首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

2.
3.
共轭亚油酸(CLA)主要存在于反刍动物乳制品中,本试验建立了气相色谱法检测CLA的方法,采集牛乳提取脂肪检测脂肪酸中CLA的含量,发现在试验条件下c9,t11-CLA占到总脂肪酸含量的1.25‰是CLA异构体的主要形式。  相似文献   

4.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).  相似文献   

5.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.  相似文献   

6.
The objective of this study was to determine the forage:concentrate ratio that would provide the greatest duodenal flow of unsaturated fatty acids in ewes supplemented with soybean oil and to determine how diets differing in forage content affect flow of conjugated linoleic acid (CLA) and trans-vaccenic acid (18:1(trans-11)). Five mature ewes (66.5 +/- 12.8 kg) fitted with ruminal and duodenal cannulas were used in a 5 x 5 Latin square experiment. Diets were isonitrogenous and included bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Dietary fat was adjusted to 6% with soybean oil. Five ratios of forage:concentrate (18.4:81.6, 32.2:67.8, 45.8:54.2, 59.4:40.6, and 72.9:27.1) were fed at 1.3% of BW daily in equal allotments at 0630 and 1830. After 14 d, Cr2O3 (2.5 g) was dosed at each feeding for 7 d and ruminal, duodenal, and fecal collections were taken for the next 3 d. Duodenal flow of 18:0 increased linearly (P < 0.01) with dietary forage. Duodenal flow of 18:1(cis-9) and 18:2(cis-9,12) decreased (P < 0.001) but duodenal flow of 18:3(cis-9,12,15) increased (P < 0.01) with increased dietary forage. Biohydrogenation of dietary unsaturated fatty acids increased (P < 0.001) as dietary forage increased, which was concomitant with increased ruminal pH. Duodenal flow of 18:2(cis-9,trans-11) increased linearly (P < 0.01) with increased dietary forage but increased abruptly when forage was fed at 45.8%. Duodenal flow of the trans-10, cis-12 and cis-10, cis-12 CLA isomers decreased as dietary forage increased, but flow tended to increase on the highest-forage diet, resulting in both linear (P < 0.01) and quadratic (P < 0.01) effects. Duodenal flow of 18:1(trans-11) decreased from 8.28 g/d on the 18.4% forage diet to 5.47 g/d on the 59.4% forage diet then increased to 7.29 g/d on the highest-forage diet (quadratic, P < 0.1). Duodenal flow of 18:1(trans-11) was 27- to 69-fold greater than flow of CLA. We conclude that when ewes were fed a 6% crude fat diet duodenal flows of dietary fatty acids changed incrementally as dietary forage was increased, whereas changes in flows of CLA isomers seemed to be more abrupt. Biohydrogenation changes were gradual with diet, suggesting a gradual shift in ruminal microbial populations with increasing forage. Finally, the highest-concentrate diet supported the greatest duodenal flows of dietary unsaturated fatty acids, as well as the highest flow of 18:1(trans-11).  相似文献   

7.
Six Hereford steers (295 kg) cannulated in the proximal duodenum were used to evaluate the effects of forage and sunflower oil level on ruminal biohydrogenation (BH) and conjugated linoleic acid (CLA) outflow. Steers were fed one of six treatment diets in a 3 x 2 factorial arrangement of treatments (grass hay level: 12, 24, or 36% of DM; and sunflower oil level: 2 or 4% of DM) in a 6 x 6 Latin square design. The remainder of the diet was made up of steam rolled corn and protein/mineral supplement. Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, period, forage level, sunflower oil level, and two-way interaction between forage and sunflower oil level in the model. Dry matter intake showed a quadratic response (P < 0.04), with an increase in DMI as forage level increased from 12 to 24% followed by a decrease in DMI when 36% forage was fed. Flow of fatty acids at the duodenum was higher (P < 0.03) for 4 vs. 2% sunflower oil diets, and similar among forage levels. Apparent ruminal digestibility of NDF increased in a linear manner (P < 0.04) as dietary forage level increased. Ruminal BH of dietary unsaturated 18-C fatty acids, oleic acid, and linoleic acid increased linearly (P < 0.05) as dietary forage level increased. Linoleic acid BH tended (P < 0.07) to be greater for 4 than 2% sunflower oil level. Duodenal flow of pentadecyclic, stearic, linolenic, and arachidic acids increased linearly (P < 0.05) as dietary forage level increased from 12 to 36%. Duodenal flow of linoleic acid decreased in a linear manner (P < 0.03) with increasing dietary forage level. Flow of trans-10 octadecenoate decreased linearly (P < 0.03) as dietary forage level increased, whereas trans-11 vaccenic acid flow to the duodenum increased (P < 0.01) linearly with increased dietary forage. Dietary forage or sunflower oil levels did not alter the outflow of cis-9, trans-11 CLA. Flows of cis-11, trans-13, and cis-9, cis-11 CLA increased linearly (P < 0.05) with increased dietary forage. Flows of cis-11, cis-13, and trans-11, trans-13 CLA decreased linearly (P < 0.05) with increased dietary forage. Increasing dietary forage levels from 12 to 36% in beef cattle finishing diets increased BH of unsaturated 18-C fatty acid and outflow of trans-11 vaccenic acid to duodenum without altering cis-9, trans-11 CLA outflow.  相似文献   

