首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007–2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe2) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.  相似文献   

2.
Genetic parameters and genetic trends for birth weight (BW), weaning weight (WW), 6-month weight (6MW), and yearling weight (YW) traits were estimated by using records of 5,634 Makooei lambs, descendants of 289 sires and 1,726 dams, born between 1996 and 2009 at the Makooei sheep breeding station, West Azerbaijan, Iran. The (co)variance components were estimated with different animal models using a restricted maximum likelihood procedure and the most appropriate model for each trait was determined by Akaike’s Information Criterion. Breeding values of animals were predicted with best linear unbiased prediction methodology under multi-trait animal models and genetic trends were estimated by regression mean breeding values on birth year. The most appropriate model for BW was a model including direct and maternal genetic effects, regardless of their covariance. The model for WW and 6MW included direct additive genetic effects. The model for YW included direct genetic effects only. Direct heritabilities based on the best model were estimated 0.15?±?0.04, 0.16?±?0.03, 0.21?±?0.04, and 0.22?±?0.06 for BW, WW, 6MW, and YW, respectively, and maternal heritability obtained 0.08?±?0.02 for BW. Genetic correlations among the traits were positive and varied from 0.28 for BW–YW to 0.66 for BW–WW and phenotypic correlations were generally lower than the genetic correlations. Genetic trends were 8.1?±?2, 67.4?±?5, 38.7?±?4, and 47.6?±?6 g per year for BW, WW, 6MW, and YW, respectively.  相似文献   

3.
Data from the American Angus Association, American Gelbvieh Association, and the North American Limousin Foundation were analyzed to determine whether parental genetic differences are associated with Mendelian sampling of their bull progeny or with Mendelian sampling variances and weight variances of their bull progeny's offspring. Parental differences were measured as the difference between the parents' EPD for birth weight (DIF(BW)), weaning weight direct (DIF(WW)), and yearling weight (DIF(YW)). A bull's data were used if both parents had calculated EPD and the bull had at least 25 progeny with records for the specific trait. Traits calculated for each bull were his Mendelian sampling (MS(Bull)), progeny Mendelian sampling variance (MSsigma2progeny), progeny weight variance (WTsigma2), and progeny corrected weight variance (CWTsigma2 = adjusted weight minus appropriate dam EPD) for birth, weaning, and yearling weights. Pearson correlations were computed between DIF(BW), DIF(WW), and DIF(YW) and MS(Bull), MSsigma2progeny, WTsigma2, and CWTsigma2 for each trait, within each breed. Across breeds, the correlations ranged from -.07 to .11 for MS(Bull) .01 to .14 for MSsigma2progeny, -.06 to .09 for WTsigma2, and -.06 to .08 for CWTsigma2. Although some of the correlations were significantly different from zero their relatively small magnitude indicates little relationship between parental differences in genetic merit and subsequent offspring variability for each of the three breeds.  相似文献   

4.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines. An Angus line was maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires each year (two sires selected each year and used for 2 yr). Primary traits measured in the lines were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). Averaged over two methods, estimated genetic responses/generation (in standard deviation units) in WWL and YWL were: BW, .29, .26; WDG, .17, .15; WW, .22, .19; WG, .19, .26; WC, .12, .12; YDG, -.02, .04; YW, .08, .14; YG, .19, .16; YC, -.13, -.03. The realized heritability estimates were .23 and .15 for WW and YW, respectively. The realized genetic correlation between WW and YW was .69. Progeny from crosses of selected WWL and YWL sires to Angus cows had similar feedlot and carcass performance. At the end of the study, milk yield and composition were similar for mature cows in WWL and YWL.  相似文献   

5.
Birth weights (BW) and weaning weights (WW) of 4,423 non-creep-fed Hereford calves were used to estimate direct and maternal sources of variation and maternal phenotypic effects (fm). Seventeen different (co)variances among relatives were estimated through Henderson's Method III and restricted estimated maximum likelihood procedures. Direct and maternal (co)variances and fm were evaluated by multiple regression procedures. Estimates of h2 for BW and WW were .28 and .28 respectively, by the paternal half-sib procedure and .45 and .88, respectively, based on full-sibs. Repeatability estimates were .21 for BW and .30 for WW. Heritabilities based on regression of offspring on dam and offspring on sire were .45 and .21 for BW and .28 and .06 for WW, respectively. Negative correlations were found between solutions for additive genetic direct and additive maternal effects (rG). Estimates of rG ranged from -.86 to -1.05 for BW and from -.57 to -.79 for WW. Estimates of heritability for direct effects (h2o), for maternal effects (h2m) and for total additive genetic effects (h2T) were .16 to .27, .18 to .63 and -.02 to .05 for BW and .26 to .32, .27 to .67 and .10 to .20 for WW. Dominance affected both direct and maternal effects for BW and WW. Values of -.15 (BW) and -.25 (WW) were found for fm (path coefficient between the maternal phenotypes of dam and daughter). These results indicated that selection response would be decreased due to the negative genetic correlation between direct and maternal effects.  相似文献   

