首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial communities in soil are highly species-rich, recognition of which has led to the view that functional redundancy within communities may buffer many impacts of altered community structure on soil functions. In this study we investigated the impact of long-term (>50 years) exclusion of plant-inputs (bare-fallow treatment) on soil microbial community structure and on the ability of the microbial biomass to mineralise tracer additions of 13C-labelled plant-derived C-substrates. Exclusion of plant-inputs resulted in depletion of soil organic matter (SOM) and a reduction in microbial biomass size. The microbial community structure was also strongly affected, as indicated by the distinct phospholipid fatty acid (PLFA) profiles in bare-fallow and grassland soils. Mineralisation of labile plant-derived substrates was not perturbed by the bare-fallow treatment. The incorporation of labile plant-derived C into PLFA biomarkers was found to differ between soils, reflecting the distinct community structures of the soils and indicating that these substrates were utilised by a broad range of microbial groups. In contrast, the mineralisation of recalcitrant plant-derived substrates was reduced in bare-fallow soil and the fate of substrate-derived C within PLFA biomarkers was, initially, similar between the soils. These results indicate that utilisation of these recalcitrant substrates was a function restricted to specific groups, and that exclusion of plant-derived inputs to soil had reduced the capacity of bare-fallow microbial communities to utilise this substrate type. Therefore, the study suggests that long-term selective pressure on microbial communities, resulting in altered community structure, may also result in altered functional attributes. This structure-function relationship was apparent for utilisation of recalcitrant plant-derived substrates, but not for the more widely distributed attribute of labile C-substrate utilisation.  相似文献   

2.
Re-vegetation of eroded soil restores organic carbon concentrations and improves the physical stability of the soil, which may then extend the range of microhabitats and influence soil microbial activity and functional stability through its effects on soil bacterial community structure. The objectives of this study were (i) to evaluate the restorative effect of re-vegetation on soil physical stability, microbial activity and bacterial community structure; (ii) to examine the effects of soil physical microhabitats on bacterial community structure and diversity and on soil microbial functional stability. Soil samples were collected from an 18-year-old eroded bare soil restored with either Cinnamomum camphora (“Eroded Cc”) or Lespedeza bicolour (“Eroded Lb”). An uneroded soil planted with Pinus massoniana (“Uneroded Pm”) and an eroded bare soil served as references. The effect of microhabitats was assessed by physical destruction with a wet shaking treatment. Soil bacterial community structure and diversity were measured using a terminal restriction fragment length polymorphism (T-RFLP) approach, while soil microbiological stability (resistance and resilience) was determined by measuring short-term (28 days) decomposition rate of added barley (Hordeum vulgare) powder following copper and heat perturbations. The results demonstrated that re-vegetation treatment affected the recovery of physical and biological stability, microbial decomposition and the bacterial community structure. Although the restored soils overshot the Uneroded Pm sample in physical stability, they had lower microbial decomposition and less resilience to copper and heat perturbations than the Uneroded Pm samples. Soil physical destruction by shaking had the same effect on soil physical stability, but different effects on soil microbial functional stability. There were significant effects of vegetation treatment and perturbation type, and interactive effects among vegetation treatment, shaking and perturbation type on bacterial community structure. The destruction of aggregate structure increased resilience of the Eroded Lb sample and also altered its bacterial community structure. Both copper and heat perturbations resulted in significantly different community structure from the unperturbed controls, with a larger effect of copper than heat perturbation. Bacterial diversity (Shannon index) increased following the perturbations, with a more profound effect in the Uneroded Pm sample than in the restored soils. The interactive effects of vegetation treatment and shaking on microbial community and stability suggest that soil aggregation may contribute to the generation of bacterial community structure and mediation of biological stability via the protection afforded by soil organic carbon. Differential effects of re-vegetation treatment suggest that the long-term effects are mediated through changes in the quality and quantity of C inputs to soil.  相似文献   