8.
The effects of dietary algal supplementation, a source of docosahexaenoic acid, on the fatty acid profile of rumen lipids in cattle were evaluated, with special emphasis on CLA and trans fatty acids produced by rumen microbes. A diet based on corn silage was fed with supplements containing the following: 1) no algal meal and fed at 2.1 kg of DM/d (control), 2) algal meal and fed at 1.1 kg of DM/d (low algal meal), 3) algal meal and fed at 2.1 kg of DM/d (medium algal meal), and 4) algal meal and fed at 4.2 kg of DM/d (high algal meal). A modified lipid extraction procedure was developed to analyze the lipid changes in rumen fluid. The percentage of stearic acid (18:0) in rumen fluid was decreased by algal meal supplementation (P < 0.001) compared with control and was linearly dependent on the level of algal meal supplementation (P = 0.005). Total trans-18:1 in rumen fluid of cattle fed the control diet was 19% of total fatty acids. Addition of algal meal increased (P < 0.001) total trans-18:1 up to 43%, mostly due to 18:1 trans-10 that increased (P = 0.002) to 29.5% of total rumen fatty acids. This increase in 18:1 trans-10 seems to suggest a change in the rumen microbial population. Vaccenic acid (18:1 trans-11) increased quadratically (P = 0.005) with increasing level of algal meal supplementation in the diets. The total CLA content was low in the control (<0.9%) and increased with dietary algal meal addition, although not significantly; the greatest level was 1.5% with the medium algal meal diet. The increase of rumenic acid (cis-9, trans-11 CLA) was quadratic (P = 0.05) with algal meal supplementation, whereas trans-10, cis-12 CLA increased linearly with increased level of algal meal from 0.08 to 0.13% (P = 0.03). The ratio of trans-11 (cis-9, trans-11 CLA + 18:1 trans-11) to trans-10 (trans-10, cis-12 CLA + 18:1 trans-10) decreased from 2.45 to 0.77, 0.87, and 0.21 for the control, low algal meal, medium algal meal, and high algal meal diets, respectively. The content of docosahexaenoic acid in rumen fluid increased (P = 0.002) from 0.3 to 1.4% of total fatty acids with increasing level of algal meal supplementation in the diets. Our results suggest that algal meal inhibits the reduction of trans-18:1 to 18:0, giving rise to the high trans-18:1 content. In conclusion, algal meal could be used to increase the concentration in rumen contents of trans-18:1 isomers that serve as precursors for CLA biosynthesis in the tissues of ruminants.  相似文献   

