首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory study was conducted on a smectitic clay soil (Vertic Ustochrept) to assess the release/precipitation of ions from cation balance as a result of irrigation with chloride, chloride-bicarbonate and chloride-sulphate water each containing 50 meq/l t.e.c. The study shows that irrigation waters having electrolyte concentration of 50 meq/l or more containing either chloride or chloride and bicarbonate ions should not be used for irrigating these soils irrespective of their SAR because they create sodicity. The waters containing both chloride and sulphate ions result in calcium precipitate buildup in soil. Although indiscriminate use of such waters may lead to concurrent buildup of salinity in the absence of adequate leaching.  相似文献   

2.
Soil or foliar application of nitrogen (N) can increase plant growth and salinity tolerance in cotton, but a combination of both methods is seldom studied under salinity stress. A pot experiment was conducted to study the effects of soil application (S), foliar application (F), and a combination of both (S+F) with labeled nitrogen (15N) on cotton growth, N uptake and translocation under salinity stress (ECe = 12.5 dS m?1). Plant biomass, leaf area, leaf chlorophyll (Chl) content, leaf net photosynthetic (Pn) rate, levels of 15N and [Na+] and K+/ Na+ ratio in plant tissues were determined at 3, 7, 14 and 28 days after N application (DAN). Results showed that soil or foliar nitrogen fertilization improved plant biomass, leaf area per plant and leaf photosynthesis, and a combination of soil- plus foliar-applied N was superior to either S or F alone under salinity stress. Although foliar application favored a rapid accumulation of leaf N and soil application a rapid accumulation of root N, S+F enhanced N accumulation in both leaf and root under salinity stress. The combined N application also maintained significantly greater [K+] and K+/Na+ than either soil or foliar application alone. Therefore, the improved plant growth and salinity tolerance under S+F relative to soil or foliar N application alone was attributed to the increased total uptake of N, balanced N concentrations in different tissues through enhanced uptake and accumulation in both leaves and roots, and higher ratio of K+/Na+.  相似文献   

3.
土壤盐渍化问题是干旱区可持续发展和改善环境质量的战略问题之一。分析土壤盐分特征,对治理土壤盐渍化和农业可持续发展至关重要。采用统计分析法与主成分分析法研究了喀什地区叶城县土壤盐分的变化规律。结果表明,土壤盐渍化类型以硫酸盐渍土为主;盐分组成中,阳离子以K+和Na+为主,阴离子以SO42-离子为主;表层的总盐、各盐分离子含量均高于其余土层 ,即土壤盐分剖面垂直分布呈现表聚性;8月份土壤剖面各土层含盐量均高于2月份;主成分分析结果表明,SO42-,K+,Na+为研究区土壤盐渍化状况的特征因子。不同土地利用类型条件下,耕层土壤盐分平均值从高到低依次为旱地、盐渍地、耕地、核桃林、大棚。  相似文献   

4.
5.
Microbial activity levels of two soil materials, excavated from a wetland and irrigated with municipal wastewater effluent or Missouri River water, were compared. The wastewater had twice the electrical conductivity and four times the sodium concentration as river water. We performed activity assays on the soils before leaching, immediately after leaching, and after harvesting plants. Gas chromatography was used to measure carbon dioxide (CO2) evolved in soil samples incubated for 7 d. Activity was significantly reduced in preleached wastewater–irrigated soils compared with river water–irrigated soils. Immediately after leaching, activity significantly increased and was similar to river water–irrigated soils. Activity decreased slightly after plant harvest in postleached treatments. Increased activity after leaching may be related to decreased salinity and sodicity, which probably lowered osmotic pressure in the soil. Our study demonstrated that soil salinity and sodicity induced by wastewater irrigation decreased microbial activity, which may impact nutrient cycling and glycophytic vegetation communities in wetlands.  相似文献   

