首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
基于深度卷积神经网络的田间麦穗密度估计及计数   总被引:8,自引:8,他引:0  
小麦的最终产量可由单位面积的小麦麦穗数侧面反映,为了快速准确统计小麦麦穗数,该研究给出一种在单幅图像上利用深度卷积神经网络估计田间麦穗密度图并进行麦穗计数的方法。首先对采集的田间小麦图像进行直方图均衡化及阈值分割预处理,以减少图像中光照及一些复杂背景对计数的影响;然后根据灌浆期田间小麦图像麦穗密集的特点,引入拥挤场景识别网络(Congested Scene Recognition Network,CSRNet)构建麦穗密度图估计模型,并采用迁移学习方法,利用小麦图像公开数据集对模型进行预训练,再用所采集的小麦图像数据集进行模型参数调整和优化;利用得到的模型生成单幅小麦图像的麦穗密度图,根据密度图中所有密度值的总和对图像进行麦穗计数。最后根据对单幅麦穗图像的试验数据,构建田间麦穗计数函数模型,实现田间小麦麦穗数估计。通过对所采集的安农170、苏麦188、乐麦608和宁麦24这4个品种共296幅小麦图像进行试验,平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Squared Error,RMSE)分别为16.44和17.89,4个品种小麦的麦穗计数值与真实值的决定系数R2均在0.9左右,表明该方法对单幅图像小麦麦穗计数精度较高。此外,通过对田间小麦麦穗数进行估计试验,结果表明,随面积的增大麦穗估计的误差越小,研究结果可以为小麦的产量自动估计提供参考。  相似文献   

2.
基于无人机图像的多尺度感知麦穗计数方法   总被引:3,自引:3,他引:0       下载免费PDF全文
小麦是世界上重要的粮食作物,其产量的及时、准确预估对世界粮食安全至关重要,小麦穗数是估产的重要数据,因此该研究通过构建普适麦穗计数网络(Wheat Ear Counting Network,WECnet)对灌浆期小麦进行精准的计数与密度预估。选用多个国家不同品种的麦穗图像进行训练,并且对数据集进行增强,以保证麦穗多样性。在原始人群计数网络CSRnet基础上,针对小麦图像特点构建WECnet网络。在网络前端,通过使用VGG19的前12层进行特征提取,同时与上下文语义特征进行融合,充分提取麦穗的特征信息。后端网络使用不同空洞率的卷积加大感受野,输出高质量的密度图。为了验证模型的可迁移性与普适性,该研究通过基于全球小麦数据集训练好的模型对无人机实拍的麦田图像进行计数。试验结果表明:在全球小麦数据集上,WECnet训练模型的决定系数、均方根误差(Root Mean Square Error,RMSE)与平均绝对误差(Mean Absolute Error,MAE)分别达到了0.95、6.1、4.78。在无人机拍摄图像计数中,决定系数达到0.886,整体错误率仅为0.23%,平均单幅小麦图像计数时间为32 ms,计数速度与精度均表现优异。结果表明,普适田间小麦计数模型WECnet可以对无人机获取图像中小麦的准确计数及密度预估提供数据参考。  相似文献   

3.
基于小麦群体图像的田间麦穗计数及产量预测方法   总被引:15,自引:11,他引:4  
在田间小麦测产时,需人工获取田间单位面积内的麦穗数和穗粒数,耗时耗力。为了快速测量小麦田间单位面积内的产量,该文利用特定装置以田间麦穗倾斜的方式获取田间麦穗群体图像,通过转换图像颜色空间RGB→HSI,提取饱和度S分量图像,然后把饱和度S分量图像转换成二值图像,再经细窄部位粘连去除算法进行初步分割,再由边界和区域的特征参数判断出粘连的麦穗图像,并利用基于凹点检测匹配连线的方法实现粘连麦穗的分割,进而识别出图像中的麦穗数量;通过计算图像中每个麦穗的面积像素点数并由预测公式得到每个麦穗的籽粒数,进而计算出每幅图像上所有麦穗的预测籽粒数,然后计算出0.25 m2区域内对应的4幅图像上的预测籽粒数;同时根据籽粒千粒质量数据,计算得到该区域内的产量信息。该文在识别3个品种田间麦穗单幅图像中麦穗数量的平均识别精度为91.63%,籽粒数的平均预测精度为90.73%;对3个品种0.25 m2区域的小麦麦穗数量、总籽粒数及产量预测的平均精度为93.83%、93.43%、93.49%。运用该文方法可以实现小麦田间单位面积内的产量信息自动测量。  相似文献   

