首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The volatile and soil loss profiles of six agricultural pesticides were measured for 20 days following treatment to freshly tilled soil at the Beltsville Agricultural Research Center. The volatile fluxes were determined using the Theoretical Profile Shape (TPS) method. Polyurethane foam plugs were used to collect the gas-phase levels of the pesticides at the TPS-defined critical height above a treated field. Surface-soil (0-8 cm) samples were collected on each day of air sampling. The order of the volatile flux losses was trifluralin > alpha-endosulfan > chlorpyrifos > metolachlor > atrazine > beta-endosulfan. The magnitude of the losses ranged from 14.1% of nominal applied amounts of trifluralin to 2.5% of beta-endosulfan. The daily loss profiles were typical of those observed by others for volatile flux of pesticides from moist soil. Even though heavy rains occurred from the first to third day after treatment, the majority of the losses took place within 4 days of treatment, that is, 59% of the total applied atrazine and metolachlor and >78% of the other pesticides. Soil losses generally followed pseudo-first-order kinetics; however, leaching due to heavy rainfall caused significant errors in these results. The portion of soil losses that were accounted for by the volatile fluxes was ordered as follows: alpha-endosulfan, 34.5%; trifluralin, 26.5%; chlorpyrifos, 23.3%; beta-endosulfan, 14.5%; metolachlor, 12.4%; and atrazine, 7.5%.  相似文献   

2.
The role of algae in the persistence, transformation, and bioremediation of two endocrine disrupting chemicals, alpha-endosulfan (a cyclodiene insecticide) and its oxidation product endosulfan sulfate, in soil (incubated under light or in darkness) and a liquid medium was examined. Incubation of soil under light dramatically decreased the persistence of alpha-endosulfan and enhanced its transformation to endosulfan sulfate, over that of dark-incubated soil samples, under both nonflooded and flooded conditions. This enhanced degradation of soil-applied alpha-endosulfan was associated with profuse growth of indigenous phototrophic organisms such as algae in soil incubated under light. Inoculation of soil with green algae, Chlorococcum sp. or Scenedesmus sp., further enhanced the degradation of alpha-endosulfan. The role of algae in alpha-endosulfan degradation was convincingly demonstrated when these algae degraded alpha-endosulfan to endosulfan sulfate, the major metabolite, and endosulfan ether, a minor metabolite, in a defined liquid medium. When a high density of the algal inoculum was used, both metabolites appeared to undergo further degradation as evident from their accumulation only in small amounts and the appearance of an endosulfan-derived aldehyde. Interestingly, beta-endosulfan was detected during degradation of alpha-endosulfan by high density algal cultures. These algae were also capable of degrading endosulfan sulfate but to a lesser extent than alpha-endosulfan. Evidence suggested that both alpha-endosulfan and endosulfan sulfate were immediately sorbed by the algae from the medium, which then effected their degradation. Biosorption, coupled with their biotransformation ability, especially at a high inoculum density, makes algae effective candidates for remediation of alpha-endosulfan-polluted environments.  相似文献   

3.
Endosulfan, classified as an organochlorine pesticide, is rated by the U.S. EPA as a Category 1 pesticide with extremely high acute toxicity. This study describes the biodegradation kinetics of endosulfan and the metabolic pathway utilized by Fusarium ventricosum and a Pandoraea sp. Complete disappearance of both alpha- and beta-endosulfan was observed during 12 days of incubation with F. ventricosum in flasks containing 100 mg L(-)(1) of endosulfan. The rate constants (k) for biodegradation of alpha- and beta-endosulfan by F. ventricosum using zero-order kinetics were 14.22 and 6.60 mg L(-)(1) day(-)(1), respectively. The Pandoraea sp. degraded about 95 and 100% of alpha- and beta-endosulfan, respectively, in 18 days of incubation in flasks spiked with 100 mg L(-)(1) of endosulfan. The rate constants (k) for biodegradation of alpha- and beta-endosulfan by the Pandoraea sp. were 8.19 and 3.78 mg L(-)(1) day(-)(1), respectively. Both fungal and bacterial strains formed less toxic endosulfan diol and endosulfan ether as metabolites during metabolism of endosulfan. The results of this study suggest that these novel strains may be used for the bioremediation of endosulfan-contaminated sites.  相似文献   

