle slurry and 39% of that in the poultry manure remained in the 0–10 cm soil layer at the end of the experiment. Mineral fertilizer treatments had only small C sequestration rates, although uncertainties were high. Expressed as global warming potentials, the benefits of increased C sequestration on poultry manure and sewage pellet treatments were outweighed by the additional losses of N2O, particularly in the wet year 2002. Methane was emitted only for 2–3 days on cattle slurry treatments, but the magnitudes of fluxes were negligible compared with C losses by soil respiration.  相似文献   

7.
A field experiment with cotton was conducted on a well drained,calcareous,clay loamy Typic Xerochreph to investigate the utility of sewage sludge as a partial substitute for fertilizers and the influence of tis application on the basic soil properties and heavy metal concentrations.The experimental design was completely randomized blocks with five treatments replicated four times each.Sewage sludge came from the treatment plant of the municipality of Volos,Central Greece,with the following characteristics:organic matter content 36.6%,pH(H2O1:5)6.89,CaCO3 53.4g kg^-1,total N 265.g kg^-1,ttal P33.5g kg^-1,and total K 968mg kg^-1 soil.Heavy metal concentrations were Cd 5.24,Pb 442,Ni38,Cu 224,Zn1812,and Mn 260mgkg^-1 dry weight,respectively.The soil was high in potassium(K)and poor in available phosphorus(P).The results showed that sewage sludge application increased cotton yield and K and P concentrations in cotton leaves,Soil pH was reduced in the case of higher sewage sludge rate.Electrical conductivity,organic matter content,totalN,and avaiable P were significantly increased.Total concentrations of Zn,Pb,and Cu were slightly increased.DTPA-extractable Zn,Cu,and Mn were also significantly increased.Available forms of all heavy metals,except Cd,were significantly correlated with organic matter content in a positive way and negatively with soil pH.  相似文献   

8.
The objective of the investigation was to determine the effectsof sewage sludge application on nutrient concentrations in soil and plant biomass fractions in Scots pine forests (Pinus sylvestris, L.), situated on sandy soils with low pH, in a south to north temperature gradient in Sweden. Twenty tons dw ha-1 of sewage sludge was applied in 50 to 60 yr old pine forests at foursites from Brösarp in South Sweden to Jukkasjärvi in thenorthern parts of the country.Application of 20 ton dw ha-1 of sewage sludge significantlyincreased the concentrations of extractable N, P, K, Ca, Mg and Na, in both the mor layer and in the upper 10 cm of the mineral soil. Three years after sludge application K concentrations were only significantly increased in the upper 10 cm of the mineral soil. After 11 yr the concentrations of P were still at the samelevel in the mor layer as after three years. The concentrations of Ca, Mg and Na had slightly decreased only in the mor layer. There was, in most cases, a statistically significant positive correlation between the amount of applied sludge and nutrientconcentrations in the soil, as well as in pine needles and in leaves of Vaccinium vitis-idaea.In all sites, Mg concentrations in the mor layer was positivelyand significantly correlated with Mg concentrations in current-year pine needles. Similarly, concentrations of Ca, Mg,and P in the mor layer were correlated with concentrations of these elements in current-year shorts of Vaccinium vitis-idaea.  相似文献   

9.
生活污泥对白菜供磷和土壤磷状况的影响   总被引:3,自引:1,他引:2  
采用好气培养和盆栽试验以探明污泥磷的肥效,降低污泥施用导致的土壤磷累积引起的环境风险。结果表明,单施污泥土壤有效磷含量和白菜吸磷量均显著低于施用磷酸一铵和鸡粪处理;施用污泥后有利于增加白菜生长后期土壤磷酸酶的活性和土壤Olsen-P含量。在白菜等产量条件下,单施污泥处理土壤中Olsen-P残留量显著高于污泥与化肥混施处理;在P2O5施用量为902~70 kg/hm2时,污泥堆肥磷的肥效为磷酸一铵的25%左右。  相似文献   