4.
基于高光谱技术的菌落图像分割与计数   总被引:4,自引:4,他引:0  
在平板菌落计数过程中,菌落与背景区域类似的颜色会干扰菌落的准确计数。为了准确测定细菌数,该研究利用高光谱图像技术捕捉成分差异引起的菌落与背景区域光谱特征,并结合化学计量学方法对平板的菌落进行分割并实现计数。采集枯草芽孢杆菌菌落平板的高光谱图像,提取菌落、背景区域的高光谱信息;利用遗传算法结合最小二乘支持向量机建立菌落区域/背景区域判别模型;随后,将菌落平板高光谱图像中每一个像素点对应的光谱信息代入判别模型以判断属于菌落的区域,模型的识别率为97.22%;最后,利用特征波段下的高光谱图像实现菌落的分割及计数,计数平均相对误差值为4.2 %,用时约为10 min。相比较于计算机视觉计数法,菌落计数法的平均相对误差降低了49.4%,结果表明建立的方法有望成为一类新的准确平板菌落计数方法。  相似文献   

5.
单位面积麦穗数是估算小麦产量的重要指标,对于作物表型参数计算、产量预测和大田管理都具有重要的意义。目前的研究均未以单位面积麦穗图像为研究对象,为准确获取单位面积麦穗数,该研究提出了基于改进YOLOX的单位面积麦穗检测方法,利用采样框直接实现单位面积麦穗计数。首先,设计了一种简单的单位面积采样框,通过训练角点检测网络识别采样框,以提取单位面积小麦区域;其次,针对麦穗检测中存在的目标密集和相互遮挡问题,在麦穗检测网络的特征融合层,采用上下文信息进行特征重组的上采样方法(Content-Aware ReAssembly of Features,CARAFE)代替YOLOX-m模型中的上采样算法,同时结合迭代注意力特征融合模块(iterative Attentional Feature Fusion,iAFF),增加对麦穗空间信息和语义信息的提取。试验结果表明,改进的YOLOX-m模型明显改善了对密集麦穗和遮挡麦穗的检测效果,其精确率、召回率、平均精确度和F1值分别为96.83%、91.29%、92.29%和93.97%,与SSD、CenterNet和原YOLOX-m模型相比,平均精确度分别提升了10.26、8.2和1.14个百分点。该研究方法能够直接对复杂大田场景下的单位面积麦穗进行准确检测和计数,为实际生产小麦产量预测中的麦穗智能化计数提供了一种方法参考。  相似文献   

6.
基于多相机成像的玉米果穗考种参数高通量自动提取方法   总被引:1,自引:1,他引:0  
宋鹏  张晗  罗斌  侯佩臣  王成 《农业工程学报》2018,34(14):181-187
实现玉米果穗考种性状的准确、快速获取是提高玉米育种效率的关键环节。该文在前期设计的玉米高通量自动化考种装置基础上,提出了一种基于多相机的玉米果穗考种参数提取方法,通过4个等间隔均匀分布的摄像头同时获取果穗4个方向图像,针对每副图像分别经过背景去除、投影模型构建、籽粒跟踪、考种参数提取等处理,最后根据4副图像的处理结果,综合计算穗长、穗粗、平均粒厚、穗行数、行粒数、穗粒数等考种参数。在玉米高通量自动化考种装置的果穗考种模块上进行试验,结果表明,该文所提方法测得的穗长、穗粗、平均粒厚与人工方法测量值之间的决定系数R2分别为0.997 3、0.984和0.941 5,对穗行数、行粒数的测量精度分别为98.63%、95.35%,为玉米果穗考种参数提取提供了一种新思路,为高通量自动考种装置的实现奠定了基础。  相似文献   

