首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Afforestation of degraded croplands by planting N2-fixing trees in arid regions is highly recognized. However, fixation of atmospheric nitrogen gas (N2) by woody perennials is often limited on phosphorus (P) poor soils, while any factor limiting N nutrition inhibits tree growth. In a two-factorial field experiment, the effect of three P amendments was examined during 2006–2008 on N2 fixation, biomass production, and foliage feed quality of actinorhizal Elaeagnus angustifolia L. and leguminous Robinia pseudoacacia L. With the 15N natural abundance method, N2 fixation was quantified based on foliar and whole-tree sampling against three non-N2-fixing reference species: Gleditsia triacanthos L., Populus euphratica Oliv., and Ulmus pumila L. The P applications, in March 2006 and April 2007 only, included (i) high-P (90 kg P ha?1), (ii) low-P (45 kg P ha?1), and (iii) 0-P. After 3 years, the average proportion of N derived from atmosphere (Ndfa, %) increased from 78 % with 0-P to 87 % with high P when confounded over both N2-fixing species. With the used density of 5,714 trees ha?1, the total amount of N2 fixed (Ndfa, kg N ha?1) with high-P increased from 64 kg N ha?1 (year 1) to 807 kg N ha?1 (year 3) in E. angustifolia and from 9 kg N ha?1 (year 1) to 155 kg N ha?1 (year 3) in R. pseudoacacia. Total above-ground biomass increases were too variable to be significant. Leaf N content and therewith also leaf crude protein content, which is an indicator for feed quality, increased significantly (24 %) with high-P when compared to 0-P for E. angustifolia. Overall findings indicated the suitability of the two N2-fixing species for afforestating salt-affected croplands, low in soil P. With P-applications as low as 90 kg P ha?1, the production potential of E. angustifolia and R. pseudoacacia, including the supply of protein-rich feed, could be increased on salt-affected croplands.  相似文献   

2.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

3.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

4.
Some land-use systems in Saskatchewan, Canada include the nitrogen-fixing trees buffaloberry (Shepherdia argentea Nutt.), caragana (Caragana arborescens Lam.) and sea buckthorn (Hippophae rhamnoides L.). These species provide various ecological functions such as ameliorating soil moisture, light and temperature but little work has been done quantifying biological nitrogen fixation by these species. Greenhouse experiments were conducted to quantify N2-fixation using the 15N natural abundance and the 15N dilution methods. Buffaloberry failed to form nodules in all but one of the four replicates in the natural abundance experiment. Using the 15N dilution method, the percentage of N derived from atmosphere (%Ndfa) in the shoot of buffaloberry averaged 64 %. For caragana, the mean  %Ndfa was 59 and 65 % and seabuckthorn was 70 and 73 % measured using the natural abundance and dilution methods, respectively. Because of large variability in biomass production between plants grown in the natural abundance experiment and the dilution experiment, the amounts of N2 fixed also were very variable. Buffaloberry fixed an average of 0.89 g N m?2; the average for caragana ranged from 1.14 to 4.12 g N m?2 and seabuckthorn ranged from 0.85 to 3.77 g N m?2 in the natural abundance and dilution experiments, respectively. This corresponds to 16 kg N ha?1 year?1 for buffaloberry; an average of 15–73 kg N ha?1 year?1 in caragana and 11–67 kg N ha?1 year?1 in seabuckthorn. The substantial amounts of N2 fixed by these species indicate that they have the potential to contribute to the overall N balance in land-use systems in which they are included.  相似文献   

5.
Intensification of coffee (Coffea arabica) production is associated with increases in inorganic fertilizer application and decreases in species diversity. Both the use of organic fertilizers and the incorporation of trees on farms can, in theory, reduce nutrient loss in comparison with intensified practices. To test this, we measured nutrient concentrations in leachate at 15 and 100 cm depths on working farms. We examined (1) organically managed coffee agroforests (38 kg N ha?1 year?1; n = 4), (2) conventionally managed coffee agroforests (96 kg N ha?1 year?1; n = 4), and (3) one conventionally managed monoculture coffee farm in Costa Rica (300 kg N ha?1 year?1). Concentrations of nitrate (NO3 ?-N) and phosphate (PO4 3?-P) were higher in the monoculture compared to agroforests at both depths. Nitrate concentrations were higher in conventional than organic agroforests at 15 cm only. Soil solutions collected under nitrogen (N)-fixing Erythrina poeppigiana had elevated NO3 ?-N concentrations at 15 cm compared to Musa acuminata (banana) or Coffea. Total soil N and carbon (C) were also higher under Erythrina. This research shows that both fertilizer type and species affect concentrations of N and P in leachate in coffee agroecosystems.  相似文献   