10.
A glasshouse pot experiment was conducted to study changes in the solubility of copper and zinc in the soil-plant system following heavy application of sewage sludge and partial sterilisation of the sludge/soil mixture. A slightly acid sandy loam was mixed with alkaline stabilised and composted urban sewage sludge solids (Agri-Soil, 180 t hm-2), and the soil/sludge mixture was-irradiated (10 kGy). The contrasts without the application of sewage sludge and-irradiation were also included in the experiment. Perennial ryegrass (Lolium perenne cv. Magella) was grown on irradiated and unirradiated soils for 50 days. Soil solution samples were obtained using soil suction samplers immediately before plant transplantation and every ten days thereafter. The soil solution samples were used directly for determination of Cu and Zn, toget her with pH, electrical conductivity (EC) and absorbance at wavelength 360 nm (A360). Applicat ion of Agri-Soil led to a substantial increase in dissolved Cu and a significant decrease in dissolved Zn in the soil solution and these effects were accompanied by increased soil solution pH, EC and A360. The alkaline sludge product (Agri-Soil) in combination with-irradiation also led to a pronounced elevation of Cu and A360 but a marked decline in EC, indicating an increase in dissolved organic compounds and a decrease in the ionic strength of the soil solution. The dissolved Cu and Zn, EC and A360 usually decreased while the pH increased after plant grow th for 50 days.  相似文献   

11.
Pharmaceuticals and personal care products (PPCPs) can reach soil and aquatic environments through land application of wastewater effluent and agricultural runoff. The objective of this research was to assess the fate of PPCPs at field scale. PPCPs were measured systematically in a wastewater treatment plant (WWTP), and in soil and groundwater receiving treated effluent from the WWTP. A land application site in West Texas was used as the study site; it has received treated wastewater effluent from the WWTP for more than 70 years in order to remove additional nutrients and irrigate non-edible crops. Target compounds (estrone, 17??-estradiol, estriol, 17??-ethynylestradiol, triclosan, caffeine, ibuprofen, and ciprofloxacin) in wastewater, sewage sludge, soil, and groundwater were determined using HPLC/UV with qualitative confirmatory analyses using GC/MS. Samples were collected quarterly over 12 months for wastewater and sludge samples and over 9 months for soil and groundwater samples. Results indicated that concentrations of PPCPs in wastewater influent, effluent, sludge solid phase, and sludge liquid phase were in the range of non-detected (ND)-183 ??g/L, ND-83 ??g/L, ND-19 ??g/g, and ND-50 ??g/L, respectively. Concentrations in soil and groundwater samples were in the range of ND-319 ng/g and ND-1,745 ??g/L, respectively. GC/MS confirmation data were consistent with the results of HPLC/UV analyses. Overall, data indicate that PPCPs in the wastewater effluent from the WWTP transport both vertically and horizontally in the soil, and eventually reach groundwater following land application of the effluent.  相似文献   

12.
The concentrations, solubility and mobility of Cr, Cu, Ni, Pb and Zn were measured over a four year period in soil from a site that had received over 1000 t ha-1 wet, undigested, sewage sludge (on average, 15% dry solids). The pH of this light-textured sandy soil was markedly reduced after sludge application (to ≤4 in some samples), presumably as a result of breakdown of the unstable organic matter, nitrification of the NH4 +-N and sulphide oxidation. As a consequence, soil solution concentrations of Cu, Ni, and especially, Zn were initially elevated, and this was reflected in high plant uptake of Zn and elevated levels of all three metals in some groundwater wells. An extensive liming programme resulted in soil pH values generally between 5 and 6, more normal for this soil, in the following years. Soil solution metal concentrations were substantially lower, e.g., Zn from a high of 27 mg kg-1 in 1995 to 0.04 mg kg-1 in the equivalent sample in 1999. Herbage Zn concentrations declined accordingly and overall there was a strong relationship between plant metal uptake and soil solution concentration of this element (R2 = 0.84), although not for any of the other metals. Our results suggested that, for this soil, pH was by far the greatest determinant of metal solubility and that the metal source, whether sewage sludge or geochemical, had little influence. Results from extractants that solubilise other metal phases, i.e., NaNO3, EDTA and HNO3, are also presented and discussed.  相似文献   

