首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The content of heavy metals in the soils of the Middle CisUrals (the town of Chusovoi and its vicinities) is controlled by both natural and technogenic factors. The enrichment of the parent rocks in Cr, Pb, Zn, and Cu, which influences the chemical composition of the soils, is the most important among the natural factors. Among the other natural factors, the gleying and washing of the alluvial soils with flood water are significant. The technogenic contamination of the urban soils reaches its maximum in the technozems, where the content of Cu, Zn, Pb, and Cr exceeds their clarkes by 4–8 times. The index of technogeneity (the share of technogenic metals referring to their total content) is high for the bulk of metals in technozems, in particular, ranging within 36–97%. The technogeneity sequence is the following for the urban soils: Cr > Zn = Mn > Pb > Cu > Fe. The soil contamination with metals is confined to the depression where the metallurgical plant is operating, and it significantly falls already at a distance of 2–3 km in the settlements located at higher topographic positions.  相似文献   

2.
The content of microelements (Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd) and Fe is determined in the soils and plants of the Lake Kotokel’ basin. Their content in the soils is proved not to exceed the regional background and the existing MPC and APC. The content of Cd is revealed to exceed its clarke value for the world soils, which is related to the natural origin of this element. The concentrations of Mn, Co, and Pb are close to their clarke values, and those of Zn, Cu, Ni, and Cr are lower than their clarkes. The studied soils are specified by the maximal amount of the mobile forms of microelements. The profile distribution of the microelements differs depending on the genetic soil type. For Mn, Zn, and Cu, a significant biogenic accumulation is pronounced in the organic soil horizons. The content of microelements in the aboveground phytomass exceeds the maximal permissible levels for Mn, Co, Cr, and Fe. The intensity of the microelements absorption by the plants varies widely, being specified by the high coefficient of the biological adsorption (except for Fe). Mn, Zn, and Cu are accumulated in the plant phytomass the most intensely.  相似文献   

3.
The results of landscape monitoring of the concentrations of acid-extractable Ni, Cu, Co, Mn, and Zn in soils of the local impact zone of the Severonikel industrial complex on the Kola Peninsula are discussed. The aim of monitoring studies was to reveal the spatial and temporal regularities of variation in the degree of soil contamination by heavy metals. In 2001–2011, the concentrations of acid-extractable compounds of the elements in the upper part of organic soil horizons around this plant exceeded their background concentrations by two orders of magnitude for Cu and Co and by three orders of magnitude for Ni. The degree of topsoil contamination with Ni, Cu, and Co generally corresponded to the distance of the plots from the contamination source and to the modern technogenic load. However, because of the long period of the emissions, their extreme amounts, and complex composition, indirect factors—the degree of technogenic soil degradation, the loss of soil organic matter, saturation of the surface soil layers by the contaminating metals, and competitive relationships between the elements—also affect soil contamination level. The concentrations of all the studied metals in the topsoil are characterized by considerable (1.5 to 7 times) variability in their long-term dynamics. The most important factors of this variability for Ni, Cu, and Co are the organic matter content of the samples and the amount of atmospheric precipitation in the year preceding the sampling. An inverse relationship between element concentrations in the soils and the amount of atmospheric precipitation attests to the dynamic nature and reversible character of the accumulation of heavy metals in the soils.  相似文献   

4.
The degree of soil contamination in the impact zone of the Solnechnyi Tin Ore Processing Plant in the Solnechnyi district of the Khabarovsk region was evaluated. It was shown that the air contamination by the waste products of the ore-processing plant is extremely high with respect to the concentrations of toxic dust and heavy metals. The maximum concentrations of these contaminants exceed the background values by 16–80 times. The bulk contents of Pb, Zn, Cu, As, and Hg in the upper soil horizons within the impact zone exceeded the maximum permissible concentrations and the background values by 2–90 times. Abnormally high concentrations of Zn, As, and Pb were observed not only in the surface 10–cm-thick soil layer but also in the underlying (10–20 cm) horizon. The soil contamination transformed the geochemical sequence of heavy metals typical of the background soils (Zn > Pb > As > Cu > Hg) into a new sequence (As > Pb > Cu > Zn > Hg). The statistical data proved that the intensity of the migration of the heavy metals in the soils decreases with a rise in the soil humus content and a drop in the soil acidity. This should be taken into account in the elaboration of soil-protective measures in the investigated region.  相似文献   