6.
A 5-year field trial was conducted on a laterite soil to evaluate the effects of organic and inorganic fertigations in arecanut sole and arecanut–cocoa land use systems at Vittal, India. Arecanut registered similar yield levels in sole and arecanut–cocoa cropping situations (3,022–3,117 kg ha?1). Fertigation of 75 % NPK, vermicompost extract (VCE) 20 % N and VCE (10 and 20 % N)+25 % NPK registered the same yield levels (3,029–3,375 kg ha?1). Dry bean yield of cocoa was at par with fertigation of 75 % NPK and 20 % N VCE + 25 % NPK (291–335 kg ha?1). Fertigation @ 75 % NPK increased the yield of cocoa by 52 % over VCE alone. The productivity per unit area (kg ha?1) was significant and higher by 12 % in arecanut–cocoa system (3,450) than arecanut sole (3,090). Productivity was similar to fertigation of 75 % NPK, 20 % N VCE and VCE (10 or 20 % N) + 25 % NPK (3,316–3,665 kg ha?1). Leaf nutrient status of arecanut and cocoa indicated lower levels of N and K and above normal levels of Ca, Mg and micronutrients. The results indicate that drip fertigation increases the productivity, but precision application of N and K is required for sustaining the yields.  相似文献   

7.
In tropical areas of Mexico, Leucaena leucocephala is widely used in silvopastoral systems. However, little information exists on other native woody species of high forage potential, such as Guazuma ulmifolia. The aim of this study was to evaluate the components of biomass, forage yield and quality, and availability of N in fodder banks of L. leucocephala, G. ulmifolia, and a mixture of both species during dry and rainy seasons, under sub-humid tropical conditions. The experimental unit was a 5 × 10 m plot, containing three rows with 2 m between rows; each row had 20 plant positions with 0.50 m between plants. Within each plant position there was either a single plant, in the case of pure-crop, or two plants, in the case of mixed of both species. A complete randomized block design with three repetitions was used. In both seasons, there were a significantly greater proportion of leaves in the G. ulmifolia fodder banks (71 %) and in mixed fodder banks (69 %) than in L. leucocephala fodder banks (64 %). Consequently, these systems had leaf-to-stem ratios of 2.4, 2.2 and 1.9, respectively. The forage yield of fodder banks was not influenced by season. The mixed fodder bank had greater forage yield (5.1 t DM ha?1) than the L. leucocephala fodder bank (3.4 t DM ha?1) in each season. Additionally, the mixed fodder bank accumulated more forage yield during the experimental period (10.2 t DM ha?1 year?1) than G. ulmifolia (9.0 t DM ha?1 year?1) or L. leucocephala (6.9 t DM ha?1 year?1). The concentrations of CP, C and C:N were not influenced by season. Forage NDF and ADF concentrations were greater in the rainy season (476 g kg?1 DM) compared with the dry season (325 g kg?1 DM). Mixed fodder banks had the greatest N yield (185.9 kg ha?1) and consequently the greatest availability of N (371.8 kg N ha?1 year?1). We conclude that mixed fodder banks of L. leucocephala and G. ulmifolia are a better option for improving productivity and forage quality in comparison with pure fodder banks in Yucatan, Mexico.  相似文献   

8.
We derived a formula for estimating the relationship between stem carbon weight and stem volume, which was calculated from DBH and tree height using a combination of stem analysis and soft X-ray densitometry. The results indicate carbon weight in a 33-year-old coastal Japanese black pine (Pinus thunbergii) forest is approximately 68,186 kg ha?1 in Yamagata Prefecture and 38,253 kg ha?1in a 42-year-old black pine forest in Hokkaido Prefecture, Japan. Also, age-related changes in the stem density following oven-drying of samples of black pine trees are small: the oven-dried density (hereafter “density”) of black pine trees in the two locations mentioned above were 425.6 (kg m?3) and 523.2 (kg m?3) respectively, which is comparable to the density (converted from basic density) of black pine of Land Use, Land-Use Change and Forestry (LULUCF) (533 kg m?3). When compared with the carbon weight by the oven-dried density of LULUCF, the carbon weights calculated from each density were 27 % lower in Yamagata and 6 % lower in Hokkaido. This difference directly affects carbon weight for large-scale estimation and thus can create an error at a regional scale. This methodology can contribute to the management of forests acting as carbon sinks.  相似文献   