9.
Three Angus steers (410 kg) cannulated in the proximal duodenum were used in a replicated 3 x 3 Latin square to evaluate the effects of dietary lipid level and oil source on ruminal biohydrogenation and conjugated linoleic acid (CLA) outflow. Dietary treatments included: 1) typical corn (TC; 79.2% typical corn), 2) high-oil corn (HOC; 79.2% high-oil corn), and 3) the TC diet with corn oil added to supply an amount of lipid equal to the HOC diet (OIL; 76.9% TC + 2.4% corn oil). Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, square, period, and treatment in the model and planned, nonorthogonal contrasts were used to test the effects of dietary lipid content (TC vs HOC and OIL) and oil source (HOC vs OIL) on ruminal biohydrogenation. Intake and duodenal flow of total long-chain fatty acids were increased (P < 0.05) by over 63% for diets containing more lipid regardless of oil source. Apparent ruminal dry matter and long chain fatty acid digestibilities were not altered (P > 0.05) by dietary lipid level or oil source. Ruminal biohydrogenation of total and individual 18-carbon unsaturated fatty acids was greater (P < 0.05) for diets with higher lipid content. Biohydrogenation of oleic acid was greater (P < 0.05) for HOC than OIL, but biohydrogenation of linoleic acid was lower (P < 0.05) for HOC than OIL. Duodenal flows of palmitic, stearic, oleic, linoleic, and arachidic acids were more than 30% greater (P < 0.05) for diets containing more lipid. Flow of all trans-octadecenoic acids was greater (P < 0.05) for diets containing more lipid. Corn oil addition increased (P < 0.05) the flow of trans-10 octadecenoic acid and the trans-10, cis-12 isomer of CLA by threefold compared to feeding high-oil corn. Feeding high-oil corn or adding corn oil to typical corn rations increased intake, biohydrogenation, and duodenal flow of unsaturated long-chain fatty acids. Compared with high-oil corn diets, addition of corn oil increased duodenal flow of trans-10, trans-12 and cis-12 isomers of octadecenoic acid and the trans-10, cis-12 isomer of CLA. The amount of cis-9, trans-11 isomer of conjugated linoleic acid flowing to the duodenum was less than 260 mg/d, a value over 20 times lower than flow of trans-11 vaccenic acid indicating the importance of tissue desaturation for enhanced conjugated linoleic acid content of beef.  相似文献   

10.
Forty Large White pigs were fed from 30 kg to 103 kg body mass on diets supplemented with 6% of pure high-oleic sunflower oil (HO) or HO plus increasing amounts of partially hydrogenated rape seed oil (HR; 1.85%, 3.70%, 5.55%), containing high levels of delta 6 to delta 11 C 18:1 trans fatty acid isomers. Increasing dietary C 18: trans fatty acids resulted in a linear increase in C 18:1 trans fatty acids and conjugated linoleic acid (cis-9, trans-11 CLA) in backfat (BF) as well as in neutral lipids (NL) and phospholipids (PL) of M. long. dorsi. Thus, the rate of bioconversion of trans vaccenic acid (TVA) into CLA and incorporation of C 18:1 trans and CLA into pig adipose tissue was not limited up to 25 g total C 18:1 trans fatty acids including 3.3 g of TVA per kg feed. BF was higher in C 18:1 trans fatty acids and CLA than M. long. dorsi NL and PL. In BF and NL the sum of saturated fatty acids (SFA) increased with increasing dietary amounts of HR, while in PL SFA were reduced. Thus, according to their physical properties, C 18:1 trans fatty acids partly replaced SFA in PL. Firmness of backfat was also significantly increased (P < 0.05) with increasing amounts of HR in feed.  相似文献   

11.
The objective of this study was to identify environmental factors that influence conjugated linoleic acid (CLA) and trans-C18:1 fatty acid production by mixed ruminal bacteria. Ruminal contents were collected from a 600-kg ruminally fistulated Hereford steer maintained on pasture. Mixed ruminal bacteria were obtained by differential centrifugation under anaerobic conditions and added to a basal medium that contained a commercial emulsified preparation of soybean oil and a mixture of soluble carbohydrates (cellobiose, glucose, maltose, and xylose). Culture samples were collected from batch culture incubations at 0, 2, 4, 6, 8, 12, 24, 26, 28, 30, 32, and 48 h. Continuous culture incubations were conducted at dilution rates of 0.05 and 0.10 h(-1) with extracellular pH values of 5.5 and 6.5, and 0.5 and 1.0 g/L of mixed soluble carbohydrates. Culture samples were obtained from the culture vessel once steady-state conditions had been achieved. In batch culture, trans-C18:1 concentrations increased over time and reached a maximum at 48 h. Little CLA was produced during the first 8 h, but cis-9, trans-11 CLA concentrations remained high between 24 and 30 h. When mixed ruminal bacteria were maintained in continuous culture on 0.5 g/L of mixed soluble carbohydrates, concentrations of trans-C18:1 and cis-9, trans-11 CLA were reduced (P < 0.05) at a dilution rate of 0.05 h(-1) and an extracellular pH of 5.5. Similar effects were also observed when 1.0 g/L of mixed soluble carbohydrates was used. When extracellular pH was lowered to 5.0, neither trans-C18:1 or CLA isomers were detected. In conclusion, our results suggest that culture pH appears to have the most influence on the production of trans-C18:1 and CLA isomers by mixed ruminal bacteria.  相似文献   