4.
Rapid visco analysis (RVA) and differential scannning calorimetry (DSC) provided overall assessments of the effects of variable temperature soaking at 30, 50, 70, and 90°C and steaming at 4, 8, and 12 min. Calculation of the relative parboiling index (RPI) and percent gelatinization provided good metrics for determining the overall effects of partial parboiling. FT‐Raman and solid‐state 13C CP‐MAS NMR spectroscopies provided insight to conformational changes in protein and starch of paddy rice under various parboiling conditions. RVA showed lower pasting curves and DSC showed lower ΔH with increased temperature and steaming times. A large decrease in viscosity occurred with only the 30‐4 treatment as opposed to raw rice. This observation was consistent with FT‐Raman results that indicated substantial conversion of the protein from α‐helix to other conformations. DSC indicated incomplete gelatinization of starch, even with 90°C soaking and 12 min of steaming. Solid‐state 13C CP‐MAS NMR spectroscopy confirmed this result. However, it indicated the percent of Vh/amorphous plus the remaining crystalline starch in the 90‐12 treatment was equal to the amorphous and partially‐ordered starch in commercially parboiled rice. These results suggest that partial parboiling, 90°C soaking, and more than 8 min of steaming (ideally ≈12 min) of paddy rice is sufficient to induce changes that inactivate enzymes and provide enough starch gelatinization to prevent kernel breakage.  相似文献   

5.
This study assesses the role of the blue-green algal species present in the soil in the dissipation of endosulfan and its metabolites in the soil environment. Two Anabaena species, Anabaena sp. PCC 7120 and Anabaena flos-aquae, were used in this study. Anabaena sp. PCC 7120 produced three principal biotransformation compounds, chiefly endosulfan diol (endodiol), and minor amounts of endosulfan hydroxyether and endosulfan lactone. Trace amounts of endosulfan sulfate were detected. In comparison, the biotransformation of endosulfan by Anabaena flos-aquae yielded mainly endodiol with minor amounts of endosulfan sulfate. An unknown compound was produced up to 70% from endosulfan spiked in the medium inoculated by A. flos-aquae after 8 days of incubation. Therefore, the endosulfan fate was dependent on the species. Within 1 day of incubation, two Anabaena species produced low amounts of beta-endosulfan after application of alpha-endosulfan. These results suggest the presence of isomerase in the Anabaena species. Further studies using a fermentor to control the medium pH at 7.2 to minimize chemical hydrolysis of endosulfan revealed a major production of endodiol with minor amounts of endosulfan sulfate and the unknown compound. These results showed that the production of the unknown compound might be dependent on the alkaline pH in the medium and that the production of endodiol by A. flos-aquae might be biologically controlled. This study showed that two algal species could contribute in the detoxification pathways of endosulfan in the soil environment.  相似文献   

6.
The retrogradation of 5, 10, 15, and 25% corn starch gels was measured using differential scanning calorimetry (DSC), rheology, and an array of NMR spectroscopy techniques. During the initial (<24 h) stage of retrogradation, an increase in G' corresponding to an increase in the number of solid protons participating in cross-relaxation (M(B)(0) was observed for all four concentrations studied. During the latter (>24 h) stage of retrogradation, amylopectin recrystallization becomes the dominant process as measured by an increase in deltaH(r) for the 25% starch gel, which corresponded to a further increase in. A decrease in the molecular mobility of the liquid component was observed by decreases in (17)O T(2), (1)H D(0), and T(2A). The value for T(2B) (the solid transverse relaxation time) did not change with concentration or time indicating that the mobility of the solid component does not change over time despite the conversion of the highly mobile starch fraction to the less mobile solid state during retrogradation.  相似文献   