3.
This study compares the functional capability of soils with differing microbial diversity. Soil microbial diversity was modified by either fumigation with reinoculation by unfumigated soil or fumigation with no reinoculation. Functional capability was assessed by following wheat straw decomposition in these soils and in an unfumigated control soil at three matric potentials (−5, −125 and −800 kPa). The changes in diversity after fumigation were compared with the effects of disturbance treatments (slow air-drying, rapid oven-drying, 2 mm sieving and 0.5 mm sieving) by studying patterns of in situ catabolic potential (ISCP) at 1 and 8 weeks. Five weeks after the fumigation treatments, the functional and phenotypic diversity of the soil microbial community, as revealed by patterns of ISCP and phospholipid fatty acid (PLFA) profiles, respectively, were greatly different from that in unfumigated soil. The effects of the fumigation reinoculation treatment on functional diversity were comparable with those caused by rapid oven-drying, but were greater than the effects of 0.5 mm sieving. These disturbance treatments caused persistent changes in functional diversity, whereas slow air-drying and 2 mm sieving had little influence on diversity. Rates of straw decomposition were initially greater in the fumigated reinoculated soil than in the unfumigated soil at all moisture potentials. In contrast, straw mineralisation rates in the fumigated uninoculated soil generally exceeded rates in unfumigated soil for a period after 14 d, which was shorter at greater moisture potentials. These rates resulted in total straw mineralisation in fumigated reinoculated soil exceeding that in unfumigated soil at all moisture potentials. Compared with the unfumigated soils, total straw mineralisation in fumigated uninoculated soil was less at −5 kPa, similar at −125 kPa and greater at −800 kPa. The results indicated that the decomposition function of soil with reduced functional diversity can be diminished under optimum moisture conditions, but is not invariably reduced when assessed under suboptimal moisture conditions. This indicated that decreases in the functional diversity of soil microbial communities may not consistently result in declines in soil functioning.  相似文献   

4.
Global warming in the Arctic may alter decomposition rates in Arctic soils and therefore nutrient availability. In addition, changes in the length of the growing season may increase plant productivity and the rate of labile C input below ground. We carried out an experiment in which inorganic nutrients (NH4NO3 and NaPO4) and organic substrates (glucose and glycine) were added to soils sampled from across the mountain birch forest-tundra heath ecotone in northern Sweden (organic and mineral soils from the forest, and organic soil only from the heath). Carbon dioxide production was then monitored continuously over the following 19 days. Neither inorganic N nor P additions substantially affected soil respiration rates when added separately. However, combined N and P additions stimulated microbial activity, with the response being greatest in the birch forest mineral soil (57% increase in CO2 production compared with 26% in the heath soil and 8% in the birch forest organic soil). Therefore, mineralisation rates in these soils may be stimulated if the overall nutrient availability to microbes increases in response to global change, but N deposition alone is unlikely to enhance decomposition. Adding either, or both, glucose and glycine increased microbial respiration. Isotopic separation indicated that the mineralisation of native soil organic matter (SOM) was stimulated by glucose addition in the heath soil and the forest mineral soil, but not in the forest organic soil. These positive ‘priming’ effects were lost following N addition in forest mineral soil, and following both N and P additions in the heath soil. In order to meet enhanced microbial nutrient demand, increased inputs of labile C from plants could stimulate the mineralisation of SOM, with the soil C stocks in the tundra-heath potentially most vulnerable.  相似文献   

5.
Changes in plant community structure, including the loss of plant diversity may affect soil microbial communities. To test this hypothesis, plant diversity and composition were experimentally varied in grassland plots cultivated with monocultures or mixtures of 2, 3 or 4 species. We tested the effects of monocultures versus mixtures and of plant species composition on culturable soil bacterial activity, number of substrates used and catabolic diversity, microbial biomass N, microbial respiration, and root biomass. These properties were all measured 10 months after seeding the experiment. Soil bacterial activity, number of substrates used and catabolic diversity were measured in the different plant communities using BIOLOG GN and GP microplates, which are redox-based tests measuring capacity of soil culturable bacteria to use a variety of organic substrates. Microbial biomass N, microbial respiration, and root biomass were insensitive to plant diversity. Culturable soil microbial activity, substrates used and diversity declined with declining plant diversity. Their activity, number of substrates used and diversity were significantly higher in plots with 3 and 4 plant species than in monocultures and in plots with 2 species. There was also an effect of plant species composition. Culturable soil microbial activity and diversity was higher in the four-species plant community than in any of the plant monocultures suggesting that the effect of plant diversity could not be explained by the presence of a particular plant species. Our results showed that changes in plant diversity and composition in grassland ecosystems lead to a rapid response of bacterial activity and diversity.  相似文献   