12.
Our objective was to determine effects of dietary high-oleate (Oleate; 76% 18:1) or high-linoleate (Linoleate; 78% 18:2) safflower seeds on fatty acids in muscle and adipose tissue of feedlot lambs. White-faced ewe lambs (n = 36) were fed a beet pulp, oat hay, and soybean meal basal diet (Control), blocked by BW, and allotted randomly to dietary treatments. Cracked safflower seeds were used in isocaloric and isonitrogenous replacement of beet pulp, oat hay, and soybean meal so that Oleate and Linoleate diets contained 5.0% additional fat. Fatty acids were determined in semitendinosus, longissimus dorsi (longissimus), and adipose tissue from the tail head (tailhead adipose tissue), adjacent to the 12th rib (s.c. adipose tissue), and kidney and pelvic fat (KPH adipose tissue) depots. Fatty acid data were analyzed within muscle and adipose tissue as a split-block design. Single degree of freedom orthogonal contrasts were used to compare treatment effects. Average daily gain, feed efficiency, and carcass characteristics did not differ (P = 0.15 to 0.96) across dietary treatments. Adipose tissue saturated fatty acids were greater (P = 0.04) for Controls but were not different (P = 0.36) in muscle. Trans-vaccenic acid (18:1(trans-11)) increased (P < 0.0001) with safflower supplementation and was greater (P < 0.0001) in Linoleate than in Oleate for both tissue types. Linoleate lamb had greater (P < 0.0001) PUFA than Oleate lamb in muscle and adipose tissue. Conjugated linoleic acids (CLA; cis-9, trans-11 and trans-10, cis-12) were greater (P < 0.0001) in muscle and adipose tissue of lambs fed safflower seeds. Lambs fed Linoleate had greater (P < 0.0001) CLA in adipose tissue and muscle than lambs fed Oleate. Saturated fatty acids were greater (P < 0.0001) in s.c. adipose tissue than in tailhead adipose tissue. Mono- and polyunsaturated fatty acids were greater (P < 0.0001) in tailhead adipose tissue than in s.c. adipose tissue. Weight percentages of 18:1(trans-11) ranked tailhead adipose tissue = KPH adipose tissue > s.c. adipose tissue and semitendinosus > longissimus, whereas CLA ranked tailhead adipose tissue > s.c. adipose tissue > KPH adipose tissue and semitendinosus > longissimus. Feeding mono- and polyunsaturated fatty acids increased tissue 18:1(trans-11) and CLA, which is a favorable change in regard to current human dietary guidelines.  相似文献   

13.
In this experiment sunflower oil, soybean oil and fish oil were incubated in rumen-fistulated adult ewes (n = 5) to study conjugated linoleic acid (CLA) production in the rumen. The individual oils were incubated in nylon bags in the rumen on perlite carrier (40% oil, 60% carrier) over a period of 2, 4, 6, 8, 10 and 12 h for all treatments. During the incubation of each oil primarily the formation of the cis-9, trans-11 isomer of CLA could be observed. Both sunflower and soybean oils showed similar changes in the rumen. After the incubation of these two vegetable oils the proportion of linoleic acid decreased significantly as the duration of incubation increased in the rumen. These changes were accompanied by a significant increase in the amount of cis-9, trans-11 CLA. However, in the case of sunflower oil the rate of formation of the cis-9, trans-11 CLA isomer was significantly higher after the different incubation times as compared to soybean oil. Much lower amounts of CLA were formed when fish oil was incubated in the rumen. The level of cis-9, trans-11 isomer produced during these treatments was 10% less than the amount obtained with the other two oils of vegetable origin. Besides the cis-9, trans-11 isomer, trans-10, cis-12 CLA could also be detected during the incubation of the different oils in the rumen. However, the level of this isomer was low and did not show consistent differences among the treatments. The results of this experiment indicate that the fatty acid composition of the oils and the duration of incubation collectively determine the amount of CLA produced in the first compartment of the forestomach of ruminants.  相似文献   