7.
The dissipation and persistence of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin 3-oxide) applied to field-grown tomato (Lycopersicon esculentum) were studied at a vegetable-growing location in Ghana. Plant tissue samples and cropped soil collected at 2 h-14 days and 8 h-112 days, respectively, after application, were analyzed by gas chromatography-electron capture detection (63Ni) to determine the content and dissipation rate of endosulfan isomers (alpha- and beta-endosulfan) and the major metabolite, endosulfan sulfate. After two foliar applications of commercial endosulfan at 500 g of active ingredient/hectare, the first-order reaction kinetic was confirmed to describe the dissipation of endosulfan residues in tomato foliage and cropped soil. However, functions that best fit the experimental data were the biphasic process for foliage and the monophasic process for cropped soil. Calculated DT 50 and DT 90 values for endosulfan residues in cropped soil were not significantly (p<0.05) different for each of the two isomers.  相似文献   

8.
This study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and (1)H NMR studies. Moreover, (1)H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin/CD physical mixtures. The amount of vanillin released with increasing temperature was lowest for vanillin/γ-CD IC and highest for vanillin/α-CD IC, suggesting that the strength of interaction between vanillin and the CD cavity was in the order γ-CD > β-CD > α-CD for solid vanillin/CD ICs.  相似文献   

9.
Physicochemical properties of mixtures of native potato and native amaranth (Amaranthus cruentus), heat‐moisture treated (HMT) potato and heat‐moisture treated amaranth, cross‐linked potato and cross‐linked amaranth, native potato and heat‐moisture treated amaranth, and heat‐moisture treated potato, and native amaranth were tested at different ratios. Two peaks were noticed in the pasting curves when large differences of swelling factor and amylose leaching existed between individual components in the mixture. It seems that amylose leaching from one starch in a mixture may affect the swelling and much of the granular break down of the other. The mixtures showed stabilities in hot pastes that were higher than the less stable components in a mixture. Some mixtures such as HMT potato and native amaranth showed very specific nonadditive pasting behavior. Mixing 10% of native amaranth to HMT potato starch caused a large reduction of peak viscosity and cold paste viscosity, resulting in a very soft gel. In the differential scanning calorimeter, each component of a mixture gelatinized independently, showing two peaks corresponding to the individual components. When transition temperatures of both components were similar in DSC, the result was a single endotherm. Dramatic changes of pasting and subsequent gel properties resulted when thermal transition of the two components occurred in the same temperature range. Retrogradation enthalpies as measured by DSC were between the two individual components in all tested mixtures.  相似文献   

10.
The processing factors (pesticide concentration found in olive oil/pesticide concentration found in olives) of azinphos methyl, chlorpyrifos, lambda-cyhalothrin, deltamethrin, diazinon, dimethoate, endosulfan, and fenthion were determined in olive oil production process in various laboratory-scale olive oil extractions based on three- or two-phase centrifugation systems in comparison with samples collected during olive oil extractions in conventional olive mills located at different olive oil production areas in Greece. Pesticide analyses were performed using a multiresidue method developed in our laboratory for the determination of different insecticides and herbicides in olive oil by solid-phase extraction techniques coupled to gas chromatography detection (electron capture detection and nitrogen phosphorus detection), optimized, and validated for olive fruits sample preparation. Processing factors were found to vary among the different pesticides studied. Water addition in the oil extraction procedure (as in a three-phase centrifugation system) was found to decrease the processing factors of dimethoate, alpha-endosulfan, diazinon, and chlorpyrifos, whereas those of fenthion, azinphos methyl, beta-endosulfan, lambda-cyhalothrin, and deltamethrin residues were not affected. The water content of olives processed was found to proportionally affect pesticide processing factors. Fenthion sulfoxide and endosulfan sulfate were the major metabolites of fenthion and endosulfan, respectively, that were detected in laboratory-produced olive oils, but only the concentration of fenthion sulfoxide was found to increase with the increase of water addition in the olive oil extraction process.  相似文献   

