首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma and field perturbations of magnetospheres that would surround magnetized galilean satellites embedded in the corotating jovian plasma differ from those produced by interaction with an unmagnetized conductor. If the intrinsic satellite dipole is antiparallel to that of Jupiter, the magnetosphere will be open. It is predicted that Io has an internal magnetic field with a dipole moment of 6.5 x 10(22) gauss-cubic centimeters antiparallel to Jupiter's, and Io's special properties can be interpreted on the basis of a reconnecting magnetosphere.  相似文献   

2.
Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail.  相似文献   

3.
The energetic particles investigation carried by the Galileo probe measured the energy and angular distributions of the high-energy particles from near the orbit of Io to probe entry into the jovian atmosphere. Jupiter's inner radiation region had extremely large fluxes of energetic electrons and protons; intensities peaked at approximately2.2RJ (where RJ is the radius of Jupiter). Absorption of the measured particles was found near the outer edge of the bright dust ring. The instrument measured intense fluxes of high-energy helium ions (approximately62 megaelectron volts per nucleon) that peaked at approximately1.5RJ inside the bright dust ring. The abundances of all particle species decreased sharply at approximately1.35RJ; this decrease defines the innermost edge of the equatorial jovian radiation.  相似文献   

4.
The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.  相似文献   

5.
Krupp N 《Science (New York, N.Y.)》2007,318(5848):216-217
En route to its ultimate rendezvous with Pluto, the New Horizons spacecraft passed through the magnetic and plasma environment of Jupiter in February 2007. Onboard instruments collected high-resolution images, spectroscopic data, and information about charged particles. The results have revealed unusual structure and variation in Jupiter's plasma and large plasmoids that travel down the magnetotail. Data on Jupiter's aurora provide details of the interaction with the solar wind, and a major volcanic eruption from the moon Io was observed during the encounter.  相似文献   

6.
Neutral sodium emissions encircling Jupiter exhibit an intricate and variable structure that is well matched by a simple loss process from Io's atmosphere. These observations imply that fast neutral sodium is created locally in the Io plasma torus, both near Io and as much as 8 hours downstream. Sodium-bearing molecules may be present in Io's upper atmosphere, where they are ionized by the plasma torus and swept downstream. The molecular ions dissociate and dissociatively recombine on a short time scale, releasing neutral fragments into escape trajectories from Jupiter. This theory explains a diverse set of sodium observations, and it implies that molecular reactions (particularly electron impact ionization and dissociation) are important at the top of Io's atmosphere.  相似文献   

7.
The cameras aboard Voyager 1 have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto.  相似文献   

8.
Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S III, S IV, and O III indicating an electron temperature of 10(5) K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (>/= 1000 K) wvith a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.  相似文献   

9.
When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.  相似文献   

10.
A Magnetic Signature at Io: Initial Report from the Galileo Magnetometer   总被引:1,自引:0,他引:1  
During the inbound pass of the Galileo spacecraft, the magnetometer acquired 1 minute averaged measurements of the magnetic field along the trajectory as the spacecraft flew by Io. A field decrease, of nearly 40 percent of the background jovian field at closest approach to Io, was recorded. Plasma sources alone appear incapable of generating perturbations as large as those observed and an induced source for the observed moment implies an amount of free iron in the mantle much greater than expected. On the other hand, an intrinsic magnetic field of amplitude consistent with dynamo action at Io would explain the observations. It seems plausible that Io, like Earth and Mercury, is a magnetized solid planet.  相似文献   

11.
A two-channel ultraviolet photometer aboard Pioneer 10 has made several observations of the ultraviolet glow in the wavelength range from 170 to 1400 angstroms in the vicinity of Jupiter. Preliminary results indicate a Jovian hydrogen (1216 angstrom) glow with a brightness of about 1000 rayleighs and a helium (584 angstrom) glow with a brightness of about 10 to 20 rayleighs. In addition, Jupiter appears to have an extensive hydrogen torus surrounding it in the orbital plane of Io. The mean diameter of the torus is about equal to the diameter of the orbit of Io. Several observations of the Galilean satellites have also occurred but only a rather striking Io observation has been analyzed to date. If the observed Io glow is predominantly that of Lyman-alpha, the surface brightness is about 10,000 rayleighs.  相似文献   