9.
Where there is limited availability of conventional fertilizers, the use of organic materials is considered a viable alternative to increase the productive capacity of soils. Many potential plant residues remain underutilized due to limited research on their use as a nutrient source. In this study, the nitrogen supplying capabilities of ten rarely-used leaf biomass sources (Acacia auriculiformis, Baphia nitida, Albizia zygia, Azadirachta indica, Senna siamea, Senna spectabilis, Tithonia diversifolia, Gliricidia sepium, Leucaena leucocephala and Zea mays) were tested based on their nutrient content, N mineralization patterns and effect on maize yield (in comparison with inorganic fertilizer). N mineralization was studied in the laboratory using an incubation experiment. Field trials were also established using a randomized complete block design. Plant residues were applied at 5 t dry matter ha?1 a week before planting maize while fertilizer was split-applied at 90 kg N ha?1 on designated plots. From the results on plant residue chemistry, most of the plant residues recorded relatively high N concentration (≥24.9 g kg?1) and low C/N ratio (≤20.1) although neither N content nor C/N ratio significantly (p > 0.05) affected their N mineralization patterns. Leaf biomass application of B. nitida, A. auriculiformis, A. zygia and maize stover resulted in an initial net N immobilization that lasted for 14 days. Application of all plant materials significantly increased the biological yield and N uptake of maize with G. sepium and T. diversifolia producing the greatest impact especially in the major rainy season. Relative to the control, total grain yield after four cropping seasons was comparable between inorganic fertilizer (9.2 t ha?1), G. sepium (8.8 t ha?1) and T. diversifolia (9.4 t ha?1) treatments. The results on maize biological yield were significantly correlated with the effects of the treatments on N uptake. The findings suggest that in locations where inorganic fertilizers are limited, leaf biomass from G. sepium and T. diversifolia could offer the most suitable option in comparison with the other species used in this study.  相似文献   

10.
Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen (N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels (0, 50, 150, and 300 kg N ha?1 a?1, applied monthly, expressed as CK, LN, MN, HN, respectively) in three replicates. After 6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity (EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK, LN, MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+, EA, and Al/Ca, and exchangeable Al3+ in HN increased by 70% compared to CK. Soil base cations (Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3?–N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4+–N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon, incorporated organic carbon, or particulate organic carbon. This study suggests that increasing N deposition could increase soil NO3?–N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.  相似文献   

11.
The growth patterns of annually resolved tree rings are good indicators of local environmental changes, making dendrochronology a valuable tool in air pollution research. In the present study, tree-ring analysis was used to assess the effects of 16 years (1991–2007) of chronic nitrogen (N) deposition, and 10 years (1991–2001) of reduced nitrogen input, on the radial growth of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) growing in the experimental area of Lake Gårdsjön, southwest Sweden. In addition to the ambient input of c. 15 kg N ha?1 year?1, dissolved NH4NO3 was experimentally added to a 0.52-ha watershed at a rate of c. 40 kg ha?1 year?1. Atmospheric N depositions were reduced by means of a below-canopy plastic roof, which covered a 0.63-ha catchment adjacent to the fertilized site. The paired design of the experiment allowed tree growth in the N-treated sites to be compared with the growth at a reference plot receiving ambient N deposition. Nitrogen fertilization had a negative impact on pine growth, while no changes were observed in spruce. Similarly, the reduction in N and other acidifying compounds resulted in a tendency towards improved radial growth of pine, but it did not significantly affect the spruce growth. These results suggest that spruce is less susceptible to changes in the acidification and N status of the forest ecosystem than pine, at least in the Gårdsjön area.  相似文献   

12.
Continuous increases in anthropogenic nitrogen (N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon (C) storage. Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch (Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at 100 kg N ha?1 a?1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However, soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However, microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, δ13C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition (1) altered microbial biomass and activity without affecting soil C in light fractions and (2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.  相似文献   

13.
Faidherbia (Faidherbia albida) is being promoted widely in interventions for combating desertification, re-greening of the Sahel, carbon offset and various agroforestry projects. However, there is a dearth of information on its growth and canopy development. There are also no guidelines for optimum stocking densities for practitioners to follow. Therefore, the objective of this work was to evaluate scaling relationships between its growth in height, stem diameter and crown size and based on these relationships define stocking densities. In order to achieve this we: (1) modelled its growth in relation to plant density; (2) identified appropriate models for scaling stem height and diameter with crown size; (3) using information from step 2, we derived stocking densities under different scenarios. Crown diameter (CD) was found to scale with stem diameter (D) isometrically, while stem height scaled with CD allometrically. The scenarios derived using the CD–D scaling indicated that densities >50 plants ha?1 are untenable when DBH exceeds 40 cm. High initial densities (>625 plants ha?1) appear to lead to rapid self-thinning. Starting with low initial densities (<100 plants ha?1) was also expected to result in sub-optimal use of site resources and delayed net ecosystem production. As a compromise, we recommend establishment of stands at initial densities of about 625 trees ha?1 (or 4 m × 4 m spacing) and progressive thinning as stem diameter increases. The focus of this analysis has been on monoculture plantations of Faidherbia and the spacing may not be directly applicable where crops are integrated with trees. Therefore, we propose a follow-up study including modelling tree behaviour in mixed stands in order to refine recommendations.  相似文献   

