首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-term impact of tillage and residue management on soil microorganisms was studied over the growing season in a sandy loam to loamy sand soil of southwestern Quebec, growing maize (Zea mays L.) monoculture. Tillage and residue treatments were first imposed on plots in fall 1991. Treatments consisted of no till, reduced tillage, and conventional tillage with crop residues either removed from (−R) or retained on (+R) experimental plots, laid out in a randomized complete block design. Soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N) and phospholipid fatty acid (PLFA) contents were measured four times, at two depths (0-10 and 10-20 cm), over the 2001 growing season. Sample times were: May 7 (preplanting), June 25, July 16, and September 29 (prior to corn harvest). The effect of time was of a greater magnitude than those attributed to tillage or residue treatments. While SMB-C showed little seasonal change (160 μg C g−1 soil), SMB-N was responsive to post-emergence mineral nitrogen fertilization, and PLFA analysis showed an increase in fungi and total PLFA throughout the season. PLFA profiles showed better distinction between sampling time and depth, than between treatments. The effect of residue was more pronounced than that of tillage, with increased SMB-C and SMB-N (61 and 96%) in +R plots compared to −R plots. This study illustrated that measuring soil quality based on soil microbial components must take into account seasonal changes in soil physical and chemical conditions.  相似文献   

2.
Conservation management systems such as no tillage may enhance sequestration of soil C. The soil properties that contribute to soil C storage under such systems are still largely unknown, especially in subtropical agroecosystems. We investigated the influence of tillage [mouldboard plough (MP) and no tillage (NT)] on soil organic C, microbial biomass and activity, structural stability and mycorrhizal status of a field cultivated with maize (Zea mays L.) or bean (Phaseolus vulgaris L.) on a Vertisol in Northern Tamaulipas, Mexico. Crop type, tillage system and soil depth had a significant effect on soil organic C, aggregate stability and bulk density. Soil organic C, microbial biomass C and N and dehydrogenase and phosphatase activities were greater with NT than with MP, particularly under bean cultivation. In the 0–5 cm layer, microbial biomass C and N were, on average, about 87 and 51% greater in the soils cultivated with bean and maize, respectively, under NT than under MP. Higher levels of mycorrhizal propagules, glomalin related soil protein (GRSP) and stable aggregates were produced under NT than under MP in both crops. The no-tillage system can be considered an effective management practice for carrying out sustainable agriculture under subtropical conditions, due to its improvement of soil physical and biochemical quality and soil C sequestration.  相似文献   

3.
《Applied soil ecology》2011,47(3):390-397
Aggregation is important for soil functioning, providing physical protection of organic matter and microbial inhabitants. Tillage disrupts aggregates, increases wind and water erosion of soils and exposes formerly protected organic matter to decomposition and losses. Microbial biomass and community dynamics in dry-sieved aggregate-size classes from long-term no-till (NT) and conventionally tilled (CT) soils were examined using phospholipid fatty acid analysis (PLFA). Bacterial, fungal, and total biomass were up to 32% greater in NT compared to CT aggregates. Aggregate size also affected microbial biomass, which was highest in the 1–2 mm size class. Arbuscular mycorrhizal fungi (AMF) were particularly affected by tillage disturbance with increases of 40–60% among aggregate-size classes in NT vs. CT, but glomalin related soil protein concentration was not different between tillage treatments or among aggregate-size classes. Bacterial stress biomarkers were higher in CT than NT aggregates but were not significantly correlated with total C, total N or C:N ratio, indicating that the physiological status of bacteria within aggregates was not simply governed by the quantity of available resources. Ordination analysis of PLFA profiles demonstrated a shift in microbial community structure between NT and CT aggregates, correlated with AMF abundance in NT aggregates and increased bacterial stress biomarkers in CT aggregates. Our results demonstrated greater microbial biomass and altered microbial community structure in NT vs. CT aggregates. This work demonstrates that tillage management influences microbial community structure within aggregates and may provide a potential explanation for differences in process rates observed in NT vs. CT soils. Further research into the processes that govern community structure in aggregates from NT and tilled soils is needed to better understand how the interaction of microorganisms with their physical environment affects nutrient turnover and availability.  相似文献   