6.
The aim of this study was to estimate genetic parameters for growth traits in Mexican Nellore cattle. A univariate animal model was used to estimate (co)variance components and genetic parameters. The traits evaluated were birth weight (BW), weaning weight (WW), and yearling weight (YW). Models used included the fixed effects of contemporary groups (herd, sex, year, and season of birth) and age of dam (linear and quadratic) as a covariate. They also included the animal, dam, and residual as random effects. Phenotypic means (SD) for BW, WW, and YW were 31.4 (1.6), 175 (32), and 333 (70) kg, respectively. Direct heritability, maternal heritability, and the genetic correlation between additive direct and maternal effects were 0.59, 0.17, and −0.90 for BW; 0.29, 0.17, and −0.90 for WW; and 0.24, 0.15, and −0.86 for YW, respectively. The results showed moderate direct and maternal heritabilities for the studied traits. The genetic correlations between direct and maternal effects were negative and high for all the traits indicating important tradeoffs between direct and maternal effects. There are significant possibilities for genetic progress for the growth traits studied if they are included in a breeding program considering these associations.  相似文献   

7.
Covariance components were estimated for growth traits (BW, birth weight; WW, weaning weight; YW, yearling weight), visual scores (BQ, breed quality; CS, conformation; MS, muscling; NS, navel; PS, finishing precocity), hip height (HH), and carcass traits (BF, backfat thickness; LMA, longissimus muscle area) measured at yearling. Genetic gains were obtained and validation models on direct and maternal effects for BW and WW were fitted. Genetic correlations of growth traits with CS, PS, MS, and HH ranged from 0.20 ± 0.01 to 0.94 ± 0.01 and were positive and low with NS (0.11 ± 0.01 to 0.20 ± 0.01) and favorable with BQ (0.14 ± 0.02 to 0.37 ± 0.02). Null to moderate genetic correlations were obtained between growth and carcass traits. Genetic gains were positive and significant, except for BW. An increase of 0.76 and 0.72 kg is expected for BW and WW, respectively, per unit increase in estimated breeding value (EBV) for direct effect and an additional 0.74 and 1.43, respectively, kg per unit increase in EBV for the maternal effect. Monitoring genetic gains for HH and NS is relevant to maintain an adequate body size and a navel morphological correction, if necessary. Simultaneous selection for growth, morphological, and carcass traits in line with improve maternal performance is a feasible strategy to increase herd productivity.  相似文献   

8.
Estimates of genetic parameters for growth traits in Kermani sheep   总被引:3,自引:0,他引:3  
Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.  相似文献   

9.
The genetic parameters for Brahman cattle under the tropical conditions of Mexico are scarce. Therefore, heritabilities, additive direct and maternal correlations, and genetic correlations for birth weight (BW) and 205 days adjusted weaning weight (WW205) were estimated in four Brahman cattle herds in Yucatan, Mexico. Parameters were estimated fitting a bivariate animal model, with 4,531 animals in the relationship matrix, of which 2,905 had BW and 2,264 had WW205. The number of sires and dams identified for both traits were 122 and 962, respectively. Direct heritability estimates for BW and WW205 were 0.41?±?0.09 and 0.43?±?0.09, and maternal heritabilities were 0.15?±?0.07 and 0.38?±?0.08, respectively. Genetic correlations between direct additive and maternal genetic effects for BW and WW205 were ?0.41?±?0.22 and ?0.50?±?0.15, respectively. The direct genetic, maternal, and phenotypic correlations between BW and WW205 were 0.77?±?0.09, 0.61?±?0.18, and 0.35, respectively. The moderate to high genetic parameter estimates suggest that genetic improvement by selection is possible for those traits. The maternal effects and their correlation with direct effects should be taken into account to reduce bias in genetic evaluations.  相似文献   