13.
ABSTRACT

This experiment was conducted under greenhouse conditions using a sandy clay loam treated with garbage and mushroom composts, cattle and chicken manures, or municipal sludge at rates of 0, 30, or 60 ton ha?1. The organic materials were applied to the pots and incubated for 15 d. The soil samples were watered at field capacity. In this experiment, wheat (Triticum aestivum L.) was used as a test crop. At the end of the experiment, it was found that treating sandy clay loam with the organic materials increased plant total and grain yields, protein content, 1000-kernel weight, number of grains in spike, and accumulation of nitrogen (N), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), and manganese (Mn) by wheat compared with the control treatment, depending on the organic material applications. Thus, the increases were found to be statistically significant (P ≤ 0.05). Among the types of organic materials, the sewage sludge was the most effective material in increasing N, P, K, Fe, Zn, and Mn content of leaf, grain, and stem samples of the wheat plant. It was followed by mushroom compost and cattle manure. Based on the results, sewage sludge and garbage compost are suggested for use as an amendment for the soil studied. Comparing the beneficial effects of the organic materials applied for improving plant growth and nutrient accumulation, the materials can be arranged in the following descending order: municipal sludge > chicken manure > cattle manure > garbage compost > mushroom compost. It is suggested that recycling of organic materials for agricultural usage as an organic-matter resource is an alternative, organic fertilization option in Turkey.  相似文献   

14.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

15.
A liquid chromatographic (LC) method was developed for the determination of zearalenone and zearalenol in grains and mixed animal feeds. Samples are extracted with chloroform and purified by a base-acid liquid-liquid partition. Zearalenone and zearalenol are separated by reverse phase LC and determined by fluorescence detection, excitation wavelength 236 nm with a 418 nm cutoff filter. The method was applied to the determination of zearalenone and zearalenol in 395 survey samples of corn, oats, barley, sorghum, silage, and finished feeds. The limit of detection is 10 ng/g for both toxins. The range of naturally occurring toxins found was 10-4,000 ng/g. Average recoveries were 84% for zearlenone and 69% for zearalenol. Coefficients of variation were 24.6% for zearalenone and 30.8% for zearalenol for crop year 1980, and 28.3% for zearalenone and 22.0% for zearalenol for crop year 1981.  相似文献   

16.
The content and chemical from of Hg and Se were determined for several samples of municipal sewage sludge and sludge ash, garden soil having a history of sludge and residential compost application, and selected fertilizer materials (peat moss, cow manure, residential compost, composted municipal refuse and sewage sludge, Miloganite). Municipal sewage sludge had the highest levels of total Hg (averaging 1240 ppb), while sludge ash had the lowest levels (averaging 5.6 ppb). Total Se levels were lowest in compost (averaging 255 ppb), while being highest in sludge ash (averaging 11550 ppb). The methylmercury percentage was fairly constant for all samples, averaging 6.0% of the total Hg content. Hexavalent Se averaged 24.3 of the total Se content, and was notably higher in sludge and fertilizer samples. Successive annual application of sludge and compost to garden soil resulted in a gradual increase of total Hg and Se in the soil, but had no significant influence on chemical form distribution for both elements.  相似文献   

17.

Purpose

Degraded soils, such as those encountered in areas of mine activities, need to be ameliorated by liming to correct soil acidity and by addition of organic inputs to improve soil properties and fertility.

Materials and methods

Non-amended mine soil and soil amended with stabilized sewage sludge were incubated for 45 days. Soil physicochemical and biological indicators were periodically measured along incubation and other enzyme activities at the end of incubation. In improved soils, a study of plant development in 250-g pots was carried out with three vegetal species: tomato, rye grass and ahipa. Germination and mortality rates, biomass production and photosynthetic pigments were measured.