4.
No-till (NT) management greatly reduces soil physical disturbance and can result in a stratification of nutrients and organic matter in the soil profile due to the retention of crop residues on the soil surface potentially affecting the dynamics of microbial interactions in the soil. Microbial abundance and diversity can be used to assess the relative impact of management on the long-term sustainability of cropping systems. The objective of this study was to assess the impact of long-term NT vs. conventional tillage (CT) management on soil microbial community structure at four different sites on the Canadian prairies using phospholipid fatty acid analysis (PLFA) and DNA fingerprinting. Analysis of 16S and 18S rDNA using denaturing gradient gel electrophoresis revealed high inherent variability within bacterial and fungal community fingerprints among replicate field plots. Differences in bacterial and fungal phylogeny were related to depth in the soil profile but not to tillage management. Abundance of individual PLFA biomarkers were 7 to 86% greater in NT surface soils (0- to 5-cm depth), except at the Ellerslie site in 2005 where biomass was greater in CT. Responses at the 5- to 10-cm and 10- to 15-cm depths were more varied, in some cases with greater biomass in CT than NT soils. Ordination analysis of PLFA profiles showed clear community separation with depth but not tillage. Physiological stress biomarkers were correlated with simple measures of nutrient concentration and indicated that resource availability was likely the main factor determining community structure. It was concluded that tillage disturbance was not an overriding factor in determining microbial community composition in the long-term NT and CT soils studied. Further study of the interaction of cropping frequency with tillage management is needed to understand the effects of tillage disturbance on microbial turnover of plant derived residues.  相似文献   

5.
The objective of this study was to investigate the effects of short-term (less than 2 years) conservation managements [no-tillage (NT) and crop residue returning] on top soil (0–5 cm) microbial community composition and soil organic C (SOC) fractions under a rice-wheat rotation at Junchuan town of Hubei Province, China. Treatments were established following a split-plot design of a randomized complete block with tillage practices [conventional tillage (CT) and NT] as the main plot and residue returning level [no residue returning (0) and all residues returned to fields from the preceding crop (S, 2,146 kg C ha?1)] as the subplots. The four treatments were CT with or without residue returning (CT0 and CTS) and NT with or without residue returning (NT0 and NTS). The abundances of microbial groups [total FLFAs, fungal biomass, bacterial biomass, fungal biomass/bacterial biomass (F/B), monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), and microbial stress] were determined by phospholipid fatty acid (PLFA) analysis of soil. The ratio of MUFA/STFA reflects aeration of soil and greater MUFA/STFA means better aeration condition of soil. Moreover, the microbial stress, the ratio of cy19:0 to 18:1ω7, was regarded as an indicator of physiological or nutritional stress of microbial community. PLFA profiles were dominated by the fatty acids iC15:0 (9.8 %), C16:0 (16.5 %), 10Me17:0 (9.9 %), and Cyc19:0 (8.3 %), together accounting for 44.6 % of the total PLFAs. Compared with CT, NT significantly increased microbial biomass C (MBC) by 20.0 % but did not affect concentrations of total organic C (TOC), dissolved organic C (DOC), easily oxidizable C (EOC), and SOC of aggregates. Residue returning significantly increased MBC by 18.3 % and SOC content of 2–1-mm aggregate by 9.4 %. NT significantly increased total PLFAs by 9.8 % and fungal biomass by 40.8 % but decreased MUFA/STFA by 15.5 %. Residue returning significantly enhanced total PLFAs, bacterial biomass, fungal biomass, F/B, and MUFA/STFA by 31.1, 36.0, 95.9, 42.5, and 58.8 %, respectively, but decreased microbial stress by 45.9 %. Multivariate analysis (redundancy analysis and partial correlation analysis) indicated that SOC of 2–1-mm aggregate was related to changes in the composition of soil microbial groups, suggesting that SOC of 2–1-mm aggregate was sensitive to changes in soil microbial community composition affected by short-term conservation management practices in our study.  相似文献   