11.
Stir bar sorptive extraction (SBSE) in combination with GC-ECD/FPD analysis is here applied to the determination of the residues of 11 pesticides (hexachlorobenzene, lindane, chlorothalonil, parathion methyl, parathion ethyl, fenitrothion, malathion, dieldrin, alpha- and beta-endosulfan, and tetradifon) in herbal teas prepared with Passiflora alata Dryander spiked leaves. The method was optimized using spiked herbal teas in a range from 0.05 to 1 pg/microL for organochlorine pesticides and from 0.15 to 3 pg/microL for organophosphorus pesticides. The method is reproducible and repeatable with recoveries calculated from herbal teas prepared with spiked plant material versus spiked herbal teas, varying from about 30% for tetradifon to about 90% for parathion methyl and malathion. The limits of quantitation (LOQs) ranged from 0.017 pg/microL for lindane to 0.117 pg/microL for malathion.  相似文献   

12.
Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.  相似文献   

13.
The thermal stability of phosphatidylcholine (PC) liposomes (colloidal dispersions of bilayer-forming polar lipids in aqueous solvents) in the presence and absence of the antimicrobial polypeptide nisin was evaluated using differential scanning calorimetry (DSC) and low-intensity ultrasonic spectroscopy (US). PC liposome mixtures with varying acyl chain lengths (C16:0 and C18:0) were formed in buffer with or without entrapped nisin. Gel-to-liquid crystalline phase transition temperatures (T(M)) of liposomes determined from DSC thermograms were in excellent agreement with those determined by ultrasonic velocity and attenuation coefficient measurements recorded at 5 MHz. The dipalmitoylphosphatidylcholine (DPPC) T(M) measured by DSC was approximately 41.3 and approximately 40.7 degrees C when measured by ultrasonic spectroscopy. The T(M) of distearoylphosphatidylcholine (DSPC) and DPPC/DSPC 1:1 liposomes was 54.3 and 54.9 degrees C and approximately 44.8 and approximately 47.3 degrees C when measured by DSC and US, respectively. The thermotropic stability generally increased upon addition of nisin. Analysis of the stepwise decrease in ultrasonic velocity with temperature indicated an increased compressibility corresponding to a loss of structure upon heating.  相似文献   

14.
Olive leaf extract, rich in oleuropein, formed an inclusion complex with beta-cyclodextrin (beta-CD) upon mixing of the components in aqueous media and subsequent freeze-drying. Inclusion complex formation was confirmed by differential scanning calorimetry (DSC). DSC thermograms indicated that the endothermic peaks of both the olive leaf extract and the physical mixture of olive leaf extract with beta-CD, attributed to the melting of crystals of the extract, were absent in DSC thermogram of inclusion complex. Moreover, DSC studies under oxidative conditions indicated that the complex of olive leaf extract with beta-CD was protected against oxidation, since it remained intact at temperatures where the free olive leaf extract was oxidized. Phase solubility studies afforded A L type diagrams, 1:1 complex stoichiometry, a moderate binding constant ( approximately 300 M (-1)), and an increase of the aqueous solubility by approximately 50%. The formation of the inclusion complex was also confirmed by nuclear magnetic resonance (NMR) studies of beta-CD solutions in the presence of both pure oleuropein and olive leaf extract. The NMR data have established the formation of a 1:1 complex with beta-CD that involves deep insertion of the dihydroxyphenethyl moiety inside the cavity from its secondary side.  相似文献   

15.
A novel Fourier transform infrared (FT-IR) microspectrophotometer equipped with differential scanning calorimetry (DSC) was used to investigate the kinetics of intramolecular cyclization of aspartame (APM) sweetener in the solid state under isothermal conditions. The thermal-dependent changes in the peak intensity of IR spectra at 1543, 1283, and 1259 cm(-1) were examined to explore the reaction. The results support that the intramolecular cyclization process in APM proceeded in three steps: the methoxyl group of ester was first thermolyzed to release methanol, then an acyl cation was attacked by the lone pair of electrons available on nitrogen by an S(N)1 pathway, and finally ring-closure occurred. The intramolecular cyclization of APM determined by this microscopic FT-IR/DSC system was found to follow zero-order kinetics after a brief induction period. The bond cleavage energy (259.38 kJ/mol) of thermolysis for the leaving group of -OCH(3), the bond conversion energy (328.88 kJ/mol) for the amide II NH band to DKP NH band, and the CN bond formation energy (326.93 kJ/mol) of cyclization for the DKP in the APM molecule were also calculated from the Arrhenius equation. The total activation energy of the DKP formation via intramolecular cyclization was 261.33 kJ/mol, calculated by the above summation of the bond energy of cleavage, conversion, and formation, which was near to the value determined by the DSC or TGA method. This indicates that the microscopic FT-IR/DSC system is useful as a potential tool not only to investigate the degradation mechanism of drugs in the solid state but also to directly predict the bond energy of the reaction.  相似文献   