7.
在无人机上安装光学传感器捕捉农作物图像是一种经济高效的方法,它有助于产量预测、田间管理等。该研究以无人机小麦作物图像为研究对象,针对图像中麦穗分布稠密、重叠现象严重、背景信息复杂等特点,设计了一种基于TPH-YOLO(YOLO with transformer prediction heads)的麦穗检测模型,提高无人机图像麦穗计数的精度。首先,为了减小光照不均匀对无人机图像质量造成的影响,该研究采用Retinex算法进行图像增强处理。其次,在YOLOv5的骨干网络中添加坐标注意力机制(coordinateattention,CA),使模型细化特征,更加关注麦穗信息,抑制麦秆、麦叶等一些背景因素的干扰。再次,将YOLOv5中原始的预测头转换为Transformer预测头(transformer prediction heads,TPH),该预测头具有多头注意力机制的预测潜力,可以在高密度场景下准确定位到麦穗。最后,为了提高模型的泛化能力和检测精度,采用了迁移学习的训练策略,先使用田间采集的小麦图像数据集对模型进行预训练,接着再使用无人机采集的小麦图像数据集对模型进行参数更新和优化训练,...  相似文献   

8.
为解决高湿高雾的红茶发酵场景下,无法实时采集图像的问题,该研究基于加热除雾防潮装置与工业相机系统,设计了高湿高雾环境下红茶发酵叶图像实时采集系统。系统主要由工业相机、镜头、加热除雾防潮装置、面光源、固定支架、控制软件与电脑组成。利用该系统采集单芽、叶片、茎、一芽二叶的发酵进程图像,通过图像处理技术,可以有效提取发酵叶的颜色特征信息;利用茶叶感官审评、发酵叶色泽与气味变化的方法,将采集的1 564张图像分为发酵轻、偏轻、适度、过度4个带有红茶品质标签的数据集,数据集按照7∶3的比例划分为训练集和测试集,训练集通过MobileNetV3 + Vision Transformer技术搭建深度学习模型,模型预测准确率达到95.68%;开发的可视化红茶发酵程度判别软件,可以实现红茶发酵程度有效预测与结果输出。研究结果表明,设计的图像实时采集系统可为红茶发酵程度智能化判别装备研发提供数据基础和技术支持。  相似文献   

9.
基于深度卷积神经网络的水稻穗瘟病检测方法   总被引:15,自引:9,他引:6  
穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺度卷积核提取不同尺度穗瘟病斑分布式特征并进行级联融合。GoogLeNet利用其结构深度和宽度,学习复杂噪声高光谱图像的隐高维特征表达,并在统一框架中训练Softmax分类器,实现穗瘟病害预测建模。为验证该研究所提方法的有效性,以1 467株田间采集的穗株为试验对象,采用便携式户外高光谱成像仪Gaia Field-F-V10在自然光照条件下拍摄穗株高光谱图像,并由植保专家根据穗瘟病害描述确定其穗瘟标签。所有高光谱图像-标签数据对构成GoogLeNet模型训练和验证的原始数据集。该文采用随机梯度下降算法(SGD,stochastic gradient descent)优化GoogLeNet模型,提出随机扔弃1个波段图像和随机平移平均谱图像亮度的2种数据增强策略,增加训练数据规模,防止模型过拟合并改善其泛化性能。经测试,验证集上穗瘟病害预测最高准确率为92.0%。试验结果表明,利用GoogLeNet建立的深度卷积模型,可以很好地实现水稻穗瘟病害的精准检测,克服室外自然光条件下利用光谱图像进行病害预测面临的困难,将该类研究往实际生产应用推进一大步。  相似文献   

10.
基于改进K-means聚类算法的大田麦穗自动计数   总被引:7,自引:5,他引:2  
单位种植面积的小麦麦穗数量是评估小麦产量和小麦种植密度的一个重要参量。为了实现高效、自动地麦穗计数,该文提出了基于改进K-means的小麦麦穗计数方法。该方法建立从图像低层颜色特征到图像中包含麦穗的一个直接分类关系,从而不需要再对图像进行分割或检测。以颜色特征聚类为基础的这种方法能够估计麦穗在空间局部区域中数量,并且在不需要训练的情况下更具有可扩展性。统计试验结果表明,该文算法能够适应不同光照环境,麦穗计数的准确率达到94.69%,超过了传统基于图像颜色特征和纹理特征分割的麦穗计数方法 93.1%的准确率。  相似文献   