6.
为探讨耕作及轮作方式对农田土壤理化性质和碳组分的影响,设置免耕、传统耕作2种耕作方式,以及小麦-玉米轮作、小麦/玉米间作、小麦-冬油菜-玉米轮作3种种植模式,共形成6个处理,研究结果表明:与传统耕作相比,免耕增加了0~5 cm、5~20 cm土层全氮、全磷、速效磷和含水量,而降低了的土壤pH和土壤容重。免耕小麦/玉米间作(NT.W1/NT.WM.1)处理的土壤容重、含水量、全氮、全磷含量高于NT.WRM3和NT.WM5处理,在不同土层间,土壤全氮、全磷和速效磷含量随着土层深度的增加而降低。土壤碳组分含量总体表现为免耕处理高于传统耕作处理,免耕处理0~5 cm土层土壤有机碳、颗粒有机碳、可溶性有机碳、微生物量碳含量较相应传统耕作分别增加了1.31%~36.57%、2.07%~35.22%、2.38%~4.78%、2.08%~11.68%,在5~20 cm土层,免耕处理土壤有机碳和微生物量碳含量高于传统耕作。在不同免耕处理下,土壤有机碳,颗粒有机碳和微生物量碳含量在0~5 cm、5~20 cm土层总体表现为NT.WM5高于其他免耕处理,相关性分析表明,有机碳、微生物量碳和速效磷呈极显著正相关,容重和有机碳呈极显著负相关。综上所述,免耕小麦/玉米间作利于改善土壤理化性质,小麦-玉米轮作有利于提高土壤有机碳,颗粒有机碳和微生物量碳含量。  相似文献   

7.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

8.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

9.

Tillage systems and fertilization have important effects on soil microorganism activity. Information regarding the simultaneous evaluation of long-term tillage and fertilization on soil microbial traits in sunflower fields is not available. Therefore, this study was conducted to determine the best tillage and fertilization system for soil microbial parameters. The experimental design was a split plot based on a randomized complete block design with three replications. Main plots consisted of the long-term tillage systems (1999–2011) including: no tillage (NT), minimum tillage (MT) and conventional tillage (CT). Six methods of fertilization, including farmyard manure (N1), compost (N2), chemical fertilizers (N3), farmyard manure + compost (N4); farmyard manure + compost + chemical fertilizers (N5), and control (N6) were arranged in subplots. Results showed that the highest amount of microbial biomass was observed in treatment NTN4. The highest and lowest values of enzyme activities (acid, alkaline phosphatase, urease, dehydrogenase and protease) were found in organic fertilizers + NT and chemical fertilizers + CT plots, respectively. Highest basal and induced respiration values were found for NTN4 treatment. Correlation coefficients between enzyme activity, respiration and microbial biomass carbon were significant.  相似文献   

10.
 We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage with a moldboard plough (MP). Two soil depths were sampled (0–7.5 cm and 7.5–15 cm) at 4 different times during the crop cycle. Urea was applied at four different rates, ranging from 0 to 240 kg N ha–1. The levels of fertilizer N did not affect the UA, SOM content, and Nbiom content. No significant difference between the treatments (NT, DP, and MP) was observed for SOM during the experiment, probably because the major part of the SOM was in recalcitrant pools, since the area was previously cultivated (conventional tillage) for 20 years. The Nbiom content explained 97% and 69% of the variation in UA in the upper and deeper soil layer, respectively. UA and biomass N were significantly higher in the NT system compared to the DP and MP systems. The highest maize productivity and urea-N recovery was also observed for the NT system. We observed that the increase in urea-N losses under NT, possibly as a consequence of a higher UA, was compensated for by the increase in N immobilized in the biomass. Received: 2 July 1999  相似文献   