6.
Soil organic carbon (SOC) turnover is the most ubiquitous and ecologically fundamental process in soils. It is generally assumed that SOC is utilised by functionally redundant soil-specific microbial communities which do not differ in their capability to mineralise soil organic matter. To challenge this assumption, incubation experiments were conducted to analyse the community-specific effects on SOC turnover for six mineral soils under different land-use. Comparisons of respiration by a native soil community and an alien community both inoculated to sterilised soils revealed 29 ± 18% higher respiration by the native community (‘home-field advantage’). Increased soil microbial community diversity, as generated by mixing several microbial inoculants, did not result in increased mineralisation rates. Even under impaired conditions, in the presence of aged engine oil as a less decomposable substance, communities with higher diversity did not show higher respiration rates. Also, in non-sterilised soils, we detected the influence of the microbial community composition on respiration rates: Investigations on the effect of mixing two communities in a 50:50 untreated soil mixture showed declining respiration in three out of six cases (by 23.9 ± 5.9%) and increased respiration in one case (by 57%) compared to the mean respiration of the two unmixed soils. These effects were highly related to the microbial community capability, with only communities with low capability profiting from mixing with a second community. Our results question the assumption of redundancy of microbial community’s functionality for SOC mineralisation in soils.  相似文献   

7.
《Applied soil ecology》2007,35(1):79-93
Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha−1) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.  相似文献   

8.
《Applied soil ecology》2008,38(3):202-214
The objectives of our research were to evaluate the impact of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors including soil microbial species and functional diversity and their effect on the Basidiomycete plant pathogen Sclerotium rolfsii, causal agent of Southern blight. Soils from 10 field locations including conventional, organic and sustainable farms were sampled and assayed for disease suppressiveness in greenhouse assays, and soil quality indicators. Soils from organic and sustainable farms were more suppressive to Southern blight than soils from conventional farms. Soils from organic farms had improved soil chemical factors and higher levels of extractable C and N, higher microbial biomass carbon and nitrogen, and net mineralizable N. In addition, soil microbial respiration was higher in soils from organic than sustainable or conventional farms, indicating that microbial activity was greater in these soils. Populations of fungi and thermophiles were significantly higher in soils from organic and sustainable than conventional fields. The diversity of bacterial functional communities was also greater in soils from organic farms, while species diversity was similar. Soils from organic and sustainable farms had improved soil health as indicated by a number of soil physical, chemical and biological factors and reduced disease.  相似文献   

9.
Microbial communities exist and are active in a complex 3-D physical framework which can cause a variety of micro-environments to develop that are more or less suitable for microbial growth, activity and survival. If there is a significant microbial biogeography at the pore scale in soil, then the relationship between microbial diversity and ecosystem function is likely to be affected by micro-environmental variations at the pore scale. In this laboratory study we show that there is a significant pore-scale microbial biogeography by labelling microbial communities in different pore size classes of undisturbed soil cores with 13C-labelled fructose (a soluble, labile substrate). This was achieved by adding the substrate solution to the samples at different matric potentials (−100 kPa, −3.15 kPa and −1 kPa; placing the substrate in pores with maximum diameter of 0.97, 9.7 and 97 μm, respectively) and incubating the samples for two weeks. The mineralisation of soil organic carbon and fructose was measured as CO2 and 13C-CO2, respectively, in the jar headspace throughout the incubation. At the end of incubation we analysed the total microbial community structure using PLFA. The structure of microbial communities in different pore size classes was measured by PLFA stable isotope probing. Total PLFA profiles suggested that there was little effect of the incubation conditions on microbial community structure. However, labelled PLFA profiles showed that microbial community structure differed significantly among pore size classes, the differences being due primarily to variations in the abundance of mono-unsaturated lipids (Gram-biomarkers) and of the fungal biomarker (C18:2(9,12)). This is the first evidence for a significant microbial biogeography at the pore scale in undisturbed soil cores.  相似文献   

