首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Wood is susceptible to decay by rot fungi if it is exposed to high-moisture contents during long periods of time and it is therefore important to limit the duration of such periods. Critical points in outdoor wood structures are, for example, end grain surfaces in joints where water can get trapped after a rain. It is therefore of interest to study both absorption and redistribution of moisture in wood. This paper presents moisture content profiles during end grain water absorption and redistribution in Norway spruce (Picea abies (L.) Karst.) measured by computed tomography with the specimens in individual climate boxes. Heartwood and sapwood of two provenances (slow-grown and fast-grown wood) were included. No major differences were seen between the water uptake of the slow-grown and the fast-grown wood since the densities were similar despite of the large difference in growth ring width. However, for the sapwood specimens, the moisture content was higher further into the specimens than for the heartwood specimens in agreement with previous studies. For the slow-grown wood, the redistribution was also generally more rapid for the sapwood specimens than for the heartwood specimens.  相似文献   

2.
Abstract

Differences in durability between heartwood and sapwood of Norway spruce [Picea abies (L.) Karst.] were investigated to determine wood qualities most favourable for use in outdoor constructions above ground. Trees grown on sites with either good or poor access to water were used. Seventy-eight specimens measuring 20 × 50 × 300?mm3 separated into heartwood and sapwood, half untreated, half painted, were exposed horizontally outdoors above ground for 5.5?years with the pith side up and the bark side down. Crack length and crack number were measured. Fungus growth and surface changes were visually estimated. Fungus type was determined by microscopic analysis. The main finding was that spruce heartwood had fewer and shorter cracks and less surface-discolouring fungus growth than sapwood. This was valid for both painted and untreated wood. After 2?years’ exposure, the cracks in sapwood (upper surface) were more than three times longer and about five times more numerous than in heartwood for both painted and untreated boards. Microscopic study showed that surface discoloration was due mainly to Aureobasidium pullulans, together with a few other discolouring fungi. After 5.5?years, initial decay was established on the surface and in the end grain of four untreated test objects.  相似文献   

3.
The pulping wood quality of Acacia melanoxylon was evaluated in relation to the presence of heartwood. The sapwood and heartwood from 20 trees from four sites in Portugal were evaluated separately at 5% stem height level in terms of chemical composition and kraft pulping aptitude. Heartwood had more extractives than sapwood ranging from 7.4% to 9.5% and from 4.0% to 4.2%, respectively, and with a heartwood-to-sapwood ratio for extractives ranging from 1.9 to 2.3. The major component of heartwood extractives was made up of ethanol-soluble compounds (70% of total extractives). Lignin content was similar in sapwood and heartwood (21.5% and 20.7%, respectively) as well as the sugar composition. Site did not influence the chemical composition. Pulping heartwood differed from sapwood in chemical and optical terms: lower values of pulp yield (53% vs 56% respectively), higher kappa number (11 vs. 7), and lower brightness (28% vs 49%). Acacia melanoxylon wood showed an overall good pulping aptitude, but the presence of heartwood should be taken into account because it decreases the raw-material quality for pulping. Heartwood content should therefore be considered as a quality variable when using A. melanoxylon wood in pulp industries  相似文献   

4.
3种不同处理方法对木材渗透性影响的研究   总被引:2,自引:0,他引:2  
本文通过对长白鱼鳞云杉和臭冷杉生材分别进行普通气干处理和酒精置换处理以及对其气干材进行水浸处理,研究了这3种不同处理方法对木材气渗透性的影响及其影响机理。研究结果表明,长白鱼鳞云杉边材、心材和臭冷杉心村的生材经普通气干处理后,其气体渗透性较低,分别约为0.114、0.045和0.111darcy;长白鱼鳞云杉边材、心材和臭冷杉心材的生材经酒精置换处理后,其气体渗透性分别约为11.713、0.074和0.144darcy,比普通气干处理对照组试样的平均渗透性分别增加约101.5倍、62%和30%,t检验表明,前者差异非常显著,但后两者差异不显著;已气干18个月的长白鱼鳞云杉边材、心材和臭冷杉心材经水浸处理后,其平均气体浸透性较处理前分别增加约85%、49%、65.5%,t检验表明差异均显著。长白鱼鳞云杉生材边材经  相似文献   