16.
Hydrocolloid interaction with water, protein, and starch in wheat dough   总被引:1,自引:0,他引:1  
Interaction of hydrocolloids (xanthan gum, locust bean gum, guar gum, and high-methoxyl pectin) with macrocomponents of dough (water, starch, and protein) was evaluated by different techniques. (1)H spin-spin NMR relaxation assays were applied to study the mobility of the gluten-hydrocolloid-water matrix, and the amount of freezable water was determined by differential scanning calorimetry (DSC). Starch gelatinization parameters (T, enthalpy) were also analyzed by DSC. The influence of additives on the protein matrix was studied by Fourier transform (FT) Raman assays; analysis of the extracted gliadins and glutenins was performed by electrophoresis (SDS-PAGE). A significantly higher molecular mobility was found in matrices containing xanthan gum, whereas pectin led to the lowest molecular mobility. Freezable water showed a trend of increasing in the presence of hydrocolloids, particularly under conditions of water restriction. Starch gelatinization final temperature was decreased when hydrocolloids were added in the presence of enough water. In general, FT-Raman and SDS-PAGE indicated that hydrocolloid addition promoted a more disordered and labile network, particularly in the case of pectin addition. On the other hand, results obtained for dough with guar gum would indicate a good compatibility between this hydrocolloid and the gluten network.  相似文献   

17.
The 5alpha-hydroperoxides of beta-sitosterol, campesterol, stigmasterol, and brassicasterol were obtained by photooxidation of the respective sterols in pyridine in the presence of hematoporphyrine as sensitizer. The reduction of the hydroperoxides gives the corresponding 5alpha-hydroxy derivatives. The 7alpha- and 7beta-hydroperoxides of the sterols were obtained by allowing an aliquot of the 5alpha-hydroperoxides to isomerize to 7alpha-hydroperoxides, which in turn epimerize to 7beta-hydroperoxides. The reduction gave the corresponding 7alpha- and 7beta-hydroxy derivatives. The 5alpha-, 7alpha-, and 7beta-hydroxy derivatives of beta-sitosterol, campesterol, stigmasterol, and brassicasterol were identified by comparing thin-layer chromatography mobilities, specific color reactions, and mass spectral data with those of the corresponding hydroxy derivatives of cholesterol, which were synthesized in the same manner. The phytosterols had the same behavior to photooxidation as cholesterol and, moreover, the different phytosterols photooxidized at about the same rate. The mass spectra of the trimethylsilyl ethers of the hydroxy derivatives of the phytosterols investigated and of the corresponding hydroxy derivatives of cholesterol have the same fragmentation patterns and similar relative ion abundances.  相似文献   