11.
准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Look Once v3,YOLOv3)和SORT(Simple Online and Realtime Tracking,SORT)的云杉数量统计方法。主要内容包括数据采集、YOLOv3检测模型构建、SORT跟踪算法和越线计数算法设计。以平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)和帧率(Frame Rate,FR)为评价指标,该方法对测试集中对应6个不同试验地块的视频内云杉进行数量统计的平均计数准确率MCA为92.30%,平均绝对误差MAE为72,均方根误差RMSE为98.85,帧率FR 11.5 帧/s。试验结果表明该方法能够快速准确统计完整地块的云杉数量。相比SSD+SORT算法,该方法在4项评价指标优势显著,平均计数准确率MCA高12.36%,帧率FR高7.8 帧/s,平均绝对误差MAE和均方根误差RMSE分别降低125.83和173.78。对比Faster R-CNN+SORT算法,该方法在保证准确率的基础上更加快速,平均计数准确率MCA仅降低1.33%,但帧率FR提高了10.1 帧/s。该研究从无人机航拍视频的角度为解决完整地块的苗木数量统计问题做出了有效探索。  相似文献   

12.
为解决复杂跨域场景下猪个体的目标检测与计数准确率低下的问题,该研究提出了面向复杂跨域场景的基于改进YOLOv5(You Only Look Once version 5)的猪个体检测与计数模型。该研究在骨干网络中分别集成了CBAM(Convolutional Block Attention Module)即融合通道和空间注意力的模块和Transformer自注意力模块,并将CIoU(Complete Intersection over Union)Loss替换为EIoU(Efficient Intersection over Union)Loss,以及引入了SAM (Sharpness-Aware Minimization)优化器并引入了多尺度训练、伪标签半监督学习和测试集增强的训练策略。试验结果表明,这些改进使模型能够更好地关注图像中的重要区域,突破传统卷积只能提取卷积核内相邻信息的能力,增强了模型的特征提取能力,并提升了模型的定位准确性以及模型对不同目标大小和不同猪舍环境的适应性,因此提升了模型在跨域场景下的表现。经过改进后的模型的mAP@0.5值从87.67%提升到98.76%,mAP@0.5:0.95值从58.35%提升到68.70%,均方误差从13.26降低到1.44。以上研究结果说明该文的改进方法可以大幅度改善现有模型在复杂跨域场景下的目标检测效果,提高了目标检测和计数的准确率,从而为大规模生猪养殖业生产效率的提高和生产成本的降低提供技术支持。  相似文献   

13.
基于无人机图像和贝叶斯CSRNet模型的粘连云杉计数   总被引:1,自引:1,他引:0  
自动、准确且快速地统计苗木数量是实现苗圃高效管理的重要基础。针对现有苗木计数方法准确率较低且无法准确统计粘连苗木等问题,该研究提出了一种基于贝叶斯CSRNet模型的云杉计数模型。该模型以对粘连苗木具有良好稳定性的CSRNet模型为基础,引入贝叶斯损失函数,以人工标注的点标签数据作为监督信号。以1 176幅云杉图像训练贝叶斯CSRNet模型,并通过166幅测试集云杉图像测试。结果表明,贝叶斯CSRNet模型可以准确、快速地统计无人机航拍图像内的云杉,对测试集图像内云杉的平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)和均方误差(Mean Square Error,MSE)分别为99.19%、1.42和2.80。单幅云杉图像耗时仅为248 ms,模型大小为62 Mb。对比YOLOv3模型、改进YOLOv3模型、CSRNet模型和贝叶斯CSRNet模型对166幅测试集云杉图像的计数结果,贝叶斯CSRNet模型的MCA分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型高3.43%、1.44%和1.13%;贝叶斯CSRNet模型的MAE分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型低6.8、2.9和1.67;贝叶斯CSRNet模型的MSE分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型低101.74、23.48和8.57。在MCT和MS两项指标上,贝叶斯CSRNet模型与CSRNet模型相同且优于YOLOv3模型和改进YOLOv3模型。贝叶斯CSRNet模型可实现无人机航拍图像内苗木数量的自动、准确、快速统计,为苗木库存智能盘点提供参考。  相似文献   