6.
ABSTRACT

The effects of three sodium chloride (NaCl) levels (0, 1200, and 2400 mg kg? 1 soil) and three irrigation intervals (3, 7, and 14 d) on the growth and chemical composition of two Pistacia vera rootstocks (‘Sarakhs’ and ‘Qazvini’) were investigated under greenhouse conditions. Eight-week-old pistachio seedlings were gradually exposed to salt stress which afterward, water stress was initiated. At any irrigation interval, plant height and shoot and root dry weights of both rootstocks were reduced with increasing salinity. However, increasing irrigation intervals alleviated the adverse effects of soil salinity. A negative relationship observed between relative shoot growth and electrical conductivity of soil saturation extract (ECe) confirmed the above findings. Under 3-d irrigation interval, the ECe required to cause a 50% growth reduction was lower than those under 7- and/or 14-d irrigation intervals. Shoot and root chemical analyses indicated that the salinity as well as irrigation regime affected the concentration and distribution of sodium (Na+), potassium (K+), and chloride (Cl?) in pistachio. The concentration of Na+, K+ and C1? ions increased with a rise in NaCl level, and was generally declined with increasing irrigation interval. Based on plant height, shoot and root dry weights and the concentrations of Na+, K+, and C1? in the plant tissues, at lowest irrigation intervals ‘Sarakhs’ shows a higher sensitivity to soil salinity than ‘Qazvini’, but with increasing irrigation interval, ‘Sarakhs’ and ‘Qazvini’ can be classified as resistant and sensitive to salinity, respectively.  相似文献   

7.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

8.
A greenhouse experiment with two levels of Cd (0.5 and 10 mg Cd kg?1, in the form of CdCl2), and five salinity levels of irrigation water (0, 8.6, 17.1, 34.2 and 68.4 mM NaCl) in triplicate was conducted to determine the effect of NaCl-induced salinity on the solubility and availability of Cd in clay loam and sandy calcareous soils. Corn seeds (Zea mays L.) were sown in pots. Forty-five days after planting, the shoots were harvested, and their Cd concentration was determined. The post-harvest electrical conductivity (ECe), pH, and concentrations of cations and anions were determined in soil saturation paste extracts. Increasing irrigation water salinity resulted in significant increases in the total soluble Cd concentration in both studied soils. A positive correlation was found between the total soluble Cd and the chloride concentration in the soil solution.Solution speciation, calculated with MINEQL+ (a chemical equilibrium modeling system), predicted that Cd was present mainly as free Cd2+ ions followed by CdCl+ and $ {\text{CdSO}}^{0}_{4} $ in the soils irrigated with deionized water. However, Cd species in the soil solution were significantly altered by increasing chloride concentration, with Cd–chloro complexes becoming the dominant Cd species in the soil solution. Increasing the salinity level resulted in significant decreases in the shoot dry matter and increases in the shoot Cd concentration. Shoot Cd concentration was positively correlated with both the total Cd and Cd–chloro complexes in the soil solution.  相似文献   

9.
丛枝菌根真菌对棉花耐盐性的影响研究   总被引:17,自引:2,他引:17       下载免费PDF全文
盆栽灭菌试验研究丛枝(AM)真菌对棉花耐盐性的影响结果表明,自然盐渍化土壤和人工模拟盐渍条件下接种AM真菌处理的生物产量显著高于不接种处理,相同土壤下菌根真菌对棉花植株生长的促进作用随盐水平的提高而增大,表明AM真菌与植株建立的共生关系有利于棉花在盐渍土壤中生长。盐胁迫下棉花植株对P的需要量增加,接种AM真菌可提高植株含P量,促进植株生长,提高棉花的耐盐性。  相似文献   

10.
ABSTRACT

Environmental stress strongly affects the fundamental processes of plant biology. This study was to investigate the growth, yield, carbon (C) and nitrogen (N) assimilation and partitioning of two canola (Brassica napus L.) cultivars (Qinyou 10 and Ningza 1838) under low and high soil salt-ion concentration levels (LSSC and HSSC) of 2.512 and 4.722 g kg?1, respectively. There was no cultivar effect on agronomic traits other than the 1000-seed weight which was not affected by soil salinity. The increase of soil salt-ion concentration greatly reduced plant height, the numbers of primary branches, pods per plant or per hectare and the resultant seed yield. The C and N accumulations for whole plant and in different organs decreased significantly as soil salinity increased. The suppressive effects of high soil salinity were more strongly on C accumulation than N accumulation, and more obviously in shells and seeds than in roots, stems and leaves. As soil salinity increased, the C and N partitioning in vegetative organs of roots, stems, and leaves was enhanced greatly, while the C partitioning in shells and seeds and the N partitioning in seeds decreased significantly, suggesting an inhibition of C and N transporting from vegetative organs to reproductive organs. Our study revealed the high soil salinity profoundly suppressed canola growth and yield formation, by reducing C and N accumulations in all organs and alleviating C and N partitioning in reproductive organs.  相似文献   