10.
Microbial diversity and soil functions   总被引:43,自引:0,他引:43  
Soil is a complex and dynamic biological system, and still in 2003 it is difficult to determine the composition of microbial communities in soil. We are also limited in the determination of microbially mediated reactions because present assays for determining the overall rate of entire metabolic processes (such as respiration) or specific enzyme activities (such as urease, protease and phosphomonoesterase activity) do not allow any identification of the microbial species directly involved in the measured processes. The central problem posed by the link between microbial diversity and soil function is to understand the relations between genetic diversity and community structure and between community structure and function. A better understanding of the relations between microbial diversity and soil functions requires not only the use of more accurate assays for taxonomically and functionally characterizing DNA and RNA extracted from soil, but also high‐resolution techniques with which to detect inactive and active microbial cells in the soil matrix. Soil seems to be characterized by a redundancy of functions; for example, no relationship has been shown to exist between microbial diversity and decomposition of organic matter. Generally, a reduction in any group of species has little effect on overall processes in soil because other microorganisms can take on its function. The determination of the composition of microbial communities in soil is not necessary for a better quantification of nutrient transformations. The holistic approach, based on the division of the systems in pools and the measurement of fluxes linking these pools, is the most efficient. The determination of microbial C, N, P and S contents by fumigation techniques has allowed a better quantification of nutrient dynamics in soil. However, further advances require determining new pools, such as active microbial biomass, also with molecular techniques. Recently investigators have separated 13C‐ and 12C‐DNA, both extracted from soil treated with a 13C source, by density‐gradient centrifugation. This technique should allow us to calculate the active microbial C pool by multiplying the ratio between labelled and total DNA by the microbial biomass C content of soil. In addition, the taxonomic and functional characterization of 13C‐DNA allows us to understand more precisely the changes in the composition of microbial communities affected by the C‐substrate added to soil.  相似文献   

11.
Large accumulation of heavy metals in organic layers of forest soils may adversely affect the structure and diversity of microbial communities. The objective of this study was to assess the influence of different soil chemical properties on structure and diversity of microbial communities in soils polluted with different levels of heavy metals. The soil samples were taken at ten sites located in the vicinity of the cities of Legnica and Olkusz, differently polluted with Cu, Zn and Pb. The samples were measured for pH and the contents of organic C (Corg), total N (Nt), total S (St) and total Zn, Cu and Pb. The measured gross microbial properties included microbial biomass (Cmic) and soil respiration (RESP). The structure of soil microbial communities was assessed using phospholipid fatty acid (PLFA) analysis and the structure of soil bacterial communities using pyrosequencing of 16S rRNA genes. To assess diversity of the bacterial communities the Chao1 index was calculated based on the pyrosequencing data. For Cmic and RESP the most important factors were Nt and Corg, respectively. The structure and diversity of soil microbial communities revealed by PLFA profiles and pyrosequencing depended mainly on soil pH. The effect of high heavy metal contents on soil microbial properties was weaker compared with other soil properties. High concentrations of heavy metals negatively affected RESP and the Chao1 diversity index. The heavy metal pollution altered the structure of microbial communities measured with PLFA analysis, but the effect of heavy metal pollution was not observed for the structure of soil bacteria measured by pyrosequencing. The obtained results indicate that the use of soil microbial properties to study heavy metal effects may be difficult due to confounding influences of other environmental factors. In large-scale studies local variability of soil properties may obscure the effect of heavy metals.  相似文献   

12.
Plant roots are generally considered to decompose slower than shoots and contribute more to accumulation of soil organic matter, and management history is expected to shape the structure and function of decomposer communities in soil. Here we study the effect of chemical characteristics of shoots and roots from fodder radish (Raphanus sativus oleiformis L.), a widely used cover crop, on the release of their C and N after addition to soil. Shoots and roots were incubated for 180?d at 20°C using four soils with different management histories (organic versus mineral fertiliser, with and without use of cover crops), and the release of CO2 and extractable mineral N was determined. More shoot C than root C was mineralised during the first 10?d of incubation. After 180?d, 58% of the C input was mineralised with no difference between shoots and roots. At the end of incubation, shoots had released more N (42% of shoot N) than roots (28% of root N). Moreover, management history did not affect net mineralisation of added plant C. Residues incubated in soil with a management history involving cover crops showed an enhanced net N mineralisation. Therefore, long-term decomposition of C added in radish shoots and roots is unaffected by differences in chemical characteristics or soil management history. However, the net mineralisation of N in shoots is faster than for N in roots, and net N mineralisation of added materials is higher in soil with than without a history of cover crops.

Abbreviations: CC: cover crop; IF: inorganic fertilizer; M: manure  相似文献   

13.
Effects of fire on the functioning of the soil microbial community are largely unknown. In this study, we addressed the charcoal mineralisation potential of microbial inocula extracted from burned and unburned soil. The mineralisation of charcoal was analysed during a 1 month incubation experiment under controlled conditions with and without substrate addition. The aim of the study was to elucidate (1) the indirect effect of fire on the functioning of the soil microbial community in terms of charcoal degradation and (2) the possibility to stimulate this degradation by addition of two substrates of increasing complexity. Our conceptual approach included the monitoring of CO2 emission from microcosms containing laboratory-made charcoal and microbial inocula from burned and unburned soil with and without 13C labelled glucose and cellulose.Our results showed higher charcoal mineralisation without substrate addition in microcosms with the inocula from unburned soil compared to burned soil. Charcoal mineralisation was stimulated by the addition of glucose, whereas cellulose addition did not induce a priming effect. We observed a higher stimulation of charcoal mineralisation induced by glucose for the inoculum from burned soil compared to the inoculum from unburned soil. We concluded that fire did affect the functioning of the soil microbial community in terms of charcoal degradation and that the important priming effect induced by glucose may be explained by an increase of the overall microbial activity, rather than selective stimulation of charcoal degrading microbial communities.  相似文献   