14.
Conjugated linoleic acid (CLA) has been shown to have an effect on subcutaneous fatty acid composition and has been reported to decrease stearoyl coenzyme A desaturase (SCD) activity by decreasing mRNA expression and(or) catalytic activity in rodents and rodent cell lines. This investigation was designed to study the effects of CLA, corn oil, or beef tallow supplementation on s.c. adipose tissue fatty acid composition, adiposity, SCD enzyme activity, and the delta9 desaturase index in piglets. Eighteen crossbred barrows 16 to 18 d of age were adapted to diet for 1 wk and then assigned randomly to one of three treatments: 1.5% added CLA, 1.5% added corn oil, or 1.5% added beef tallow. Barrows were penned individually and fed the supplemental oils for 35 d (to 25.6 +/- 0.6 kg BW). Subcutaneous adipose tissue samples were obtained after slaughter. Fatty acid composition of the s.c. adipose tissue differed for each fatty acid measured due to diet with the exception of 18:3. The concentrations of CLA trans-10, cis-12 and cis-9, trans-11 were elevated from nondetectable to 1.62 and 2.52 g/100 g lipid, respectively (P < 0.001 for both isomers). Conjugated linoleic acid decreased the delta9 desaturase index (P < 0.01) and SCD enzyme activity, expressed as nanomoles of palmitate converted to palmitoleate/(7 min x g of tissue) (P = 0.075) and nanomoles of palmitate converted to palmitoleate/(7 min 105 cells) (P= 0.056). Tallow-fed pigs had a greater proportion of large adipocytes (> 700 pL) and the greatest SCD activity. These data provide the first direct evidence that dietary CLA depresses SCD enzyme activity in porcine adipose tissue, which may in part be responsible for the depression of adiposity by CLA observed by others in market weight pigs.  相似文献   

15.
Two experiments were conducted to examine the changes in the fatty acid (FA) composition of mixed ruminal microbes (MRM) from sheep fed various levels of dietary forage and soybean oil (SBO). In Experiment 1, diets included five ratios of forage to concentrate. Increased dietary forage did not change MRM concentrations of 18:1(trans-11) and 18:2 (P>0.10), but increased 18:3 (P<0.01) and cis-9, trans-11 conjugated linoleic acid (CLA) (P<0.01). In Experiment 2, SBO was added to the diets at 0%, 3.2%, 6.3%, or 9.4% of dietary DM. Increasing dietary SBO resulted in linear increases (P<0.01) in 18:1(trans-11)and 18:1(cis-9), but linear decreases (P<0.01) in 18:2 of MRM. It was concluded that FA composition of MRM was affected by diet. Additionally, MRM of sheep fed the diet containing 18.4% forage and 9.4% SBO contained the greatest individual and total FA concentrations.  相似文献   

16.
We conducted a series of experiments to evaluate the effects of conjugated linoleic acids (CLA) on lipid metabolism and energy homeostasis in lactating dairy cows. In all experiments, multiparous Holstein cows in mid to late lactation were abomasally infused with CLA for 5 d. The initial study established that trans-10, cis-12 CLA markedly reduced milk fat yield whereas cis-9, trans-11 CLA, the predominant CLA isomer in milk fat, had no effect. Across the three investigations, infusions of the pure trans-10, cis-12 CLA isomer (3.5 to 14.0 g/d) resulted in a 25 to 50% decrease in milk fat yield and this was energetically equivalent to 6 to 11% of net energy intake. Effects were specific for milk fat as there were little or no changes in feed intake and the yield of milk or milk protein. In Exp. 1, infusing trans-10, cis-12 CLA had no effect on circulating plasma concentrations of glucose, insulin, or leptin. Basal NEFA concentrations were also unaffected, but lipolytic response to an epinephrine challenge was reduced (33%) when cows received trans-10, cis-12 CLA; this minor change in lipolytic response would be consistent with the slightly more positive net energy balance when cows received trans-10, cis-12 CLA. In Exp. 2, infusing differing amounts of trans-10, cis-12 CLA had only minor effects on basal NEFA concentrations, but again cows receiving trans-10, cis-12 CLA tended to have reduced (24%) lipolytic response to trans-10, cis-12 CLA compared to the control period. In Exp. 3, infusing trans-10, cis-12 CLA had no effect on basal glucose concentrations or glucose response to an insulin challenge. The fractional rate of glucose clearance in response to insulin was also not altered by treatment. In summary, the effects of trans-10, cis-12 CLA in lactating dairy cows appear to be specific for the mammary gland, resulting in reduced milk fat synthesis; adipose tissue response to a homeostatic signal regulating lipolysis (epinephrine), whole-body response to a homeostatic signal regulating glucose homeostasis (insulin), and plasma variables associated with lipid metabolism and energy homeostasis were relatively unaffected by treatment with trans-10, cis-12 CLA.  相似文献   