11.
滴灌条件下盐渍土盐分淡化区形成过程中离子运移特征   总被引:1,自引:0,他引:1  
为了探究滴灌条件下盐渍土壤盐分淡化区形成过程中水盐及离子运动规律,通过土柱滴灌模拟试验分析了土壤水分、盐分及离子的分布特征及随时间的变化关系.结果表明:土壤总盐分及各个离子随着滴灌水的运移而运动,先进行横向运移,再进行纵向移动,当滴灌时间为15 h(滴水量16.2 L·桶-1)时,在0~30 cm区域内形成稳定的椭圆型...  相似文献   

12.
Turfgrass sites are increasingly irrigated with low-quality water sources, which may complicate nutritional programs by excessive addition of nutrients or problem ions by causing imbalances. Irrigation sources of most concern are nutrient-rich reclaimed water (i.e., reuse water) and those containing high concentrations of soluble salts. Factors contributing to difficulties in fertility programming are (a) increased temporal and geospatial (by soil depth and across the landscape) variability in soil nutrient/ion status; (b) addition of high levels of chemical constituents to the soil–plant system via the irrigation water, irrigation water treatments (i.e., acidification), and soil amendments such as gypsum; (c) salinity leaching programs that also leach soil nutrients; (d) changes in irrigation lake water quality, such as seasonal fluctuations due to rainfall dilution (i.e., dry and rainy seasons), intake locations across the lake surface, or lake depth; (e) attention to environmental and sustainability issues; and (f) on saline sites, achieving fertilization goals are more complex, requiring attention to maintaining root viability, maximizing grass salinity tolerance, and addressing unique nutritional requirements of new halophytic grasses. Addressing these issues requires proactive and frequent soil, water, and tissue testing; appropriate soil tests; and improved means to quantify spatial soil nutrient and salinity status via spatial mapping.  相似文献   

13.
新疆土壤盐碱化问题严重影响农田水盐运移和作物产量。为探究钠吸附比(Sodium Adsorption Ratio,SAR)和盐分浓度对当地典型砂壤土物理性质的影响,该研究测定了4个SAR水平(40,30,20,15,10,5(mmol/L)1/2)和8个盐分浓度水平(200,150,100,50,20,10,5,2mmol/L)下土壤团聚体快速湿润过程中的团聚体水稳性;并测定了4个SAR水平(40,30,20,5 (mmol/L)1/2)和3个盐分浓度水平(200,100,20 mmol/L)溶液处理后的土壤水分特征曲线(Soil Water Characteristic Curve,SWCC),量化了土壤脱水过程中土体压缩量与溶液SAR和盐分浓度的关系。结果表明:1)土壤团聚体水稳性与SAR和盐分浓度均呈显著负相关关系,SAR高于30 (mmol/L)1/2时,土壤团聚体水稳性才会显著下降;2)SAR对新疆典型砂壤土的SWCC有影响,且这种影响与盐分浓度有关;3)盐分浓度和SAR对土壤压缩量的影响存在交互作用。研究结果可为合理选用不同盐分组成和浓度微咸水灌溉以最大程度保护农田土壤结构...  相似文献   

14.
The aim of this study was to determine the effects of plant absence or presence on microbial properties and enzyme activities at different levels of salinity in a sandy clay soil. The treatments involved five salinity levels—0.5 (control), 2.5, 5, 7.5, and 10 dS m?1 which were prepared using a mixture of chloride salts—and three soil environments (unplanted soil, and soils planted with either wheat or clover) under greenhouse conditions. Each treatment was replicated three times. At the end of the experiment, soil microbial respiration, substrate-induced respiration (SIR), microbial biomass C (MBC), and enzyme activities were determined after plant harvest. Increasing salinity decreased soil microbial properties and enzyme activities, but increased the metabolic quotient (qCO2) in both unplanted and planted soils. Most microbial properties of planted soils were greater than those of unplanted soils at low to moderate salinity levels, depending upon plant species. There was a small or no difference in soil properties between the unplanted and planted treatments at the highest salinity level, indicating that the indirect effects of plant presence might be less important due to significant reduction of plant growth. The lowered microbial activity and biomass, and enzyme activities were due to the reduction of root activity and biomass in salinized soils. The lower values of qCO2 in planted than unplanted soils support the positive influence of plant root and its exudates on soil microbial activity and biomass in saline soils. Nonetheless, the role of plants in alleviating salinity influence on soil microbial activities decreases at high salinity levels and depends on plant type. In conclusion, cultivation and growing plant in abandoned saline environments with moderate salinity would improve soil microbial properties and functions by reducing salinity effect, in particular planting moderately tolerant crops. This helps to maintain or increase the fertility and quality of abandoned saline soils in arid regions.  相似文献   