5.
Summary The purpose of this study was to examine the influence of the moisture level on the cell-wall material in wood using pulsed proton nuclear magnetic resonance. The wood species used were western hemlock (Tsuga heterophylla (Raf.) Sarg.) and sitka spruce (Picea sitchensis (Bong.) Carr.), distinguishing between heartwood and sapwood regions. The moisture contents of the specimens were below the fibre saturation point and they were conditioned to equilibrium moisture contents based on initial desorption, adsorption and secondary desorption processes. From the FID experiments, the NMR-based moisture contents and the solid-wood lineshape second moments were determined. Average relative proton-spin densities, which were needed to calculate the NMR-based moisture contents, were determined from known moisture contents and they were: hemlock sapwood: 0.616; hemlock heartwood: 0.537; spruce sapwood: 0.679; and, spruce heartwood: 0.446. The average RSD value, considering both heartwood and sapwood, for western hemlock species was 0.577 and for sitka spruce was 0.563; these are close to published RSD values for other species. The condition as to how the equilibrium moisture content was attained did not influence the second moment for hemlock; however, for spruce sapwood, the second moments were sorption dependent. The hemlock M2 decreased from about 5.1 × 109 s-2 at low MNMR to 4.5 × 109 s-2 (heartwood) and 4.3 × 109 s-2 (sapwood) at higher mnmr. The adsorption and secondary desorption M2 for the spruce sapwood region decreased from about 5.0 × 109 s-2 at low mnmr to about 4.1 × 109 s-2 near the MF, whereas M2 for the spruce heartwood decreased from about 4.3 × 109 s-2 at low MNMR to about 3.5 × 109 s-2 near MF. Extractives may have a key role in obtaining the RSD and second moments.This project was financially supported by the Science Council of British Columbia, MacMillan Bloedel Research. The Natural Sciences and Engineering Research Council of Canada is acknowledged for their support of the NMR spectrometer measurements  相似文献   

6.
Abstract

The heartwood and sapwood from Scots pine (PS), Norway spruce (PA), and Oriental spruce (PO) were tested for susceptibility to discoloring fungi and water uptake. In addition, annual ring width and density were measured. The methods used were Mycologg for testing growth of fungi and a modified version of EN 927-5 to investigate water uptake. For pine, the heartwood showed a lower water uptake and no discoloring fungi growing in the tests. The heartwood had a significantly higher density and smaller annual ring width than the sapwood. In PA the heartwood had significantly lower discoloration than sapwood. The total water uptake in g/m2 was significantly higher in sapwood, but not the calculated moisture content. As for wood properties, the density was significantly higher in sapwood compared to heartwood, although there were no differences in annual ring width. Regarding PO, differences in water uptake could be seen between sapwood and heartwood although the densities were similar. These results show that susceptibility to discoloring fungi and water uptake is hard to correlate to a single inherent property when looking at different wood species.  相似文献   

7.
Abstract

Eighteen sapwood and 18 heartwood samples from three Scots pine (Pinus sylvestris L.) trees were used to identify correlations between the features of their near-infrared spectra (400–2500 nm) measured before and after impregnation with linseed oil (Linogard®) and (1) the amount of oil taken up by the samples at three different longitudinal positions; and (2) the tissue type of sample. Calibration models were cross-validated and oil uptake models were also validated on separate test sets. Partial least squares regression models for the prediction of uptake and tissue type in non-impregnated wood were promisingly accurate, having coefficients of multiple determination (Q 2) values of > 0.8, 0.8 and 0.75 for predictions of tissue type, oil taken up as a percentage of sample mass and total mass of oil taken up, respectively. The models developed for linseed oil-impregnated samples were better still, generating Q 2 values of > 0.9, > 0.8 and 0.8 for the three key properties. In general, models based on spectra acquired along two directions of measurement (longitudinal and tangential) were more accurate than models based on only one. Tandem models consisting of two submodels, one for sapwood and one for heartwood, were more successful than single models applicable to both tissue types.  相似文献   

8.
Abstract

This study assessed the decay resistance of Pinus leucodermis wood to the brown-rot fungus Coniophora puteana. Based upon the median weight losses of 30.65% for heartwood and of 34.68% for sapwood obtained in the biological tests, both the heartwood and sapwood material examined was classified as not durable (durability class 5) according to the CEN/TS 15083-1 classification. Total extractives were low, 3.93% in heartwood and 1.00% in sapwood, while lignin content was 22.60% and 25.41% in heartwood and sapwood, respectively. It is highly recommended to use protective treatments before using P. leucodermis wood in outdoor conditions.  相似文献   