14.
Understanding the impact of plant litters on soil nitrogen(N) dynamics could facilitate development of management strategies that promote plantation ecosystem function.Our objective was to evaluate the effects of different litter types on N mineralization and availability,microbial biomass, and activities of L-asparaginase and odiphenol oxidase(o-DPO) in soils of a poplar(Populus deltoides) plantation through 24 weeks of incubation experiments.The tested litters included foliage(F), branch(B), or root(R) of poplar trees, and understory vegetation(U) or a mixture of F, B, and U(M).Litter amendments led to rapid N immobilization during the first 4 weeks of incubation, while net N mineralization was detected in all tested soils from 6 to 24 weeks of incubation, with zeroorder reaction rate constants(k) ranging from 7.7 to9.6 mg N released kg~(-1) soil wk~(-1).Moreover, litter addition led to increased microbial biomass carbon(C) 49–128% and increased MBC:MBN ratio by 5–92%,strengthened activities of L-asparaginase and o-DPO by14–74%; Up to about 37 kg N ha~(-1) net increase in mineralized N in litter added soils during 24 weeks of incubation suggests that adequate poplar and understory litter management could lead to reduced inputs while facilitate sustainable and economic viable plantation production.  相似文献   

15.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

16.
Coarse woody debris (CWD) is involved in important forest ecosystem functions and processes, e.g., habitat provision, water retention, and organic matter decomposition. However, a quantitative, CWD-produced soil organic carbon (SOC) imprint has not yet been detected, possibly due to lack of free adsorption sites on soil minerals. To circumvent this potential constraint, we selected plots with and without CWD in a beech (Fagus sylvatica L.) primeval forest in the West Carpathian volcanic range (Slovakia). Local andic soil contains abundant allophane and amorphous Fe-compounds as important SOC binding agents. The C concentration in the fine earth of sampled soils was determined by the dry combustion method. We established that organic carbon concentration decreased with depth from 0.20 kg kg?1 (0.0–0.3 m) to 0.11 kg kg?1 (0.3–0.5 m) in soil with CWD and from 0.13 kg kg?1 (0.0–0.3 m) to 0.07 kg kg?1 (0.3–0.5 m) in soil without CWD. The respective average differences in soil organic carbon concentration (0.07 kg kg?1) and stock (15.84 kg m?2) between the two series of plots within the upper 0.3 m were significant according to the t test (P < 0.05 or P < 0.01, respectively). Also, corresponding differences within the 0.3–0.5 m layer (0.04 kg kg?1 and 5.51 kg m?2) were significant (P < 0.05, P < 0.001). Our results represent the first indication that CWD-produced SOC imprint may reach deeper than just a few centimeters in soils featuring high adsorption capacity, such as Andosols.  相似文献   

17.
Sesbania sesban (L.) Merr is a perennial N2-fixing tree with high potential for use in agricultural production systems as a green manure and livestock forage. We studied the interactive effects of soil type and water level on the growth, biomass allocation, nutrient and mineral content of S. sesban. Four-week old seedlings of S. sesban were grown for 49 days (n = 5) in a factorial mesocosm set-up with six soil types (sediment, sand, alluvial, acid-sulfate, saline and clay) and three water levels (drained, water-saturated and flooded). The soils tested represent the predominant alluvial soil types of the Mekong delta, Vietnam. Sesbania sesban grew well with relative growth rates (RGR) around 0.08 g g?1 d?1 in all studied soil types, except the saline soil where plants died. In the low-pH (3.9) acid sulfate soil, that constitute more than 40 % of the Mekong delta, the RGR of the plants was slightly lower (0.07 g g?1 d?1), foliar concentration of calcium was 3–6 times lower, and concentrations of iron and sodium up to five times higher, than in other soils. The nutrient and mineral contents of the plant tissues differed between the soils and were also affected by the flooding levels. Foliar concentrations of nitrogen (50–74 mg N g?1 dry mass) and phosphorus (5–9 mg P g?1 dry mass) were, however, generally high and only slightly affected by water level. The results show that S. sesban can grow well and with high growth rates on most wet soils in the Mekong delta, except saline soils where the high salt content prevents establishment and growth. The nutrient and mineral contents of the plants, and hence the nutritional value of the plants as e.g. fodder or compost crops, is high. However, soil type and water level interactively affect growth and tissue composition. Hence, optimal growth conditions for S. sesban differ in the different regions of the Mekong delta.  相似文献   