15.
艾比湖湿地不同植物群落下土壤水盐空间变异性   总被引:1,自引:1,他引:1  
以艾比湖湿地为研究区,运用传统统计学和地统计学相结合的方法对4种典型植物群落下土壤水盐含量变化进行了研究。结果表明:(1)4种植物群落中,碱蓬群落、盐节木群落和梭梭群落土壤含盐量呈中等变异,而芦苇群落土壤水盐则呈现较强的差异性(2)随着土层深度的增加,盐节木群落和梭梭群落中土壤含水量差异性不大,碱蓬群落和芦苇群落则呈下降趋势,而对于土壤盐分,除梭梭群落外,其余3种植物群落各土层盐分呈降低趋势,且表层盐分含量相对较高(3)在空间结构性分析中,不同植物群落下土壤含水量和盐分在一定区域范围内空间特结构性显著,能较好地满足高斯模型分布,由于受气候、距湖距离、湖面积波动及土壤类型等因素作用,4种植物群落中土壤含水量和盐分均具有较强的空间自相关性(4)对土壤水盐含量变化的相关性分析中,4种植物群落下土壤水盐含量与其关联性都相对较小,其中碱蓬群落和芦苇群落呈正相关关系,盐节木群落和梭梭群落呈负相关关系。总体来说,碱蓬群落和芦苇群落土壤水盐总变异趋势大于梭梭群落和盐节木群落,说明距湖远近对土壤水盐空间变化有一定的影响。  相似文献   

16.
The effect of salinity and plant residue on soil phosphorus (P) availability was investigated. The organic carbon content of non-saline and salinized soil samples was enhanced by 1% with applying separately different amounts of residues. Fourteen residues including roots and shoots of wheat, barley, corn, alfalfa, and clover as well as leaves of apple, oak, plant-tree, and oleaster were used. Less available P was found in the non-saline soil compared to the saline soil. Plant residues appeared to have different impacts on availability of P. The salinity influence on soil P varied in different residues. The greatest increase (307%) in available P by salinity was found in the soil treated with alfalfa leaves. By increase in the total P in the plant materials up to 0.6% the positive effect of salinity on the available P decreased and then increased at higher concentrations of total P in the plant residues.  相似文献   

17.
Both drought and salinity cause nutrient disturbance, albeit for different reasons: a decrease in the diffusion rate of nutrients in the soil and the restricted transpiration rates in plants for drought and extreme soil sodium (Na)/calcium (Ca), Na/potassium (K), and chloride (Cl)/nitrate (NO3) ratios for salinity. The objective of this study was to examine short-term effects of drought and salinity on nutrient disturbance in wheat seedlings. Wheat was grown in a greenhouse in soil under drought and saline conditions for 26 days after sowing. At harvest, shoot biomass and length, and fresh weight and dry weight of the blade and sheath in expanded leaves 3 and 4 and expanding leaf 5 were determined. Mineral elements (K, Ca, magnesium (Mg), phosphorus (P), nitrogen (N), Na, sulphur (S), iron (Fe), zinc (Zn), and manganese (Mn)) in leaf blades and sheaths were also analyzed. At harvest, the reduction in plant height, shoot biomass, and accumulative evapotranspiration under drought was similar to that under salinity as compared with control plants. However, drought decreased the accumulation of all ions in the blade of the youngest leaf 5 compared with the control, whereas there was either an increase or no difference in all ion concentrations under saline conditions. The change in concentration for most ions in the blade and sheath of expanded leaves 3 and 4 varied among control, drought, and salinity plants, which indicated a different competition for nutrients between the sheath and blade of expanded leaves under drought and saline conditions. It can be concluded from this study that ion deficiency might occur in expanding leaves under drought but not saline conditions.  相似文献   