11.
The effect of tillage systems and crop rotation on microbial biomass phosphorus (MBP) and acid phosphatase (P‐ase) activity, and the amount of different phosphorus (P) forms measured by 31P‐NMR spectroscopy were studied on a field experiment carried out in a temperate Ultisol from southern Chile. Two tillage systems, no tillage (NT) and conventional tillage (CT) and two crop rotations, oat–wheat (OW) and lupine–wheat (LW) were evaluated 4 yr after the start of the experiment to determine the effects of such management on some soil biological parameters and P forms at three depths (0–5, 0–10 and 10–20 cm). Microbial biomass P ranged from 6.5 to 22.6 mg/kg, whereas the mean total P (PT) was 1995 mg/kg for all treatments (OW and LW). Microbial biomass carbon (MBC) and surface P accumulation (at 0–5 cm depth), including Olsen P, MBP, orthophosphate monoesters (monoester‐P), were larger under NT than CT. Tillage effects were greater than crop rotation effects in enhancing P availability. The LW rotation showed enhanced P‐ase activity and increased monoester‐P forms (57 vs. 30% of the total integral area of the spectra, in average) compared with OW. Nevertheless, OW rotation increased orthophosphate (ortho‐P), especially at 10–20 cm. Microbial biomass carbon ranged from 532 to 2351 mg/kg, which represented 1.2–4.5% of total organic C (Co). Furthermore, MBP correlated positively with MBC (r = 0.80), Olsen P (r = 0.77), Co (r = 0.77), pH (r = 0.65), PT (r = 0.65) and P‐ase activity (r = 0.57), suggesting the importance of the microbial biomass on soil P availability.  相似文献   

12.
A long-term study on the effect of different crop rotations [soybean/wheat, S/W; maize/wheat, M/W or cotton/wheat, C/W] and tillage regimes [no-tillage (NT) or conventional tillage (CT)] on microbial biomass and other soil properties is reported. The experiment was established in 1976 in southern Brazil as a split-plot experimental design in three replications. Soil samples were taken in 1997 and 1998 at 0- to 5-, 5- to 10- and 10- to 20-cm depths and evaluated for microbial biomass C, N, P and S by direct extraction methods. The NT system showed increases of 103%, 54%, 36%, and 44% for microbial biomass C, N, P, and Cmic:Corg percentage, respectively at the 0- to 5-cm depth. NT systems also increased the C to N:S:P ratios. These results provide evidence that tillage or crop rotation affect microbial immobilization of soil nutrients. The larger amount of C immobilized in microbial biomass suggests that soil organic matter under NT systems provides higher levels of more labile C than CT systems.  相似文献   

13.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

14.
The effects of land use and management practice on soil physical, chemical and microbiological properties may provide essential information for assessing sustainability and environmental impact. This study compared the effects of 41 years of no-tillage (NT) with continuous apple orchard, with those of conventional tillage (CT) with wheat–soybean rotation and another of puddling (PD) with continuous rice on the characteristics of a pumice Andisol in a temperate region of northern Japan. Higher values for bulk density, penetration resistance, pH, C/N ratio, exchangeable Na (X-Na), Fe, and Mn were observed for PD than NT and CT. On the other hand, organic matter, EC, N, exchangeable K (X-K), exchangeable Ca (X-Ca) and Cu were significantly higher for NT than CT and PD. Highest content of Zn was found in CT compared to other practices. The three-phase composition at pF 2.0 was significantly affected by land use and tillage practices. The solid phase and liquid phase were greater under PD than under NT and CT, while air phase was greater under CT than under NT and PD. Significantly higher values for saturated hydraulic conductivity was found in CT than NT and PD. Total phospholipid fatty acid (PLFA) and PLFA for bacteria, aerobes and cyanobacteria were remarkably higher in NT than CT and PD, regardless of depth. On the other hand, PLFA for methane-oxidizing bacteria, sulfate-reducing bacteria and mycorrhizae were significantly higher in CT than NT and PD. PLFA for fungi was significantly higher in surface (0–10 cm) soils than subsurface (10–20 cm) soils regardless of treatments. Highest bacterial and fungal diversity evaluated by DNA band number in DGGE analysis based on PCR amplification of 16S rDNA and 18S rDNA fragments, respectively, were observed in surface soil of PD. The result suggests a linkage between microbial community and tillage practices in temperate Andisol. This study also justifies the need of measuring soil characteristics based on soil microbial communities.  相似文献   