14.
Organic management aims to promote soil biological activity. To test whether organic management stimulates soil biological activity, invertebrates (macrofauna, mesofauna and microfauna) were collected from four paired commercial organically and conventionally managed dairy farms on different soil types (Allophanic, Pallic, Recent and flooded Recent). Food webs were constructed and rates of invertebrate-mediated N mineralisation calculated. The organic dairy operations used fewer nutrient inputs and had lower stocking rates than their paired conventional farms. This translated into lower calculated pasture production and less available plant litter entering the soil food web. Despite the lower plant litter inputs into the organic system, earthworm biomass was higher (particularly in the Recent and flooded Recent soils), suggesting that under conventional management the physical condition of the soil, as influenced by stock treading pressures, was more important for invertebrate activity and their influence on N mineralisation than was food supply. Nitrogen mineralisation was higher in organic systems, with earthworms contributing the most (24–98 kg N/ha/year). As the physical loading on the soil increased under conventional management, the ability of the soil to provide soil services (i.e. N mineralisation and litter decomposition) became compromised. Organic management on four soils stimulated biological activity by reducing the treading pressure on the soil and highlights the need to consider the influence of management practices on the faunal environment (food availability and physical condition) to understand the impacts of organic management and the role of fauna in N mineralisation.  相似文献   

15.
Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4–20 °C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (CLOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, CLOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a “negative priming effect”, which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil.  相似文献   

16.
The number of studies on priming effects (PE) in soil has strongly increased during the last years. The information regarding real versus apparent PE as well as their mechanisms remains controversial. Based on a meta-analysis of studies published since 1980, we evaluated the intensity, direction, and the reality of PE in dependence on the amount and quality of added primers, the microbial biomass and community structure, enzyme activities, soil pH, and aggregate size. The meta-analysis allowed revealing quantitative relationships between the amounts of added substrates as related to microbial biomass C and induced PE. Additions of easily available organic C up to 15% of microbial biomass C induce a linear increase of extra CO2. When the added amount of easily available organic C is higher than 50% of the microbial biomass C, an exponential decrease of the PE or even a switch to negative values is often observed. A new approach based on the assessment of changes in the production of extracellular enzymes is suggested to distinguish real and apparent PE. To distinguish real and apparent PE, we discuss approaches based on the C budget. The importance of fungi for long-term changes of SOM decomposition is underlined. Priming effects can be linked with microbial community structure only considering changes in functional diversity. We conclude that the PE involves not only one mechanism but a succession of processes partly connected with succession of microbial community and functions. An overview of the dynamics and intensity of these processes as related to microbial biomass changes and C and N availability is presented.  相似文献   

17.
不同基肥对黄瓜根际土壤微生物群落多样性的影响   总被引:1,自引:0,他引:1  
分别以RAPD分子生物学方法和BIOLOG生理学方法,研究了不同基肥对黄瓜根际土壤微生物群落DNA序列多样性和群落功能多样性的影响。结果表明,在本试验条件下,基肥为75000 kg/hm2有机肥处理和75000 kg/hm2有机肥加300 kg/hm2复合肥处理最好;基肥为600 kg/hm2复合肥处理而使土壤微生物群落DNA序列丰富度指数和多样性指数显著下降,与对照的DNA序列相似系数最低;有机肥处理有利于土壤微生物群落DNA序列多样性、均匀度和黄瓜产量的提高。此外,不同基肥处理改变了土壤微生物对单一碳源的利用能力。  相似文献   