18.
Nothofagus antarctica forests in south Patagonia are usually used as silvopastoral systems but how grasses and trees compete for specific resources, such as nitrogen in these systems is unknown. To understand interactions between grasses and N. antarctica trees for N, an experiment with 15N labeled fertilizer was carried out comparing N absorption by grasses growing under trees (silvopastoral system) with an open site. Labeled 15NH 4 15 NO3 fertilizer at 10 % atom excess was added in spring at both sites and 15N was measured in herbage, soil and trees every 30 days during the growing season. Soil was the component that containing the greatest amount of N and greatest 15N recovery. Grasses growing in the silvopastoral system absorbed almost double of the fertilizer applied than grasses in the open site (32.4 kg N ha?1derived from fertilizer based on 15N recovery). Roots were also an important fate for N absorbed, representing 50 and 63 % of total 15N recovered in grass roots of open and silvopastoral sites, respectively. Trees absorbed 69 % less applied N than grasses in the silvopastoral system; being mainly allocated in small branches, sapwood and fine roots. Overall, 15N recovery was 65 % higher in the silvopastoral system (tree + grasses) than in the open site (grasses). Silvopastoral system made more efficient use of the 15N added. These results indicated that N. antarctica trees in the silvopastoral system may “facilitate” fertilizer N absorption of grasses by improving environmental conditions like water availability or by reducing competition for inorganic N between soil microorganisms and plants.  相似文献   

19.
The study of floral diversity in forest and its development are incomplete without taking consideration of plant-soil interactions. So with this view in mind, the present study was conducted in tropical semi-evergreen forests of the Mokukchung district, Nagaland, in eastern Himalaya. The aim of the study was to investigate the phytosociological parameters in relation to soil properties.Seven sites were randomly selected to study the soil properties at up to one meter in depth and a phytosociological study was carried out in nearby areas via the quadrate method. In the studied sites, the richness of tree species varied from 4 to 15 ha~(-1), with Gmelina arborea and Duabanga grandifloras being the common species.The highest total basal area was recorded in 10 mile village(47,998.16 cm~2ha~-1)) followed by Minkong village site(32,704.66 cm~2ha~(-1)). Soil physical and chemical properties—i.e. bulk density(BD), soil p H, organic carbon(OC),available nitrogen(N), available phosphorus(P), and available potassium(K) were analyzed using standard procedures. Significant differences were observed in the soil properties. The basal area of species showed significant positive correlation in terms of available K(0.754) and OM(0.302) content in soil, and the Shannon–Wiener diversity index(H) is also positively correlated with the available N content(0.402). The undisturbed nature of the sites played an important role in maintaining the soil fertility and floral diversity of the sites. Moreover, sites with maximum productivity and soil fertility are considered as potential carbon sequestration areas in the region while sites with the low soil fertility need restoration.  相似文献   

20.
This study analyses the trade-off between bioenergy production and soil conservation through thinning operations in Norway spruce (Picea abies L. Karst) plantations in Denmark. Thinning operations were evaluated under different regimes and intensities for a complete rotation period of sixty years and for different site qualities (site-classes I–VI). Applying a dynamic forest growth modeling tool, evolution of forest structure was predicted to observe the potentials for biomass production and inevitable soil degradation. Results showed thinning from below, with a higher utilization (maintenance of a minimum basal area of 25 mha?1) could produce more bioenergy. However, these operations require simultaneous severe forest soil degradation. Therefore, the optimum thinning for bioenergy production under preservation constraints was thinning from above with a lower intensity (maintenance of a minimum basal area of 45 m2 ha?1). The ratio of bioenergy win (kWh) to soil-loss (mha?1) was calculated for this regime varying between 74,894 kWh m?3 in a high quality site (site-class I) and 6,516 kWh m?3 in a low quality site (site-class VI) with an average of 44,282 kWh m?3. However, this could not always preserve the highest amount of growing stock essential for natural dynamics of forest ecosystem with an exception of the low quality sites (site-class VI). Thus, when aiming at bioenergy production through thinning operations, trade-offs with soil conservation and growing stock preservation should be regarded to prevent environmental degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号