10.
A multivariate model was developed and used to estimate genetic parameters of body weight (BW) at 1–6 weeks of age of broilers raised in a commercial environment. The development of model was based on the predictive ability of breeding values evaluated from a cross-validation procedure that relied on half-sib correlation. The multivariate model accounted for heterogeneous variances between sexes through standardization applied to male and female BWs differently. It was found that the direct additive genetic, permanent environmental maternal and residual variances for BW increased drastically as broilers aged. The drastic increase in variances over weeks of age was mainly due to scaling effects. The ratio of the permanent environmental maternal variance to phenotypic variance decreased gradually with increasing age. Heritability of BW traits ranged from 0.28 to 0.33 at different weeks of age. The direct genetic effects on consecutive weekly BWs had high genetic correlations (0.85–0.99), but the genetic correlations between early and late BWs were low (0.32–0.57). The difference in variance components between sexes increased with increasing age. In conclusion, the permanent environmental maternal effect on broiler chicken BW decreased with increasing age from weeks 1 to 6. Potential bias of the model that considered identical variances for sexes could be reduced when heterogeneous variances between sexes are accounted for in the model.  相似文献   

11.
Data on 2,034 F1 calves sired by Angus, Hereford, Polled Hereford, Charolais, Limousin, Simmental, Gelbvieh, and Tarentaise bulls with Hereford or Angus dams and data on 3,686 three-breed-cross calves with 700 F1 dams of the same breed crosses were used for this study. Traits analyzed were birth, weaning, yearling, and 420-d weights (BWT, WW, YW, and W420, respectively) of F1 calves and WW of three-breed-cross calves. Expected progeny differences from national cattle evaluation programs for sires of F1 calves and cows for BWT, WW, YW, and net maternal ability (milk) were used to assess their value in prediction of crossbred performance. Regressions of actual F1 calf performance on sire EPD were positive for BWT (1.09 +/- .12 kg/kg of BWT EPD), WW (.79 +/- .14 kg/kg of WW EPD), YW (1.44 +/- .16 kg/kg of YW EPD), and W420 (1.66 kg/kg of YW EPD). These regression coefficients were similar to the expected value of 1.0 for BWT and WW but were larger than expected for YW and W420. Regressions of actual three-breed-cross calf WW on milk and WW EPD of their maternal grandsires were .95 +/- .14 and .42 +/- .10 kg/kg, respectively, and differed little from their expectations of 1.0 and .5, respectively. Observed breed of sire means for each trait were adjusted for sire sampling by using EPD regressions to adjust them to the average EPD of all sires of each breed born in 1970.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
For the first time, the current study reports the genetic and phenotypic correlations between growth and reproductive traits in Zandi sheep. The data were comprised of 4,309 records of lamb growth traits from 1,378 dams and 273 sires plus 2,588 records of reproductive traits from 577 ewes. These data were extracted from available performance records at Khojir Breeding Station of Zandi sheep in Tehran, Iran, from 1993 to 2008. Correlations were estimated from two animal models in a bivariate analysis using restricted maximum likelihood procedure between lamb growth traits [birth weight (BW), weaning weight at 3 months of age (WW), as well as six-month weight (6 MW)] and ewe reproductive traits [litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW)]. The genetic correlations between BW and reproductive traits varied from low to high ranges from 0.10 for BW–LSB to 0.86 for BW–TLWB. WW was moderately (0.37) to highly (0.96) correlated with all the reproductive traits. Moreover, the genetic correlations were observed between 6 MW and reproductive traits, varied from 0.19 to 0.95. Relationships between growth and reproductive traits ranged from 0.01 for BW–LSW to 0.28 for BW–TLWB in phenotypic effects. Results indicated that selection to improve WW would have high effect on genetic response in TLWW, and also, these results could be effective for all of the reproductive traits in Zandi sheep.  相似文献   