18.
This study investigates microbial communities in soil from sites under different land use in Kenya. We sampled natural forest, forest plantations, agricultural fields of agroforestry farms, agricultural fields with traditional farming and eroded soil on the slopes of Mount Elgon, Kenya. We hypothesised that microbial decomposition capacity, biomass and diversity (1) decreases with intensified cultivation; and (2) can be restored by soil and land management in agroforestry. Functional capacity of soil microbial communities was estimated by degradation of 31 substrates on Biolog EcoPlates™. Microbial community composition and biomass were characterised by phospholipid fatty acid (PLFA) and microbial C and N analyses. All 31 substrates were metabolised in all studied soil types, i.e. functional diversity did not differ. However, both the substrate utilisation rates and the microbial biomass decreased with intensification of land use, and the biomass was positively correlated with organic matter content. Multivariate analysis of PLFA and Biolog EcoPlate™ data showed clear differences between land uses, also indicated by different relative abundance of PLFA markers for certain microorganism groups. In conclusion, our results show that vegetation and land use control the substrate utilisation capacity and microbial community composition and that functional capacity of depleted soils can be restored by active soil management, e.g. forest plantation. However, although 20–30 years of agroforestry farming practises did result in improved soil microbiological and chemical conditions of agricultural soil as compared to traditional agricultural fields, the change was not statistically significant.  相似文献   

19.
It is well established that certain substrate additions to soils may accelerate or retard the mineralisation of soil organic matter. But up to now, research on these so called ‘priming effects’ was almost exclusively conducted with arable soils and with plant residues or glucose as additives. In this study, the effects of the uniformly 14C-labelled substrates fructose, alanine, oxalic acid and catechol on the mineralisation of soil organic carbon (SOC) from different horizons of two forest soils (Haplic Podzol and Dystric Cambisol) and one arable soil (Haplic Phaeozem) under maize and rye cultivation were investigated in incubation experiments for 26 days. Apart from the controls, all samples received substrate additions of 13.3 μg substrate-C mg−1 Corg. During the incubation, CO2-evolution was measured hourly and the amount of 14CO2 was determined at various time intervals. In almost all soils, priming effects were induced by one or several of the added substrates. The strongest positive priming effects were induced by fructose and alanine and occurred in the Bs horizon of the Haplic Podzol, where SOC mineralisation was nearly doubled. In the other soil samples, these substrates enhanced SOC mineralisation by +10 to +63%. Catechol additions generally reduced SOC mineralisation by −12 to −43% except in the EA horizon of the Haplic Podzol where SOC-borne CO2-evolution increased by +46%. Oxalic acid also induced negative as well as positive priming effects ranging from −24 to +82%. The data indicate that priming effects are ubiquitously occurring in surface and subsoil horizons of forest soils as well as in arable soils. Although a broad variety of soils was used within this study, relationships between soil properties and priming effects could not be ascertained. Therefore, a prediction on occurrence and magnitude of priming effects based on relatively easily measurable chemical and physical soil properties was not possible. Nevertheless, the data suggest that positive priming effects are most pronounced in forest soils that contain SOC of low biodegradability, where the added substrates may act as an important energy source for microbial metabolism.  相似文献   

20.
Marine inputs from seabirds (in the form of guano) to terrestrial coastal communities play an important role in supporting aboveground food webs. However, little is known about the importance of seabird-derived nutrient inputs for belowground food webs and their function relative to other factors that regulate belowground communities. Here, we tested the relative importance of nutrient enrichment from seabirds and grazing, a known driver of belowground properties, in determining the structure and function of the soil food web in an island system. This was tested by measuring the size and composition of the microbial community, the abundance of nematode feeding groups and rates of decomposition and net nitrogen (N) mineralisation in soil samples collected from grazed and ungrazed plots at coastal and inland locations, representing sites of high and low seabird influence respectively, on the Isle of May in the Firth of Forth, east Scotland. We found that proximity to seabird breeding colonies, and associated greater input of seabird-derived N, stimulated the size of the soil microbial biomass and the abundance of bacteria relative to fungi in the soil microbial community relative to inland areas that received significantly less N. Despite this, proximity to seabird colonies had no detectable effect on rates of decomposition or N-mineralisation. The short-term removal of mammalian grazers, in the form of rabbits, had only limited effects on the structure of the soil food web, mainly affecting the abundance of bactivorous nematodes which were greater in grazed than ungrazed situations. However, cessation of grazing did impact significantly on rates of N-mineralisation and decomposition, which were higher and lower in grazed than ungrazed situations respectively. In conclusion, our study provides evidence that allochthonous nutrient inputs from seabirds have significant impacts on the composition of the soil microbial community, and that these effects outweigh short-term effects of grazers as a driver of soil food web structure in the island system studied. Overall, our results indicate the important roles that natural sources of N and grazing play as drivers of soil food webs and their function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号