15.
【目的】通过研究黄淮平原潮土区两年不同轮耕模式下土壤微生物量碳氮、酶活性的差异和变化特征,为该地区选择适宜的耕作制度提供理论依据。【方法】2016-2018年采用裂区设计进行田间小麦–玉米轮作系统下的轮耕试验。主处理为小麦季旋耕(RT)和深耕(DT),3个副处理为玉米季免耕(NT)、行间深松(SBR)、行内深松(SIR),共6个处理。2017、2018年玉米收获后,每10 cm一个层次,测定了0-50 cm土层土壤有机质、全氮、速效养分、微生物量碳(SMBC)、微生物量氮(SMBN)和脲酶、蔗糖酶、中性磷酸酶活性。【结果】各处理土壤有机质、全氮、速效养分、SMBC、SMBN及酶活性均随土层深度的增加而降低,40-50cm土层不受耕作方式的影响。小麦季深耕和玉米季深松对表层土壤有机质和全氮影响不明显,但显著提高了深层土壤有机质和全氮含量。小麦季旋耕显著增加了玉米季0-10 cm土层中速效养分含量,而小麦季深耕条件下的DT-SBR和DT-SIR处理则显著增加了20-40 cm土层中的速效养分含量。在0-20 cm土层,小麦季旋耕条件下的RT-NT、RT-SBR和RT-SIR处理的SMBC明显高于小麦季深耕条件下的DT-NT、DT-SBR和DT-SIR处理,但在20-40 cm土层,SMBC和SMBN均表现为小麦季深耕处理显著高于旋耕处理,且以DT-SIR处理SMBC (67.99 mg/kg)和SMBN (45.96 mg/kg)最高。小麦季深耕处理提高了深层(30-40 cm)土壤微生物量氮/全氮值,但降低了表层(0-20 cm)土壤中的微生物熵。玉米季深松处理(RT-SBR、RT-SIR、DT-SBR和DT-SIR)较免耕处理(RT-NT和DT-NT)均提高了土壤酶活性,其中,在0-20 cm土层,RT-SBR和RT-SIR处理土壤脲酶活、蔗糖酶和中性磷酸酶活性较高;而DT-SBR和DT-SIR处理则提高了深层(20-40 cm)土壤中这三种酶的活性。【结论】在本试验期内,小麦季旋耕–玉米季深松处理(RT-SBR和RT-SIR)能明显提高0-10 cm土壤速效养分含量、0-20 cm土壤微生物量碳含量,而小麦季深耕–玉米季深松处理(DT-SBR和DT-SIR)则提升了20-40 cm土层土壤有机质、全氮、速效养分、微生物量碳和氮含量;小麦季深耕处理提高了深层(30-40 cm)微生物量氮/全氮比,但降低了表层(0-20 cm)土壤微生物熵。  相似文献   