5.
Urban soils (Urbic Technosols) formed within or near the industrial sites removed of service show a considerable excess over the regional background in the content of Pb, Zn, Cu, Mn, Cr, Ni, as well as over the average content of W, Mo, Pb, Sb, Cr, Cu, Sn, Ni, Zn, and Mn in urban soils. Microelements are concentrated for the most part in the soil fine earth, and above all, in the fraction with particle size <0.1 mm. Surface films (on quartz and feldspar grains) of quartz–feldspar–muscovite (partially with tremolite and chlorite) composition and undifferentiated dispersed mixture of quartz, albite, microcline, muscovite and organomineral soil substance are the strongest concentrators of heavy metals and metalloids. Pb and Sn are partially present in soils as oxides, and a part of Zn and Pb, in the form of substantial admixtures to technogenic chemical compounds. As a whole, distribution of elements in the studied soils is controlled by the specifics and type of contamination, resistance of coarser grains to weathering under the given physicochemical conditions, and by predominantly mineral (quartz–feldspar) composition of the solids in soil layers and the features of elements proper.  相似文献   

6.
Radioactive contamination of soils is considered as a separate type of degradation decreasing their fertility. Natural soil radioactivity is described. The main sources of technogenic radionuclides for the soil cover (global radionuclide fallout after nuclear weapons tests, the operation of nuclear facilities, radioactive waste) were shown. The phytomelioration of soils containing radionuclides was assessed. Issues were analyzed related to the remediation of agricultural soils after radiation accidents associated with the release of radionuclides into the environment: the discharge of radionuclides into the Techa River (1949–1953) and the Kyshtym (Southern Urals, 1957), Windscale (United Kingdom, 1957), and Chernobyl (Ukraine, 1986) accidents. The hazard of radioactive contamination of the soil-plant cover was assessed from two viewpoints: the anthropocentric (sanitary-hygienic) principle, when the degree of radioactive contamination of agricultural crops and the conformity of their radionuclide content to radiological standards are taken into account (maximum permissible concentrations of radionuclides), on the one hand, and the ecocentric (biospheric, environmental) approach, when the consequences of the irradiation of soil biota and living terrestrial organisms caused by radionuclides present in the soils are taken into account (conformity to the radiation standards and permissible radiation doses), on the other hand. For some technogenic radionuclides, the use of these principles for assessing the hazard of radioactive contamination of the soil was exemplified, which is of importance for determining the rehabilitation strategy of agricultural lands contaminated with radionuclides.  相似文献   

7.
Based on the results of the soil-geochemical survey, the assessment of the soil cover pollution in different Ulaanbaatar functional zones is given. The soils of the industrial and traffic zones concentrating a wide spectrum of pollutants (Zn, Mo, Cr, Cr, Cd, Pb, and Cu) are characterized by the strongest technogenic transformation. The soils of the residential areas accumulate Pb and Zn, while those of the recreation zone, Mo, Ni, and Cr. The geochemical mapping allowed distinguishing four groups of elements with similar distribution patterns determined by the common pollution sources, the specific features of the parent rocks, and the intensity of the migration. Among the natural and technogenic factors responsible for the accumulation of microelements in soils, the basic ones are the soil physical and chemical properties: the contents of organic matter (for As, Cd, Cu, Mo, Zn), physical clay (Ni, Co), sulfates (Pb, Sr), and the pH (Cr). The character of the land use noticeably affects the concentration of many elements. The soils of the city are assessed as weakly polluted (Zc = 11). The contents of As, Zn, Mo, and Pb exceeded their MPC in 100, 34, 20, and 16% of the city’s territory, respectively. As compared to the state of the soil cover in 1990, no significant changes were revealed.  相似文献   

8.
For analyzing the spatial distribution of the Cd, Co, Cu, Ni, Pb, Zn, and heavy metal (HM) sources on the Bafra deltaic plain (the central Black Sea district of Turkey), 108 soil samples were collected from the 0- to 20-cm layer in an area of about 100 thousand ha. The soil enrichment factor (the ratio between the metal concentration in the soil samples and its content in the earth’s crust (EF)) was calculated to reveal the origin of the heavy metal (HM) pollution (natural or anthropogenic). Kriging interpolation and maps of the soil’s enrichment factors were used for the characterization of the spatial HM distribution. The maximal EF was found for Cd (12.826), while smaller EF values characterized the Pb, Ni, Co, and Cu. In some districts of the studied region, the Cd, Cu, and Zn concentrations were somewhat greater, probably, due to the application of high rates of phosphorus fertilizers and intense soil cultivation. A content exceeding the critical value was recorded for Ni. Probably, this fact was related to the elevated content of this metal in the parent rocks. None of the investigated soils can be referred to the category of polluted ones.  相似文献   

9.