9.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

10.
Summary Two new proton magnetic resonance techniques, relaxation spectra and relaxation selective imaging, have been used to investigate the distribution of water in samples of normal white spruce sapwood, heartwood, and juvenile wood as well as two rehydrated heartwood samples containing incipient decay and compression wood respectively. It is demonstrated that the spin-spin (T2) relaxation behavior in wood is best presented as a continuous spectrum of relaxation times. Spectra of T2 for white spruce show separate peaks corresponding to the different water environments. Bound water gives a peak with an T2 time of about 1 ms and lumen water gives a distribution of T2 times in the range of 10 to 100 ms. The lumen water T2 time is a function of the wood cell radius. Consequently, the different cell lumen radii distributions for spruce sapwood, juvenile wood, and compression wood are readily distinguishable by the shape of their T2 spectra. Water environments which are separable on a T2 spectrum may be imaged separately. Imaging has been carried out in one dimension for bound water and lumen water of a spruce sapwood sample at four different moisture contents ranging from 100% to 17%. For the first time, we demonstrate that above the fibre saturation point the moisture density profile of the bound water is largely independent of moisture content. The feasibility and utility of using these techniques for internal scanning of logs and lumber is discussed. These techniques should provide new insights into the wood drying process.We would like to thank Michael Weiss of the Biological Science Electron Microscopy Facility at the University of British Columbia for his assistance with the microscopy and image analysis. This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canadian Forestry Service  相似文献   

11.
Summary Use of UV-laser excitation to produce fluorescence spectra for heartwood and sapwood from jack pine (Pinus banksiana), white spruce (Picea glauca) and balsam fir (Abies balsamea) was examined. Spectra were fairly broad without sharp spectral features and overlap of spectra between species was common. Sample to sample and in-sample variation of the recorded fluorescence spectra was observed. The fluorescence spectra obtained from heartwood samples of jack pine showed evidence of photochemical bleaching as a result of the multiple laser pulses needed to produce a complete spectrum. Bleaching may have obscured differences between species. For the mix of species examined no sapwood nor heartwood samples were distinguishable by this technique with the detector used. Use of an optical multichannel analyzer (OMA) could reduce the number of laser pulses needed to obtain an entire spectrum. Under these conditions it would be possible to determine whether the minor differences in spectral features observed for the different species are more pronounced in the first few laser pulses and if they are characteristic of species. Certain aspects of the data suggest that with improved analytical equipment UV-fluorescence might prove to be a useful technique for the identification of certain species.  相似文献   

12.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

13.
Five Japanese timbers, four timbers from the USA, and one Malaysian timber were evaluated for their resistance to the invasive dry-wood termite Incisitermes minor (Hagen) using laboratory choice and no-choice feeding tests with holed specimens. The highest survival rates of I. minor in both the heartwood and sapwood no-choice feeding tests were more than 70% after 3 months. When offered sapwood and heartwood choice feeding tests and the combined choice feeding tests, the highest survival rates of I. minor were more than 75% after 3 months. With regards to the percentage of wood mass losses in the no-choice and choice feeding tests, karamatsu (Larix leptolepsis), buna (Fagus crenata), and Douglas fir (Pseudotsuga menziesii) were classified as “resistant” species among the ten sapwood specimens. In the heartwood no-choice and choice feeding tests, the resistant species were buna, karamatsu, Douglas fir, sugi (Cryptomeria japonica), akamatsu (Pinus densiflora), and western red cedar (Thuja plicata). The ranking of the resistance of the ten commercial timbers against I. minor was buna > karamatsu > sugi > western red cedar > Douglas fir > rubber > western hemlock > hinoki > spruce.  相似文献   

14.
杉木冷冻干燥材和气干材液体浸注性的比较研究   总被引:2,自引:0,他引:2  
A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.  相似文献   

15.
The content and composition of carbohydrates comprising polysaccharides in sapwood and heartwood of 12 industrially important pulpwood species were analysed. The polysaccharide content was between 60% and 80% (w/w) for all species, with cellulose as the predominant polysaccharide type. The carbohydrate composition suggested that the main non-cellulose polysaccharides were galactoglucomannans, except in Larix heartwood, where arabinogalactans were predominant, while the content of xylans were in the same range as the mannans in Pinus resinosa heartwood and Thuja occidentalis heartwood and sapwood. Pectins, i.e. polygalacturonic acids, were the main acidic polysaccharides in all species. The amount and composition of water-soluble carbohydrates from ground wood samples were also analysed, since these are important in mechanical pulping and as a possible source of bioactive polymers. The main polysaccharides released from the spruce species were mannans, together with starch from sapwood. Especially Abies balsamea stemwood, but also Abies sibirica heartwood, released considerable amounts of pectins, suggesting that fir species may release more troublesome anionic polysaccharides than spruce species. Heartwood of Larix lariciana, Larix decidua, Pinus banksiana, and Pinus resinosa released considerable amounts of acidic arabinogalactans. Thuja occidentalis released mainly arabinogalactans and pectins. Pseudotsuga menziesii heartwood released a large amount of arabinogalactans.  相似文献   