17.
Because of the potential benefits to human health, there is interest in increasing 18:3n-3, 20:5n-3, 22:6n-6, and cis-9,trans-11 CLA in ruminant foods. Four Aberdeen Angus steers (406 ± 8.2 kg of BW) fitted with ruminal and duodenal cannulas were used in a 4 × 4 Latin square experiment with 21-d periods to examine the potential of fish oil (FO) and linseed oil (LO) in the diet to increase ruminal outflow of trans-11 18:1 and total n-3 PUFA in growing cattle. Treatments consisted of a control diet (60:40; forage:concentrate ratio, on a DM basis, respectively) based on maize silage, or the same basal ration containing 30 g/kg of DM of FO, LO, or a mixture (1:1, wt/wt) of FO and LO (LFO). Diets were offered as total mixed rations and fed at a rate of 85 g of DM/(kg of BW(0.75)/d). Oils had no effect (P = 0.52) on DMI. Linseed oil had no effect (P > 0.05) on ruminal pH or VFA concentrations, whereas FO shifted rumen fermentation toward propionate at the expense of acetate. Compared with the control, LO increased (P < 0.05) 18:0, cis 18:1 (Δ9, 12-15), trans 18:1 (Δ4-9, 11-16), trans 18:2, geometric isomers of 9,11, 11,13, and 13,15 CLA, trans-8,cis-10 CLA, trans-10,trans-12 CLA, trans-12,trans-14 CLA, and 18:3n-3 flow at the duodenum. Inclusion of FO in the diet resulted in greater (P < 0.05) flows of cis-9 16:1, trans 16:1 (Δ6-13), cis 18:1 (Δ9, 11, and 13), trans 18:1 (Δ6-15), trans 18:2, 20:5n-3, 22:5n-3, and 22:6n-3, and decreased (P < 0.001) 18:0 at the duodenum relative to the control. For most fatty acids at the duodenum, responses to LFO were intermediate of FO and LO. However, LFO resulted in greater (P = 0.04) flows of total trans 18:1 than LO and increased (P < 0.01) trans-6 16:1 and trans-12 18:1 at the duodenum compared with FO or LO. Biohydrogenation of cis-9 18:1 and 18:2n-6 in the rumen was independent of treatment, but both FO and LO increased (P < 0.001) the extent of 18:3n-3 biohydrogenation compared with the control. Ruminal 18:3n-3 biohydrogenation was greater (P < 0.001) for LO and LFO than FO, whereas biohydrogenation of 20:5n-3 and 22:6n-3 in the rumen was marginally less (P = 0.05) for LFO than FO. In conclusion, LO and FO at 30 g/kg of DM altered the biohydrogenation of unsaturated fatty acids in the rumen, causing an increase in the flow of specific intermediates at the duodenum, but the potential of these oils fed alone or as a mixture to increase n-3 PUFA at the duodenum in cattle appears limited.  相似文献   

18.
To provide further insights into ruminant lipid digestion and metabolism, and into cis-9,trans-11 18:2 synthesis, 12 growing Engadine lambs grazing either mountain pasture (2,250 m above sea level; n = 6) or lowland pasture (400 m above sea level; n = 6) were studied. Both pastures consisted exclusively of C(3) plants. Before the experiment, all animals grazed a common pasture for 6 wk. Grasses and perirenal adipose tissues of the sheep were analyzed for fatty acids by gas chromatography. Stable C-isotope ratios (δ(13)C values in ‰ vs. the Vienna Pee Dee Belemnite standard) were determined in the composite samples by elemental analysis-isotope ratio mass spectrometry. The δ(13)C of the individual fatty acids were measured by gas chromatography-combustion-isotope ratio mass spectrometry. The δ(13)C value of the entire mountain pasture grass was -27.5‰ (SD 0.31), whereas that of the lowland pasture grass was -30.0‰ (SD 0.07). This difference was reflected in the perirenal adipose tissues of the corresponding sheep (P < 0.05), even though the δ(13)C values were less in the animals than in the grass. The δ(13)C values for cis-9 16:1 and cis-9 18:1 in perirenal fat differed between mountain and lowland lambs (P < 0.05). The 16:0 in the adipose tissue was enriched in (13)C by 5‰ compared with the dietary 16:0, likely as a result of partly endogenous synthesis. The δ(13)C values of cis-9,trans-11 18:2 (cis-9,trans-11 CLA) in the adipose tissue were smaller than those of its dietary precursors, cis-9,cis-12 18:2 and cis-9,cis-12,cis-15 18:3; conversely, the δ(13)C values of trans-11 18:1 were not, suggesting that large proportions of perirenal cis-9,trans-11 18:2 were of endogenous origin and discrimination against (13)C occurred during Δ(9)-desaturation. The same discrimination was indicated by the isotopic shift between 16:0 and cis-9 16:1 in the mountain grazing group. Furthermore, the δ(13)C values of cis-9,trans-11 18:2 were smaller relative to the precursor fatty acids in the mountain lambs compared with the lowland group. This result suggests a reduced extent of biohydrogenation in lambs grazing on mountain grass in comparison with those grazing on lowland grass. This was supported by the smaller cis-9,trans-11 18:2 concentrations in total fatty acids found in the adipose tissues of the lowland lambs (P < 0.001). The results of this study demonstrate that natural differences between δ(13)C values of swards from different pastures and the adipose tissue fatty acids could be used as tracers in studies of lipid metabolism in ruminants.  相似文献   