16.
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil-ization systems on microbial biomass C,N and P of a gray fluvo-aguic soil in rice-based cropping system .Five fertilization treatments were designed under conventional tillae(CT) or on tillage(NT) system:no fertilizer(CK) ; chemical fertilizer only(CF) ; combining chemical fertilizer with pig manure(PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C,N and P were enriched in the surface layer of no-tilled soil,whereas they distributed relatively evenly in the tilled soil,which might result from enrichment of crop resdue,organic manure and mineral fertilzer,and surficial developent of root systems under NT.Under the cultivation system NT had slightly greater biomass C,N and P at 0-5 cm depth ,significantly less biomass C,N and P at 5-15 cm depth ,less microbial biomass C,N and equivalent biomass P at 15-30 cm depth as compared to CT,indicating hat tillage was beneficial for the multiplication of organims in the plowed layer of soil.Under the fallow system,biomass C,N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were neligible in the deeper layers.In the surface layer,biomass C,N and P in the soils amended with oranic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control.Soils without fertilzer had the least biomass nutrient contents among the five fertilization treatments.Obviously,the long-term application of organic manure could maintain the higher activity of microorganisms in soils.The amounts of biomass C,N and P in the fallowed soils varied with the tillage methods;they were much greater under NT than under CT,especially in the surface layer,suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.  相似文献   

17.
The impacts of tillage and organic fertilization on soil organic matter (SOM) are highly variable and still unpredictable, and their interactions need to be investigated under various soil, climate and cropping system conditions. Our work examined the effect of reduced tillage and animal manure on SOM stocks and quality in the 0–40 cm layer of a loamy soil under mixed cropping system and humid temperate climate. The soil organic carbon (SOC) and N stocks, particulate organic matter (POM), and C and N mineralization potential (301 days at 15 °C) were measured in a 8‐yr‐old split‐plot field trial, including three tillage treatments [mouldboard ploughing (MP), shallow tillage (ST), no tillage (NT)] and two fertilization treatments [mineral (M), poultry manure 2.2 t/ha/yr C (O)]. No statistically significant interactive effects of tillage and fertilization were measured except on C mineralization. NT and ST showed greater SOC stocks (41.2 and 39.7 t/ha C) than MP (37.1 t/ha C) in the 0–15 cm increment, while no statistical differences were observed at a greater depth. N stocks exhibited similar distribution patterns with regard to tillage effect. Animal manure, applied at a rate representative of typical field application rates, had a smaller impact on SOC and N stocks than tillage. The mean SOC and N stocks were higher under O than M, but the differences were statistically significant only in the 0–5 cm increment. MP showed lower C‐POM stocks than NT and ST in the 0–5 cm increment, whereas greater C‐POM stocks were measured under MP than under NT or under ST in the 20–25 cm increment. Organic fertilization had no impact on C‐POM or N‐POM stocks. In the 0–25 cm increment, NT showed a lower C and N mineralization potential than MP. Our work shows that the sensitivity of SOM to reduced tillage for the whole soil profile can be relatively small in a loamy soil, under humid‐temperate climate. However, POM was particularly sensitive to the differential effects of tillage practices with depth, and indicative of differentiation in total SOM distribution in the soil profile.  相似文献   