13.
To estimate adjustment factors and genetic parameters for gestation length (GES), AI and calving date records (n = 40,356) were extracted from the Canadian Charolais Association field database. The average time from AI to calving date was 285.2 d (SD = 4.49 d) and ranged from 274 to 296 d. Fixed effects were sex of calf, age of dam (2, 3, 4, 5 to 10, > or = 11 yr), and gestation contemporary group (year of birth x herd of origin). Variance components were estimated using REML and 4 animal models (n = 84,332) containing from 0 to 3 random maternal effects. Model 1 (M1) contained only direct genetic effects. Model 2 (M2) was G1 plus maternal genetic effects with the direct x maternal genetic covariance constrained to zero, and model 3 (M3) was G2 without the covariance constraint. Model 4 (M4) extended G3 to include a random maternal permanent environmental effect. Direct heritability estimates were high and similar among all models (0.61 to 0.64), and maternal heritability estimates were low, ranging from 0.01 (M2) to 0.09 (M3). Likelihood ratio tests and parameter estimates suggested that M4 was the most appropriate (P < 0.05) model. With M4, phenotypic variance (18.35 d2) was partitioned into direct and maternal genetic, and maternal permanent environmental components (hd2 = 0.64 +/- 0.04, hm2 = 0.07 +/- 0.01, r(d,m) = -0.37 +/- 0.06, and c2 = 0.03 +/- 0.01, respectively). Linear contrasts were used to estimate that bull calves gestated 1.26 d longer (P < 0.02) than heifers, and adjustments to a mature equivalent (5 to 10 yr old) age of dam were 1.49 (P < 0.01), 0.56 (P < 0.01), 0.33 (P < 0.01), and -0.24 (P < 0.14) d for GES records of calves born to 2-, 3-, 4-, and > or = 11-yr-old cows, respectively. Bivariate animal models were used to estimate genetic parameters for GES with birth and adjusted 205-d weaning weights, and postweaning gain. Direct GES was positively correlated with direct birth weight (BWT; 0.34 +/- 0.04) but negatively correlated with maternal BWT (-0.20 +/- 0.07). Maternal GES had a low, negative genetic correlation with direct BWT (-0.15 +/- 0.05) but a high and positive genetic correlation with maternal BWT (0.62 +/- 0.07). Generally, GES had near-zero genetic correlations with direct and maternal weaning weights. Results suggest that important genetic associations exist for GES with BWT, but genetic correlations with weaning weight and postweaning gain were less important.  相似文献   

14.
Field records from the American Angus Association were used to study the associations of sire marbling score EPD and sire weaning weight maternal (milk) EPD with age at first calving (AFC) and calving interval (CI). Cows were selected based on the accuracy of their sire's milk (> or =.7) or marbling (> or =.6) EPD. The data were screened using biological constraints, and regression models were used to identify records that were greater than 5 SD from the mean. The AFC was modeled for both milk and marbling data sets to account for effects of year, sire EPD, and their interaction. The CI was subdivided into first, second, and mature calving interval traits and modeled to account for state, year, calf sex, calf birth weight (BW), calf weaning weight (WW), sire EPD, and interactions of EPD with year and state. Derivative-free REML was used to estimate heritability and genetic correlations for AFC and CI. Sire milk EPD and marbling EPD were predictors of AFC (P < .001); however, pooled estimates were unreliable because of state x EPD interactions (P < .001). Increases in sire milk EPD resulted in reductions in AFC; however, there was no consistent pattern to effects of marbling EPD increases. Models accounted for < 8% of variation in AFC. Sire milk EPD was not a predictor of first, second, or mature CI (P > .1). Sire marbling score EPD was not a predictor of second, or mature CI (P > .1); however, it was associated (P = .059) with first CI, although regression estimates varied across states and prevented pooling. The BW, sex, and WW were predictors of CI (P < .001). Increases in BW resulted in longer mature CI, and mature CI decreased as WW increased. The AFC was heritable (.22), and CI traits had heritabilities ranging from .01 to .03. The AFC was genetically correlated with first CI (-.6) and mature CI (-.93). Genetic correlations between CI traits were uninterpretable because of low additive genetic variances. In conclusion, sire marbling score and milk EPD do not seem to be reliable predictors of AFC or CI. The BW and WW have significant but small effects on AFC and CI. Selection for AFC is possible, but earlier calving heifers may have longer calving intervals.  相似文献   

15.
Records of birth weight (BW), weaning weight (WW) and condition score (CS) from 1,467 Brahman and Brahman X Angus crossbred calves from Brahman and crossbred Brahman sires and Brahman, crossbred Brahman and Angus dams were collected at the Subtropical Agricultural Research Station, Brooksville, Florida, from 1971 to 1982. Best linear unbiased estimates (BLUE) of Brahman sire and dam group additive genetic effects (as deviations from Angus) and Brahman X Angus dam and calf group nonadditive (intralocus) genetic effects (as deviations from intralocus group genetic effects in the parental breeds) were obtained. Linear combinations of these were used to compute direct and maternal Brahman additive and Brahman X Angus nonadditive (intralocus) group genetic effects. The respective BLUE of these four effects were 5.99 +/- 2.08, -5.70 +/- 1.91, .52 +/- 1.81 and 2.85 +/- .72 kg for BW; 9.60 +/- 10.29, 8.76 +/- 9.47, 9.47 +/- 8.96 and 20.95 +/- 3.56 kg for WW; and -1.10 +/- .55, 1.64 +/- .50, 1.47 +/- .47 and .05 +/- .19 units for CS. Linear combinations of the BLUE of sire, dam and calf group genetic effects can be used to predict the genetic worth of crossbred groups composed of any combination of Brahman and Angus breeding. Nonadditive maternal group genetic effects were the most important factor for BW and WW, whereas nonadditive direct group genetic effects were the most important for CS.  相似文献   