14.
实现繁育期精准个体检测是提高集约养殖环境下肉鸽繁育效率和精准管控效果的有效手段,其中小目标鸽蛋及粘连乳鸽的精准检测是关键。该研究提出了一种基于改进RetinaNet的目标检测模型,以RetinaNet网络为基础框架,将ResNet50特征提取网络与特征金字塔网络(Feature Pyramid Networks,FPN)结合,增加特征金字塔网络中特征检测尺度,提升对图像中遮挡鸽蛋与粘连乳鸽的检测精度;在分类和回归子网络前引入卷积注意力模块(Convolutional Block Attention Module,CBAM),提升对小目标检测的精度。试验结果表明,该研究提出的模型对于笼养肉鸽个体检测的平均精度均值(mean Average Precision,mAP)达到80.89%,相比SSD、YOLOv3、YOLOv4、YOLOv5s、YOLOv5m和原始RetinaNet模型提高了18.66、29.15、19.92、21.69、18.99与15.45个百分点;对成鸽、乳鸽与鸽蛋检测的平均精度(Average Precision,AP)分别为95.88%,79.51%和67.29%,相对原始RetinaNet模型提高了2.16、21.74和22.48个百分点,在保证成鸽精准检测的基础上,显著提升了对复杂环境下存在局部遮挡的小目标鸽蛋以及粘连乳鸽的检测精度,为实现集约化养殖环境下肉鸽繁育周期个体检测和精准管控提供有效支持。  相似文献   

15.
采用轻量级网络MobileNetV2的酿酒葡萄检测模型   总被引:1,自引:1,他引:0  
为提高高分辨率田间葡萄图像中小目标葡萄检测的速度和精度,该研究提出了一种基于轻量级网络的酿酒葡萄检测模型(Wine Grape Detection Model,WGDM)。首先,采用轻量级网络MobileNetV2取代YOLOv3算法的骨干网络DarkNet53完成特征提取,加快目标检测的速度;其次,在多尺度检测模块中引入M-Res2Net模块,提高检测精度;最后,采用平衡损失函数和交并比损失函数作为改进的定位损失函数,增大目标定位的准确性。试验结果表明,提出的WGDM模型在公开的酿酒葡萄图像数据集的测试集上平均精度为81.2%,网络结构大小为44 MB,平均每幅图像的检测时间为6.29 ms;与单发检测器(Single Shot Detector,SSD)、YOLOv3、YOLOv4和快速区域卷积神经网络(Faster Regions with Convolutional Neural Network,Faster R-CNN)4种主流检测模型相比,平均精度分别提高8.15%、1.10%、3.33%和6.52%,网络结构分别减小了50、191、191和83 MB,平均检测时间分别减少了4.91、7.75、14.84和158.20 ms。因此,该研究提出的WGDM模型对田间葡萄果实具有更快速、更准确的识别与定位,为实现葡萄采摘机器人的高效视觉检测提供了可行方法。  相似文献   

16.
基于RGB图像与深度学习的冬小麦田间长势参数估算系统   总被引:4,自引:4,他引:0  
为准确、快速获取冬小麦田间长势信息,该研究设计并实现了一种基于深度学习的冬小麦田间长势参数估算系统。该系统主要包含长势参数估算模块和麦穗计数模块。长势参数估算模块基于残差网络ResNet18构建长势参数估算模型,实现了冬小麦苗期叶面积指数(Leaf Area Index,LAI)和地上生物量(Above Ground Biomass,AGB)的估算,并基于迁移学习进行泛化能力测试;麦穗计数模块基于Faster R-CNN并结合非极大值抑制(Non Maximum Suppression,NMS)构建麦穗计数模型,实现了开花期麦穗准确计数。结果表明,针对2017-2018和2018-2019两个生长季数据,基于ResNet18的长势参数估算模型对LAI估算的决定系数分别为0.83和0.80,对AGB估算的决定系数均为0.84,优于基于传统卷积神经网络(Convolutional Neural Networks,CNN)、VGG16和GoogLeNet构建的估算模型,并且泛化能力测试表明该模型对数据的季节性差异鲁棒。基于Faster R-CNN的麦穗计数模型,在利用NMS优化后决定系数从0.66增至0.83,提升了25.8%,NRMSE从0.19降至0.05,下降了73.7%。相较于基于CNN构建的分类计数模型,基于Faster R-CNN+NMS的麦穗计数模型表现更优,决定系数为0.83,提升了33.87%,单个麦穗识别时间为1.009 s,效率提升了20.55%。综上所述,该系统能够满足冬小麦田间长势参数估算需求,为冬小麦田间精细化管理提供支撑。  相似文献   