18.
【目的】 施肥能直接或间接改变农田生态系统的养分平衡,从而影响土壤的物理、化学和生物学特性。本研究探讨不同种植制度和土壤条件下施肥对农田土壤生物学特性的影响程度,为合理施肥和土壤肥力提升提供科学依据。 【方法】 通过收集近10年 (2008—2018年) 来发表的文献,建立了包含185组微生物量及群落结构等相关内容的数据库。采用整合分析方法(Meta-analysis),定量分析了施肥对土壤微生物量、群落结构以及酶活性的影响。 【结果】 与不施肥相比,施肥显著提高了土壤微生物磷脂脂肪酸 (PLFA) 和微生物量碳、氮含量,提高幅度分别为28.5%、30.9%和41.6%。施用 (单施或配施) 有机物料对土壤微生物总PLFA含量及微生物量碳、氮含量的提高幅度分别为47.3%、50.4%和58.7%,相当于施用化肥的2.8、2.4和3.9倍。与不施肥相比,施肥均能增加各类微生物菌群PLFA含量,对细菌、真菌及放线菌的提高幅度为23.8%~30.4%,对革兰氏阴性菌(G–)和革兰氏阳性菌 (G+) 的提高幅度为37.8%~43.2%,且施用有机物料处理对各类微生物菌群PLFA含量的提高幅度显著高于施化肥处理。施用化肥对土壤微生物总PLFA含量的提高幅度在一年两熟制区为17.9%,在水田和水旱轮作条件下为18.3%~27.6%,而在一年一熟制区及旱地条件下对土壤微生物总PLFA含量无显著影响。在不同pH的土壤中,施用有机物料对微生物总PLFA的提高幅度均显著高于施化肥处理。在pH < 6与pH > 8的土壤上施用化肥对微生物总PLFA含量无明显影响。施肥显著提高了与土壤有机质分解相关的β-葡萄糖苷酶(42.4%)和乙酰氨基葡萄糖苷酶(174.5%)的活性,对与氮循环相关的亮氨酸氨基肽酶活性无显著影响。统计分析还表明,施肥并未改变土壤微生物的真菌细菌比(F∶B)和革兰氏阳性菌革兰氏阴性菌比(G +∶G–)。 【结论】 在不同种植制度、土地利用类型和土壤pH下,施肥显著改变了土壤微生物量和与有机质分解相关的酶活性,但未改变土壤微生物的真菌细菌比(F∶B)和革兰氏阳性菌革兰氏阴性菌比(G+∶G–)。单施或配施有机物料均有利于提高农田土壤微生物总量及各类菌群的生物量,效果显著好于单施化肥。   相似文献   

19.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

20.
Soil carbon (C) and nitrogen (N) are important for maintaining soil fertility, and they are considerably affected by soil use and management. In the present study, we conducted an 8-year ?eld experiment on loessial dryland soil (Eum-Orthic Anthrosol, Food and Agriculture Organization of the United Nations (FAO)) in the southern Loess Plateau, China. We tested four soil management regimes—i.e., winter wheat (Triticum aestivum L.) cultivation with phosphorus (P) fertilization (WP), winter wheat cultivation with N and P fertilization (WNP), natural fallow (NF) and bare fallow (BF)—to evaluate their effects on soil C and N fractions. After 8 years, compared with the WNP treatment, the total soil organic nitrogen (SON) in the WP treatment decreased by 14.6% and 36.8%, and microbial biomass nitrogen (MBN) by 35.6% and 61.1%, at 0–20 and 20–40 cm soil depths, respectively. The soil heavy fraction nitrogen (HFN) and light fraction nitrogen (LFN) in the WP treatment also decreased by 36.6% and 39.4%, respectively. Furthermore, BF treatment decreased total soil organic carbon (SOC), heavy fraction carbon (HFC), LFN and MBN at both soil depths with average reductions of 43.4%. The NF treatment decreased light fraction carbon (LFC) by 17.0% at 0–20 cm soil depth, as well as MBN by 24.8% and 71.2%, and inorganic C by 29.1% and 23.8%, at 0–20 and 20–40 cm soil depths, respectively. There was no significant difference of microbial biomass C concentration among the WP, NF and BF treatments. These results confirmed that a lack of N fertilization decreased SON, BF reduced both SOC and SON, and NF decreased soil inorganic C. Therefore, the managements of a recommended rate of N fertilizer application and shortened time of bare fallow are critical for maintaining or increasing SON fraction sequestration, and natural fallow management is not a useful method for maintaining soil fertility in dryland in the Loess Plateau in China.

Abbreviations: HFC: heavy fraction carbon; HFN: heavy fraction nitrogen; LFC: light fraction carbon; LFN: light fraction nitrogen; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen; SOC: soil organic carbon; SON: soil organic nitrogen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号