16.
Genetic and phenotypic parameters were estimated for lamb growth traits for the Dorper sheep in semi-arid Kenya using an animal model. Data on lamb growth performance were extracted from available performance records at the Sheep and Goats Station in Naivasha, Kenya. Growth traits considered were body weights at birth (BW0, kg), at 1 month (BW1, kg), at 2 months (BW2, kg), at weaning (WW, kg), at 6 months (BW6, kg), at 9 months (BW9, kg) and at yearling (YW, kg), average daily gain from birth to 6 months (ADG0–6, gm) and from 6 months to 1 year (ADG6–12, gm). Direct heritability estimates were, correspondingly, 0.18, 0.36, 0.32, 0.28, 0.21, 0.14, 0.29, 0.12 and 0.30 for BW0, BW1, BW2, WW, BW6, BW9, YW, ADG0–6 and ADG6–12. The corresponding maternal genetic heritability estimates for body weights up to 9 months were 0.16, 0.10, 0.10, 0.19, 0.21 and 0.18. Direct-maternal genetic correlations were negative and high ranging between −0.47 to −0.94. Negative genetic correlations were observed for ADG0–6–ADG6–12, BW2–ADG6–12, WW–ADG6–12 and BW6–ADG6–12. Phenotypic correlations ranged from 0.15 to 0.96. Maternal effects are important in the growth performance of the Dorper sheep though a negative correlation exists between direct and maternal genetic effects. The current study has provided important information on the extent of additive genetic variation in the existing flocks that could now be used in determining the merit of breeding rams and ewes for sale to the commercial flocks. The estimates provided would form the basis of designing breeding schemes for the Dorper sheep in Kenya. Implications of the study to future Dorper sheep breeding programmes are also discussed.  相似文献   

17.
Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability ( \texth\texta2 ) \left( {{\text{h}}_{\text{a}}^2} \right) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c 2) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.  相似文献   

18.
The objectives of this study were to determine if sires perform consistently across altitude and to quantify the genetic relationship between growth and survival at differing altitudes. Data from the American Angus Association included weaning weight (WW) adjusted to 205 (n = 77,771) and yearling weight adjusted to 365 (n = 39,450) d of age from 77,771 purebred Angus cattle born in Colorado between 1972 and 2007. Postweaning gain (PWG) was calculated by subtracting adjusted WW from adjusted yearling weight. Altitude was assigned to each record based upon the zip code of each herd in the database. Records for WW and PWG were each split into 2 traits measured at low and high altitude, with the records from medium altitude removed from the data due to inconsistencies between growth performance and apparent culling rate. A binary trait, survival (SV), was defined to account for censored records at yearling for each altitude. It was assumed that, at high altitude, individuals missing a yearling weight either died or required relocation to a lower altitude predominantly due to brisket disease, a condition common at high altitude. Model 1 considered each WW and PWG measured at 2 altitudes as separate traits. Model 2 treated PWG and SV measured as separate traits due to altitude. Models included the effects of weaning contemporary group, age of dam, animal additive genetic effects, and residual. Maternal genetic and maternal permanent environmental effects were included for WW. Heritability estimates for WW in Model 1 were 0.28 and 0.26 and for PWG were 0.26 and 0.19 with greater values in low altitude. Genetic correlations between growth traits measured at different altitude were moderate in magnitude: 0.74 for WW and 0.76 for PWG and indicate possibility of reranking of sires across altitude. Maternal genetic correlation between WW at varying altitude of 0.75 also indicates these may be different traits. In Model 2, heritabilities were 0.14 and 0.27 for PWG and 0.36 and 0.47 for SV. Genetic correlation between PWG measured at low and high altitude was 0.68. Favorable genetic correlations were estimated between SV and PWG within and between altitudes, suggesting that calves with genetics for increased growth from weaning to yearling also have increased genetic potential for SV. Genetic evaluations of PWG in different altitudes should consider preselection of the data, by using a censoring trait, like survivability to yearling.  相似文献   