Purpose  

Contamination of heavy metals in soil and its subsequent accumulation along the food chain is a potential risk to human health. Cu speciation in soil–plant system, particularly on the availability to plant roots, has obtained great attention. X-ray absorption near-edge structure spectroscopy (XANES) provides information about the bonding of Cu soil components at the molecular scale. In paddy soils, changes of redox conditions led to microbially mediated sulfur transformation, thus affecting heavy metal behavior. The objective of this work was to investigate how sulfur transformation in a paddy soil affected Cu biogeochemical processes.  相似文献   

10.
Technogenically contaminated urban soils contain a substantial amount of magnetite Fe3O4, whereas another ferrimagnetic, i.e., maghemite αFe2O3, more often prevails in unpolluted soils. The content of magnetite may exceed the content of another iron oxide, hematite, in contaminated soils. In the town of Chusovoi, where emissions from a single enterprise, a metallurgical plant, predominate among pollutants, the upper soil horizons are contaminated with magnetite of one type. In the much larger city of Perm, the polluting sources are diverse, which results in a wide variation of magnetic susceptibility of technogenic magnetite. The difference in magnetite properties may depend on the composition and the content of heavy metals associated with this mineral. A considerable amount of oxalate-soluble magnetite in technogenically contaminated soils produces two important consequences. Schwertmann’s criterion Feox: Fedit as a gleying index turns out to be overestimated and, therefore, does not work in technogenically contaminated soils. The second consequence is that Tamm’s reagent is inapplicable to extracting heavy metals bound to amorphous iron compounds from contaminated soils. On the other hand, a high solubility (30–60%) of technogenic magnetite by oxalate favors the use of Tamm’s reagent for the complete extraction of iron (hydr)oxides and heavy metals bound to them.  相似文献   

11.
Background, aim, and scope  Heavy metal (HM) mobility in soil depends on the HM species in it. Therefore, knowledge of the HM speciation in soil allows the prediction of HM impact on the environment. HM speciation in soil depends on the metal chemical origin, soil texture, and other factors such as the origin and level of soil contamination. Recently, the problem of organic waste utilization is of great importance as the amount of this recyclable material is continually increasing. One of the possible ways of recycling is the use of processed organic wastes for agricultural needs. In this research, aerobically composted sewage sludge was used, the utilization of which is of essential importance. But one of the most serious restrictions is HM transfer from such material to the soil. Therefore, a prediction of HM mobility in soil and its migration in the environment is an important issue when using sewage sludge compost (SSC) in agriculture. Zn, Cu, and Pb speciation was performed according to the modified methodology of Tessier et al. (Anal Chem 51:844–851, 1979) in two different (sandy and clay) soils with background HM amounts and in soil samples amended with aerobically digested SSC to find out the predominant species of the investigated HM and to predict their potential availability. Materials and methods  The modified method of sequential extraction initially proposed by Tessier et al. (Anal Chem 51:844–851, 1979) is designed for HM speciation into five species where HM mobility decreases in the order: F1—exchangeable HM (extracted with 1 M MgCl2 at an initial pH of 7 and room temperature), F2—carbonate-bound HM (extracted with 1 M CH3COONa buffered to pH 5 at room temperature), F3—Fe/Mn oxide-bound HM (extracted with 0.04 M NH2OH·HCl at an initial pH of 2 at 96°C), F4—organic matter-complexed or sulfide-bound HM (extracted with 0.02 M HNO3 and 30% (v/v) H2O2 at a ratio of 1:1 and an initial pH of 2 at 85°C), and F5—the residual HM (digested with HNO3, HF, and HCl mixture). After digestion, HM amounts in solution were determined by atomic absorption spectrometry (AAS ‘Hitachi’). Mixtures of uncontaminated soils of different textures (clay and sandy) with SSC in ratios 20:1, 10:1, and 5:1 were used to simulate the land application with SSC. During a period of 7 weeks, changes in Zn, Cu, and Pb content within species were investigated and compared weekly in soil–SSC mixtures with their speciation in pure soil and in the SSC. Results  Results in the SSC showed that more HM were found as mobile species compared to the soils, and in sandy soil, more were found in the mobile species than in clay soil. But the HM speciation strongly depended on the metal chemical origin. According to the potential availability, HM ranked in the following order: Zn>Pb>Cu. Zinc generally occurred in the mobile species (F1 and F3), especially in sandy soils amended with SSC, and changes of the Zn speciation were insignificant at the end of the experiment. Pb transfer to insoluble compounds (F5) was evident in the SSC–soil mixtures. This confirms that Pb is extremely immobile in the soil. However, the observed increase of Pb amounts in the mobile species (F1 and F2) during the course of experiment shows a critical trend of Pb mobilization under anthropogenic influence. Copper in the soil–SSC mixtures had a trend to form compounds of low mobility, such as organic complexes and sulfides (F4) and nonsoluble compounds (residual fraction F5). Initially, the amounts of mobile Cu species (F1 and F2) increased in the soils amended with SSC, probably due to the influence of SSC of anthropogenic origin with lower pH and high organic matter content, but Cu mobility decreased nearly to the initial level again after 3–4 weeks. Hence, the soil has a great specific adsorption capacity to immobilize Cu of anthropogenic origin. Discussion  Zn mobility and environmental impact was greater than that seen for Cu and Pb, while mobility of both Cu and Pb was similar, but variable depending on soil texture and contamination level. The effect on the shift of HM mobility and potential availability was greater in sandy SSC-amended soils than in clay soils and increased with an increasing amount of SSC. Conclusions  Usage of SSC for land fertilization should be strictly regulated, especially regarding Pb amounts. Recommendations and perspectives  The influence of SSC on Cu and Zn mobility and potential availability was more significant only in the case of sandy soil with a higher SSC ratio. Nevertheless, this waste product of anthropogenic origin increased Pb mobility in all cases in spite of only moderate Pb mobility in SSC itself. Therefore, aerobic processing of sewage sludge must be strictly regulated, especially regarding Pb amounts, and SSC ratios must be in control regarding HM amounts when using it for on-land application.  相似文献   