18.
DFT calculations are a powerful tool to support NMR studies of xenobiotics such as decomposition studies in soil. They can help interpret spectra of bound residues, for example, by predicting shifts for possible model bonds. The described bound‐residue models supported the hypothesis of a free amino side chain already suspected by comparison with the experimental data of the standards. No match was found between the calculated shifts of amide bondings of the amino side chains (free or substituted) and the experimental NMR shifts of a previous study. In the present paper, first‐principles quantum chemical calculations were used to support and check the interpretation of the 15N cross polarization‐magic angle spinning nuclear magnetic resonance (15N‐CPMAS NMR) spectra of simazine and its metabolites. Density functional theory (DFT) calculations were performed using Gaussian 03 and the nuclear magnetic shielding tensors were calculated using the Gauge‐Independent Atomic Orbital (GIAO) method and B3LYP/6–311+G(2d,p) model chemistry. Good agreement was reached between the calculated and measured chemical shifts of the core nitrogens and the lactam and lactim forms of the hydroxylated metabolites could be clearly distinguished. The calculated spectra showed that these metabolites exist preferentially in the lactam form, an important fact when considering the possible interactions of such hydroxylated metabolites with the soil matrix. Although the calculated bound‐residue models in the present study only partly matched the experimental data, they were nevertheless useful in helping to interpret the experimental NMR results of a previous study. To get a better match between the calculated and the measured shifts of the side‐chain nitrogens the calculations need to be further developed, taking into account the influence of neighbouring molecules in the solid state. Altogether, quantum chemical calculations are very helpful in the interpretation of NMR spectra. In the future, they can also be very useful for the prediction of NMR shifts, in particular when it is not possible to measure the metabolites due to a lack of material or in cases where practical experiments cannot be conducted.  相似文献   

19.
Diffusion-based NMR techniques were employed to study effects of pH on beta-lactoglobulin (BLG) conformation and binding affinity to alpha- and beta-ionone. In the first part of the study, the influence of pH on the diffusion coefficient of BLG in D(2)O solution was investigated using a stimulated-echo NMR experiment. The diffusion coefficient of BLG decreased with increasing pH values. A significant decrease in the diffusion coefficient observed at pH 11 may be due to total unfolding (denaturation) of the protein, resulting in hydrophobically driven self-aggregation. A diffusion-based NOE pumping technique was then applied to determine the relative binding affinities between alpha- and beta-ionones and BLG at pH values varying from 3 to 11. An increase in signal intensities for beta-ionone with increasing molar concentration ratios between beta-ionone and BLG was observed at all pH ranges studied. The increased signal intensities reflect increased relative binding affinity. The greatest binding affinity occurred at pH 9 and the lowest at pH 11. alpha-Ionone showed binding evidence only at pH 9, and the binding was significantly weaker than that obtained for beta-ionone at the same pH. The high affinity observed for both aroma compounds at pH 9 may be due to a flexible conformation of BLG at this pH so that the flavor ligand accessibility increases. Conversely, alkaline denaturation occurring at pH 11 gives rise to relatively lower binding affinity compared to that observed at the other pH values.  相似文献   

20.
It has long been recognized that limitations exist in the analytical methodology for amylose determination. This study was conducted to evaluate various amylose determination methods. Purified amylose and amylopectin fractions were obtained from corn, rice, wheat, and potato and then mixed in proportion to make 10, 20, 30, 50, and 80% amylose content starch samples for each source. These samples, considered amylose standards, were analyzed using differential scanning calorimetry (DSC), high-performance size-exclusion chromatography (HPSEC), and iodine binding procedures to generate standard curves for each of the methods. A single DSC standard equation for cereal starches was developed. The standard curve of potato starch was significantly different. Amylose standard curves prepared using the iodine binding method were also similar for the cereal starches, but different for potato starch. An iodine binding procedure using wavelengths at 620 nm and 510 nm increased the precision of the method. When HPSEC was used to determine % amylose, calculations based on dividing the injected starch mass by amylose peak mass, rather than calculations based on the apparent amylose/amylopectin ratio, decreased the inaccuracies associated with sample dispersion and made the generation of a cereal amylose standard curve possible. Amylose contents of pure starch, starch mixtures from different sources with different amylose ranges, and tortillas were measured using DSC, HPSEC, iodine binding, and the Megazyme amylose/amylopectin kit. All the methods were reproducible (±3.0%). Amylose contents measured by these methods were significantly different (P < 0.05). Amylose measurements using iodine binding, DSC, and Megazyme procedures were highly correlated (correlation coefficient >0.95). DSC and traditional iodine binding procedures likely overestimated true amylose contents as residual butanol in the amylose standards caused interference. The modified two-wavelength iodine binding procedure seemed to be the most precise and generally applicable method. Each amylose determination method has its benefits and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号