18.
滴灌条件下盐分对棉花养分及盐离子吸收的影响   总被引:6,自引:1,他引:5  
在温室条件下,通过盆栽试验研究了滴灌条件下不同土壤盐度对棉花养分、盐离子吸收的影响。结果表明,棉花干物质生产受土壤盐分影响显著,高盐度条件下棉花生育进程滞后,生殖生长与营养生长不协调,造成脱落率增加,经济产量下降。土壤盐度显著影响棉花对N、P和K养分的吸收和分配;N、P和K的积累总量以及在籽棉和铃壳中的吸收量随土壤盐度增加显著降低,而茎秆和叶片受影响较小。棉花植株体内的盐分离子(Ca2+、Na+与Cl-)含量随土壤盐度的增加显著增加;吸收的盐分离子主要积累在茎叶,尤其以叶片中的盐分离子含量为最高,而籽棉的盐分离子含量较少。  相似文献   

19.
Soil compaction affects plant growth by causing increased resistance to root penetration and a decreased uptake of water and ions. A pot experiment was conducted to study the effect of soil compaction in conjunction with the soil salinity and waterlogging on root growth and leaf ionic composition of two wheat genotypes (Aqaab and MH-97). Compaction was achieved at a 10% soil moisture content by dropping 5 kg weight, controlled by a tripod stand for 20 times from 0.6 m height on a wooden block placed inside the soil-filled pots. Soil bulk density of non-compact and compact treatments was measured as 1.21 and 1.65 Mg m−3, respectively. The desired salinity level (15 dS m−1) was developed by mixing required amount of NaCl in the soil before filling the pots. Waterlogging was developed by flooding the pots for 21 days both at tillering and booting stages. Compaction significantly reduced the root length density (RLD) of both the wheat genotypes while the combined effect of compaction×salinity was more drastic on root length density than compaction alone. Waterlogging however, did not decrease the root length density, rather it mitigated the effect of compaction. Compaction decreased the concentration of K+ and K+:Na+ ratio in leaves. Salinity also decreased the concentration of K+ and K+:Na+ ratio, but increased the concentrations of Na+ and Cl in the crop leaves. Salinity and compaction interacted to cause a greater reduction in K+ concentration and the K+:Na+ ratio, while there was lesser increase in the concentrations of Na+ and Cl compared with salinity alone. Waterlogging also decreased the concentration of K+ and K+:Na+ ratio in leaves. It intensified the effect of salinity but decreased the effect of compaction on leaf ionic composition. Therefore, the effect of compaction on root growth and ion uptake is more severe under salt-affected soil conditions than under normal soil conditions while occasional waterlogging of a compact soil for a few days makes the soil conditions favorable for root growth both under non-saline as well as saline soil conditions. Also, the performance of a genotype in stressed environment is related to maintenance of higher root length density, leaf K+ concentration and K+:Na+ ratio and lower leaf Na+ and Cl concentrations.  相似文献   

20.
掌握不同地表覆被类型和微地貌特征下的不同深度土壤盐分空间分布规律,对土壤盐渍化防治具有重要意义。该研究以黄河三角洲入海口为研究区,在分析不同深度土壤全盐量、盐基离子(Ca2+、Mg2+、Na+、SO42-、HCO3-、Cl-)空间变异特征的基础上,通过单因素方差分析不同地表覆被类型和微地貌特征下该区土壤盐分的差异,并通过地理探测器分析地表覆被类型、微地貌对土壤盐分的交互影响。结果表明:1)表层土壤Mg2+变异系数达到1.010 8,为强变异性,其余盐基离子均为中等变异性,且均有强烈的空间相关性,全盐量与盐基离子均呈现沿海向内陆降低的趋势,约有42.57%的地区为轻度盐化土;2)不同地表覆被类型间土壤全盐量与Na+、Cl-具有显著差异;3)不同微地貌类型间Na+、Cl-具有显著差异;不同海拔的深层土壤Na+具有显著差异;4)海拔对土壤全盐量与Na+的解释力最强,地表覆被类型对土壤Cl-的解释力最强;5)坡向和海拔对土壤盐分的交互作用最强烈,q值在0.545~0.708之间,其次是地表覆被类型与坡向,q值在0.521~0.613之间。氯化钠主导该区域土壤盐分空间变异,不同地表覆被类型和微地貌特征下均呈显著差异,表层土壤盐分明显高于深层,坡向与海拔之间的交互作用能够较好地解释该地区土壤盐分空间分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号