12.
The results of long-term studies of the contents of bulk forms of metals (Cu, Zn, Fe, Ni, Pb, Mn, Co, and Cd) and their mobile compounds in soils of background and human-disturbed areas within the Krasnoural’sk–Sibai–Gai copper–zinc and Baimak–Buribai mixed copper mineralization zones in the Bashkir Transural region are discussed. It is shown that soils of the region are characterized by abnormally high natural total contents of heavy metals (HMs) typomorphic for ore mineralization: Cu, Zn, and Fe for the Sibai province and Cu, Zn, and Ni for the Baimak province. In the case of a shallow depth of the ores, the concentrations of HMs in the soils are close to or higher than the tentative permissible concentration values. The concentrations of mobile HM compounds in soils of background areas and their percentage in the total HM content strongly vary from year to year in dependence on weather conditions, position in the soil catenas, species composition of vegetation, and distance from the source of technogenic contamination. The high natural variability in the content of mobile HM compounds in soils complicates the reliable determination of the regional geochemical background and necessitates annual estimation of background parameters for the purposes of the ecological monitoring of soils. The bulk content of Cu and Zn content in soils near mining enterprises exceeds the regional geochemical background values by 2–12 times and the tentative permissible concentrations of these metals by 2–4 times. Anthropogenic contamination results in a sharp rise in the content of mobile HM compounds in soils. Their highest concentrations exceed the maximum permissible concentrations by 26 times for Cu, 18 times for Zn, and 2 times for Pb. Soil contamination in the impact zone of mining enterprises is extremely dangerous or dangerous. However, because of the high temporal variability in the migration and accumulation of HMs in the soils, the recent decline in the ore mining activities, and the construction of purification facilities, no definite temporal trends in the contents of HMs in the soils have been found in the studied region for the period from 1998 to 2015.  相似文献   

13.
A new soil-ecological definition of the maximal permissible concentration (MPC) of heavy metals in soils is suggested that regulates the sampling in contaminated territories. Instead of the shallow pits usually used for collecting surface samples for soil-hygienic and other investigations, it is proposed to fulfill a detailed analysis along the entire soil profile including not only the determination of the heavy element content in certain horizons but also the soil density in these horizons. For the polyelemental contamination Zc (according to the Saet equation) based on the background (clarke) excess, the established Zc values ranging from 1 to 128, may reach absurd values of 800–900 upon taking into consideration only one surface layer. At the same time, the use of the weighted average content of the metals in the soil profile adjusts the Zc values for the existing natural conditions. Upon aerial impact, the consideration of the heavy metal contents along the soil profile instead of their contents in the surface horizon only leads to a decrease in the indices of the soil contamination degree. Upon the hydrogenic impact, the transition from the heavy metal contents in the surface horizon to their contents in the soil profile gives higher values of the soil contamination.  相似文献   