16.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

17.
Dissolution and dispersion of spruce wood components into hot water   总被引:1,自引:0,他引:1  
Summary The dissolution and dispersion of components from Norway spruce (Picea abies) wood were examined in laboratory experiments to determine the factors influencing variations in dissolved and colloidal substances in mechanical pulp suspensions. Finely ground, fresh spruce wood was suspended in water at 90 °C and was agitated intensively for up to 12 h, after which the concentrations of dissolved and dispersed lipophilic extractives, lignans, carbohydrates and lignins were determined. Sapwood and heartwood were studied separately. Effects of pH and added electrolytes on the dissolution and dispersion of wood components were also investigated.Higher amounts of lipophilic extractives, and especially of triglycerides, were dispersed from sapwood than from heartwood. The release of lipophilic extractives continued for up to 3 h, after which the concentrations in the suspensions leveled off. At this stage the composition of the dissolved and dispersed lipophilic extractives equaled that of the wood. The amount of lipophilic extractives in the suspensions increased with increased pH, in the range of 4.5–6.7, but was lower in the presence of electrolytes. The dissolution of carbohydrates continued even beyond 3 h of agitation. The high water temperature induced hydrolytic reactions, thereby releasing especially arabinose. The release of arabinose through the hydrolytic cleavage from polysaccharides was more extensive at pH 4.5 than at pH 5.5 and 6.7. More polysaccharides containing galacturonic acid units (pectins) were dissolved at a higher pH. Much more polysaccharides containing glucose, most probably starch, were present in the sapwood suspensions. The dissolution of lignins also continued throughout the 12 h experiment. The measured UV-absorption, after extraction of lignans, was roughly the same for sapwood and heartwood suspensions. Slightly less lignins were released in the presence of electrolytes. Lignans were released only from heartwood.  相似文献   

18.
In an inoculation experiment to test the effect of wood moisture content on infection of Sitka spruce (Picea sitchensis) stumps by basidiospores of Heterobasidion annosum, exposure to high rainfall increased infection in the heartwood and reduced sapwood infection compared to covered stumps. This was associated with a greater moisture content in both wood types. Within-treatment variation in the amount of infection was high and it is suggested that endogenous factors in stumps may have a greater influence on infection than the environment or the availability of spores.  相似文献   

19.
Samples of pine (Pinus sylvestris) and spruce (Picea abies) were impregnated with a low-viscous epoxy resin using a vacuum process. The epoxy was cured in situ and the specimens sectioned. Deposits of the cured epoxy was then observed in the wood cavities using a scanning electron microscope. The investigation concentrated on tracing the transverse movements of a viscous liquid in the wood, and special attention was therefore given to the cross-field area between ray cells and longitudinal tracheids. A damage hypothesis is proposed based on the results obtained in the present investigation in combination with those from earlier studies on linseed oil-impregnated pine: In addition to the morphology of the bordered pits, viscous liquid flow in wood is dependent on damage that occurs during the impregnation procedure. For pine sapwood, liquid flow is enabled through disrupted window pit membranes, which divide the longitudinal tracheids and the ray parenchyma cells. A mechanism accounting for the reduced permeability of pine heartwood is believed to be deposits of higher-molecular-weight substances (extractives) in the ray parenchyma cells and on the cell walls. In spruce the thicker ray cells in combination with the smaller pits, which are connected to the longitudinal tracheids, reduce permeability considerably.  相似文献   

20.
Liquid flow in dried wood is complicated to study, since wood is a nonhomogeneous, hygroscopic-porous, anisotropic material. However, liquid flow is important to understand, since it has an influence on the durability of wood and on such processes like impregnation, drying, surface treatment, etc. In this study, simulations of liquid water absorption in wood as a fibre network, percolation, were compared with experimental water absorption in the longitudinal direction in spruce timber. With CT scanning, water distribution during liquid flow can be shown visually and measured by image processing. Liquid water absorption in end grain of spruce was measured with CT scanning after 1, 3, 7 and 14?days of liquid water absorption and shown as moisture content (MC) profiles in heartwood and sapwood. It was found that the amount of water absorbed could be expressed as a linear function of the square root of time. The slopes of the lines differed between sapwood and heartwood and also varied depending on the growth condition of the trees. The simulations according to the percolation method show generally good agreement with the measured results for sapwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号