Results and discussion

Soil incubation with sewage sludge slightly increased soil pH and led to an enhancement of soil electrical conductivity, organic carbon and dehydrogenase activity, especially for the higher doses (5 and 10%). However soil respiration was more promoted with the 2% dose, pointing to a possible toxic effect of the sludge. At the end of incubation, physicochemical and biological properties were in general enhanced. Biomass production was improved in tomato and rye grass by sewage sludge addition (more at the 2% dose), whilst ahipa growth was not affected by sewage sludge treatments. Tomato mortality reached 73% with high sludge doses (10%).

Conclusions

According to this set of parameters, amendment with sewage sludge of a limed acid mine soil would be considered as a good strategy for soil amelioration in view of plant establishment and development.  相似文献   

18.
Abstract

The uptake and distribution of manganese (Mn) in field‐grown maize (Zea mays L.) was studied in a long‐term sewage sludge field trial on an acid sandy soil at Bordeaux. Since 1974, sewage sludge had been applied at levels of 101 dry matter (DM) ha‐1 year‐1 (SS 10) and 1001 DM ha‐1 per 2 years (SS 100) on annually cropped maize plots. Treatment with farmyard manure (FYM) at a rate of 10 t DM ha‐1 year‐1 served as unpolluted control. Five replicate plants per treatment were examined at six different growth stages. At each stage, the whole plant was separated into its different organs and the Mn distribution was determined in at least 12 different plant parts. Manganese concentrations were always higher in SS 100 plants compared to FYM and SS 10 treated plants. Significant treatment‐dependent differences occurred almost all in the roots and in the different leaf levels while we found similar Mn concentrations in the stalk and in the reproductive organs. In the different stalk levels and in the ear composites we determined low Mn concentrations with critical deficiency values in FYM and SS 10 plants while Mn concentrations in SS 100 plants were in the normal range. Soil treatment also significantly influenced the initial absorption by the roots. Despite low absolute Mn concentrations in the roots of FYM plants, the Mn transfer coefficient (plant Mn concentration/soil Mn concentration) was highest in FYM plants and lowest in SS 100 plants indicating a relatively low Mn plant availability in the sludge‐treated plots.  相似文献   

19.
Soil application of sewage sludge as an amendment in crop plants has became a popular method of municipal sewage-sludge disposal in many countries. However, the presence of heavy metals in untreated sewage sludge has raised concerns of adverse effects on crop growth, quality of product, and environmental health. Gamma irradiation is one of the treatments for hygienization of sewage sludge before use as fertilizer. To evaluate the potential of gamma-irradiated sewage sludge as fertilizer in vegetable crops, the field investigation was conducted in a root crop, radish (Raphanus sativus L.), during the 2005–06 and 2006–07 growing seasons in a sandy loam soil. Treatments consisted of three source of fertilizers [farmyard manure (FYM), gamma-irradiated sewage sludge (GISS), and nonirradiated sewage sludge (NISS)]; each were compared at six application levels (1, 3, 6, 7, 9, and 11 t ha?1). The physicochemical properties of all the three fertilizers used in this study were compared. Growth parameters and yields of radish were not significantly influenced by source of fertilizers or their application levels, except plant stand, which was influenced by type of fertilizers used. There was no significant difference observed between source of fertilizer treatments with respect to any of the measured soil properties, including major nutrients [nitrogen (N), phosphorus (P), and potassium (K)], metallic micronutrients [copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)], and heavy metals [nickel (Ni), lead (Pb), cadmium (Cd), and cobalt (Co)]. Soil P and Zn were influenced by the various level of fertilizers. However, the interaction effect of source and level of fertilizer was absent for all the measured parameters. The maximum pollutant limits in sewage sludge and soil for agricultural use in different countries were compared. The concentration of metallic micronutrients and heavy metals in soil were less than the prescribed limit of the United States Environmental Protection Agency (USEPA), and no significant accumulation was noted after 2 years of application of GISS and NISS even at higher application rates.  相似文献   

20.
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha−1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号