19.
Data for the current study were obtained from a divergent selection experiment in which the selection criterion was the average serum IGF-I concentrations of 3 postweaning blood samples collected from purebred Angus calves. Multiple-trait derivative-free REML procedures were used to obtain genetic parameter estimates for IGF-I concentrations and for BW and BW gains measured from birth to the conclusion of a 140-d postweaning performance test. Included in the analysis were 2,674 animals in the A(-1) matrix, 1,761 of which had valid records for IGF-I concentrations. Direct heritability estimates +/- SE for IGF-I concentration at d 28, 42, and 56 of the postweaning period and for mean IGF-I concentrations were 0.44 +/- 0.07, 0.51 +/- 0.08, 0.42 +/- 0.07, and 0.52 +/- 0.08, respectively. Heritability estimates for maternal genetic effects ranged from 0.10 +/- 0.05 to 0.20 +/- 0.06. The proportion of total phenotypic variance due to the maternal permanent environmental effect was essentially zero for all measures of IGF-I concentrations. Genetic correlations of IGF-I concentrations with weaning and post-weaning BW ranged from 0.07 +/- 0.12 to 0.32 +/- 0.11 and generally demonstrated an increasing trend during the postweaning period. Averaged across the various measures of IGF-I, the genetic correlation of IGF-I with preweaning gain was 0.14, whereas the genetic correlation with postweaning gain was 0.29. Genetic correlations between IGF-I and BW gain were positive during all time intervals, except between weaning and the beginning of the postweaning test and from d 84 to 112 of the postweaning period. Environmental and phenotypic correlations of IGF-I with BW and BW gains were generally positive, but small. These results indicate that postweaning serum IGF-I concentration is moderately to highly heritable and has small positive genetic, environmental, and phenotypic correlations with BW other than birth weight and with pre- and postweaning gain. Therefore, if IGF-I proves to be a biological indicator of an economically important trait (e.g., efficiency of feed use for growth) in beef cattle, it should be possible to rapidly change IGF-I concentrations via selection without significantly altering live weight or rate of gain.  相似文献   

20.
The objective of this study was to estimate genetic parameters, in Katahdin sheep, for total weight of litter weaned per ewe lambing (TW) and its components, number of lambs born (NB), number of lambs weaned (NW), and average weight of lambs weaned (AW) measured as traits of the ewe. Weaning weights of lambs (WW) were adjusted to 60 d of age and for effects of ewe age, lamb sex, and type of birth and rearing and averaged over all lambs in the litter to obtain AW. The 60-d age-adjusted WW were adjusted for ewe age and lamb sex and summed over all lambs in the litter to obtain TW. A total of 2,995 NB and NW records, 2,622 AW, and 2,714 TW records were available from 1,549 ewes (progeny of 235 sires) over 4 yr. Heritabilities were initially estimated for each trait from univariate REML analyses. Estimates of genetic correlations were obtained from bi- and trivariate analyses. Models for NB, NW, AW, and TW included random ewe additive and permanent environmental effects. A random service sire effect was also fit for AW and TW. Heritabilities of TW, NB, NW, and AW from univariate analyses were 0.12, 0.12, 0.09, and 0.13 (all P < 0.01), respectively. Permanent environmental effects were significant (P < 0.01) for TW and AW. Genetic correlations of TW with NB, NW, and AW ranged from 0.27 to 0.33, 0.88 to 0.91, and 0.72 to 0.76, respectively; those of NB with NW and AW ranged from 0.70 to 0.75 and -0.01 to 0.02, respectively; and that between NW and AW ranged from 0.40 to 0.55. Genetic parameters were also obtained for lamb survival to weaning (LS) and WW measured as traits of the lamb, and the relationships between WW of the ewe as a lamb and her subsequent records for NB and NW were also estimated. A total of 5,107 LS and 5,444 WW records were available. Models for WW and LS included random animal and maternal genetic, maternal permanent environmental, and litter effects. Heritability of WW ranged from 0.15 to 0.20. There was no evidence of genetic effects on LS. Direct genetic correlations of WW with NB and NW were not significantly different from zero. The correlation between maternal genetic effects on WW, and animal genetic effects on NW, averaged 0.35. Results of this study indicate that there are no major antagonisms among TW and its components, so that selection for TW would not have adverse effects on any component traits and vice versa. Maternally superior ewes for WW appear to also be somewhat superior for NW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号