19.
The ruminal biohydrogenation of c9,c12‐18:2 can be affected by the fibre/starch ratio of the diet and the ruminal pH. The objectives of this study were to examine independently in vitro the effects of fermentation substrate (hay vs. corn starch) and buffer pH (6 vs. 7) on the biohydrogenation of c9,c12‐18:2 carried out by grape seed oil, focusing on its t11 and t10 pathways, using 6‐h ruminal incubations. The experimental design was a 2 × 2 factorial arrangement. Fermentation substrate and pH affected the C18 fatty acid balance in incubated media, but few interactions were observed. Compared with starch, hay as the fermentation substrate favoured the production of 18:0 (×2.3), all trans‐18:1 isomers (×12.6) and CLA (×6.1), except c9,t11‐CLA, and the disappearance of unsaturated C18 fatty acids, but decreased the production of odd and branched chain fatty acids. Compared with pH 6 buffer, pH 7 buffer resulted in higher c9,c12‐18:2 disappearance and CLA production. For c9,t11‐CLA, an interaction was noticed between the two factors, leading to the highest production in cultures incubated on hay with the 7 pH buffer. Compared with starch, hay as fermentation substrate favoured the activity of t11 producers, which are fibrolytic bacteria, and the production of t10 isomers, possibly due to the presence of potential t10 producers in hay. Low pH resulted in a decreased t11 isomers production and in a slightly increased t10 isomers production, probably due to a modulation of enzymatic or bacterial activity.  相似文献   

20.
Xu CX  Oh YK  Lee HG  Kim TG  Li ZH  Yin JL  Jin YC  Jin H  Kim YJ  Kim KH  Yeo JM  Choi YJ 《Journal of animal science》2008,86(11):3033-3044
The present study was conducted to examine the effects of different plant oils or plant oil mixtures and high-temperature, microtime processing (HTMT) on the CLA content in Hanwoo steers. Experiment 1, consisting of 3 in vitro trials, was conducted to determine how the biohydrogenation of C18 fatty acids and CLA production were affected by fat sources (tallow, soybean oil, linseed oil, or mixtures of soybean oil and linseed oil) or HTMT treatment in the rumen fluid. The results showed that HTMT was capable of protecting unsaturated fatty acids from biohydrogenation by ruminal bacteria. The HTMT-treated diet containing 4% linseed oil (LU) and a supplement containing 2% linseed oil and 1% soybean oil treated with HTMT + 1% soybean oil (L(2)S(1)U+S(1)) produced an increased quantity of trans-11 C18:1 and cis-9, trans-11 CLA, and a reduced quantity of trans-10, cis-12 CLA. Based on these results, in vivo studies (Exp. 2) were conducted with LU and L(2)S(1)U+S(1). These 2 treatments increased the content of cis-9, trans-11 CLA in LM compared with the control diet. The content of trans-10, cis-12 CLA in subcutaneous fat was also increased in the L(2)S(1)U+S(1) treatment compared with other treatments. The subcutaneous fat thickness in the LU treatment was decreased compared with the L(2)S(1)U+S(1) treatment. The LU treatment significantly decreased fatty acid synthase expression but simultaneously increased leptin expression. In this report, we showed that diets containing LU and L(2)S(1)U+S(1) were capable of increasing CLA in the intramuscular fat of beef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号