12.
The Galileo orbiter's close pass by Io in 1995 produced evidence for extensive mass loading of the plasma torus through the ionization of SO2. On 11 October 1999, Galileo passed even closer to Io, this time across the upstream side relative to the flow of magnetospheric plasma that corotates with Jupiter. On the first flyby, ion cyclotron waves gave direct evidence for the production of SO2+ ions. On the second flyby, ion cyclotron waves associated with SO+ were stronger and more persistent. Moreover, SO+ emissions were seen closer to Io than SO2+ emissions, suggesting that the exosphere was spatially inhomogeneous. The location of the waves suggests a fan-shaped region of ion pickup extending in the anti-Jupiter direction. Because the wave spectra were different even where the 1995 and 1999 trajectories crossed, we infer that Io's exosphere is temporally variable.  相似文献   

13.
Brown RA  Ip WH 《Science (New York, N.Y.)》1981,213(4515):1493-1495
Several recent developments have implications for the neutral particle environment of Jupiter. Very hot sulfur ions have been detected in the Io torus with gyrospeeds comparable to the corotation speed, a phenomenon that would result from a neutral sulfur cloud. Current evidence supports the hypothesis that extensive neutral clouds of oxygen and sulfur exist in the Jupiter magnetosphere and that they are important sources of ions and energy for the Io torus.  相似文献   

14.
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magneto-pause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energylcharge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios A/Z* = 8, 16, 32, and 64.  相似文献   

15.
The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively or, less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. We report here on quasiperiodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kilohertz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, we discuss the occurrence of decametric emission in homologous arc families.  相似文献   

16.
Preliminary analyses of Doppler data from Pioneer 10 during its encounter with Jupiter indicate that the mass of Io is about 20 percent greater than previously thought and that Io's mean density is about 3.5 grams per cubic centimeter. A determination of the dynamical flattening of Jupiter (a - b)/a (where a is the semimajor axis and b is the semiminor axis) is found to lie in the neighborhood of 0.065, which agrees with the value determined from satellite perturbations.  相似文献   

17.
Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. We report on the analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 x 10(6) amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Jo and induced by the relative motion between Io and the corotating Jovian magnetosphere. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.  相似文献   

18.
Io: an intense brightening near 5 micrometers   总被引:1,自引:0,他引:1  
Spectrophotometric observations of the jovian satellite Io on 20 and 21 February 1978 (Universal Time) were made from 1.2 to 5.4 micrometers. Io's brightness at 4.7 to 5.4 micrometers was found to be three to five times greater at an orbital phase angle of 68 degrees than at orbital phase angles of 23 degrees (5.5 hours before the brightening) and 240 degrees (20 hours after the brightening). Since the 5-micrometer albedo of Io is near unity under ordinary conditions, the observed transient phenomenon must have been the result of an emission mechanism. Although several such mechanisms were examined, the actual choice is not clear.  相似文献   

19.
The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.  相似文献   

20.
Infrared observations of Io during the 1986 apparition of Jupiter indicate that a large eruptive event occurred on the leading side of Io on 7 August 1986, Universal Time. Measurements made at 4.8, 8.7, and 20 micrometers suggest that the source of the event was about 15 kilometers in radius with a model temperature of approximately 900 Kelvin. Together with previously reported events, these measurements indicate that high-temperature volcanic activity on the leading side of Io may be more frequent than previously thought. The inferred temperature is significantly above the boiling point of sulfur in a vacuum(715 Kelvin) and thus constitutes strong evidence for active silicate volcanism on the surface of Io.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号