17.
针对目前养殖过程中海珍品计数方法成本高、效率低、计数精度难以保障等问题,该研究以真实底播养殖环境下的海珍品为研究对象,以水下拍摄的海珍品视频为数据源,提出一种基于视频多目标跟踪的多类别海珍品计数方法。首先,采用性能优异的YOLOv7算法实现海珍品目标检测器,为多目标跟踪提供输入;然后,结合真实养殖环境下同类别海珍品外观相似性高、不清晰等特点,借鉴BYTE算法的多目标跟踪思想,设计多类别轨迹生成策略和基于轨迹ID号的计数策略,提出一种多类别海珍品跟踪与计数方法。并提出一套更适用于基于轨迹ID号计数方法的评估指标。试验结果表明,改进平均计数精度、改进平均绝对误差、改进均方根误差及帧率分别为91.62%、5.75、6.38和32帧/s,各项指标多优于YOLOv5+DeepSORT、YOLOv7+DeepSORT、YOLOv5+BYTE、YOLOv7+BYTE等算法,尤其改进平均计数精度、帧率指标比YOLOv5+DeepSORT高了29.51个百分点和8帧/s,且在改进平均绝对误差、改进均方根误差指标上分别降低19.50和12.08。该研究方法可有效帮助水产养殖企业掌握水下海珍品数量,为现代化...  相似文献   

18.
利用目标检测获取水下鱼类图像中的生物信息,对于实现水产养殖信息化、智能化有重要意义。受到成像设备与水下拍摄环境等因素的影响,重叠鱼群尾数检测仍为水下目标检测领域的难点之一。该研究以水下重叠鱼群图像为研究对象,提出了一种基于图像增强与改进Faster-RCNN网络的重叠鱼群尾数检测模型。在图像预处理部分,该研究利用MSRCR算法结合自适应中值滤波算法进行水下图像增强;在Faster-RCNN网络的改进部分,该研究采用ResNeXt101网络作为模型主干网络、增加带有CBAM(Convolution Block Attention Module)注意力机制的Bi-PANet(Bilinear-Path Aggregation Network)路径聚合网络、使用PAM(Partitioning Around Medoids)聚类算法优化网络初始预测框的尺度和数量、以Soft-NMS(Soft Non-Maximum Suppression)算法替代NMS(Non-Maximum Suppression)算法。通过以上措施提高模型对于重叠鱼群尾数的检测精度。通过消融试验可得,改进后的模型对水下重叠鱼群图像的平均检测精度和平均召回率分别为76.8%和85.4%,两项指标较Faster-RCNN模型分别提高了8.4个百分点和13.2个百分点。通过对多种模型的实际试验结果进行对比可知,改进后的模型的平均准确率相较于YOLOv3-spp、SSD300和YOLOv5x6分别高出32.9个百分点、12.3个百分点和6.7个百分点。改进后的模型对重叠数量为2~5尾的鱼群进行数量检测时,成功率分别为80.4%、75.6%、65.1%和55.6%,明显高于其他目标检测算法,可为重叠鱼群尾数检测提供参考。  相似文献   

19.
基于改进YOLOv3的果园复杂环境下苹果果实识别   总被引:5,自引:4,他引:1  
为使采摘机器人能够全天候的在不同光照、重叠遮挡、大视场等果园复杂环境下对不同成熟度的果实进行快速、准确的识别,该研究提出了一种基于改进YOLOv3的果实识别方法。首先,将DarkNet53网络中的残差模块与CSPNet(Cross Stage Paritial Network)结合,在保持检测精度的同时降低网络的计算量;其次,在原始YOLOv3模型的检测网络中加入SPP(Spatial Pyramid Pooling)模块,将果实的全局和局部特征进行融合,提高对极小果实目标的召回率;同时,采用Soft NMS(Soft Non-Maximum Suppression)算法代替传统NMS(Non-Maximum Suppression)算法,增强对重叠遮挡果实的识别能力;最后,采用基于Focal Loss和CIoU Loss的联合损失函数,对模型进行优化,提高识别精度。以苹果为例进行的试验结果表明:经过数据集训练之后的改进模型,在测试集下的MAP(Mean Average Precision)值达到96.3%,较原模型提高了3.8个百分点;F1值达到91.8%,较原模型提高了3.8个百分点;在GPU下的平均检测速度达到27.8帧/s,较原模型提高了5.6帧/s。与Faster RCNN、RetinaNet等几种目前先进的检测方法进行比较并在不同数目、不同光照情况下的对比试验结果表明,该方法具有优异的检测精度及良好的鲁棒性和实时性,对解决复杂环境下果实的精准识别问题具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号