14.
Background, aim, and scope  Exploited gas fields and underground gasholders are specific sources of increasing methane concentration. Methane migrates into the soils by diffusion and convection through natural and technogenic cracks in geological structures and influences the function of the soils. Soil cover of gas-bearing area functions as a specific, bilateral, periodically penetrating, geomembrane. Soils shield, transform, and differentiate migrating fluxes of technogenic-allochthonous methane, preventing its emission to the atmosphere. Problems of methane’s emission are rather current at the present, as methane is the second in importance after CO2 greenhouse gas, since its concentration in the atmosphere annually grows by approximately 1%. By global estimations, methane emissions in the gas industry make about 8% of annual receipt to the atmosphere, equal on the average to 500 Тg per a year (Cicerone and Oremland, Global Biogeochem Cy 2:299–327, 1988). But these calculations are based on the account of the technological losses making 3–12% from the mining of natural gas. The contribution of migratory methane fluxes to the atmosphere, as a rule, is not considered. The need for research of soil cover functioning on gas-bearing areas is explained by the fact that processes of methane oxidation, its transformation in soils, and emission to the atmosphere at these objects are now practically not being studied. The aim of our study was to reveal specific processes of soil function and formation on gas-bearing areas by an example of underground gasholder. Materials and methods  The material was sampled in 1998–2003 at the territory of underground gasholder located in Albeluvisol’s zone in Russia. According to the comparative-geographical method, 51 soil profiles have been studied in similar litologically geomorphological conditions in various geochemical zones: in the industrial zone, in the zone of gas dissipation, and at the regional background. The total square of investigated territory is about 60 km2. Six soil profiles were investigated in seasonal dynamics. Samples of soils for physical, chemical, and microbiological analyses were taken from each horizon of soil profiles (202 samples). Samples of soil air for a definition of methane concentration were taken from depths of 20, 40, and 60 cm. Methane emission to the atmosphere was measured near soil’s cuts and, in addition, on all area of the investigated territory at knots of squares network through 700–1,000 m, in total at 32–42 points in May, July, and November. Years of investigation have been split by technological and hydrothermal conditions. The periods with the normal and lowered compression of gas in gasholder, dry and warm, and damp and cool years have been allocated. It has influenced the soil function processes and considered an interpretation of the data received. Results  The changes of functional parameters of soils at a gas-bearing area influenced by methane fluxes migrating from gas deposits, in comparison with background soils, are revealed. Such functional parameters are methane concentration in the soils, activity of its bacterial oxidation, methane emission to the atmosphere, and oxidation–reduction potential. Spatial and temporary dynamics of these parameters at gas-bearing and background territory are investigated. Discussion  Methane interaction with soil’s air is in its ascending (descending) and lateral diffusion and convection in soils. Methane fluxes dissipate in porous space of soils forming gas anomalies. The technogenic-allochthonous methane concentration strongly varies in soil’s air on gas-bearing area (1–10,500 ppm) and, on average, exceeds the autochthonous, microbiologically produced methane at background territories. Migratory methane is deposited on diffusion and sorption barriers. The capacity of diffusion barrier depends on effective coefficient of diffusion, the attitude of air and general porosity, and granulometric composition and sharply differs in auto-, semi-hydro-, and hydromorphic soils reaching maximum in hydromorphicity and among the soils with identical water content—in heavy soils. The capacity of the sorption barrier is defined by abiotic methane absorption and a specific surface of soils and grows with their increasing intensity in soils to a heavier granulometric composition or into soils with peat and gleyic horizons. The low sorption capacity leads to an increase of methane concentration in the soil’s air and decreases its utilization by microorganisms, in which its quantity depends on sorption properties. The central component of functioning that promotes a number of essential transformations in soils on gas-bearing areas is methane interaction with the biotic phase. The periods of methane deposition by diffusion and sorption barriers are used for biological methane oxidation and formation of biogeochemical barriers in soils. The activity of bacterial methane oxidation is characterized by spatial variability and depends on the entrance of methane, defined by granulometric composition, soil moisture, the attitude of air and general porosity, Eh, organic matter content, and salinization. During interaction between technogenic-allochthonous methane and soil on diffusion, sorption, and biogeochemical barriers, its transformation occurs, accompanied by a strengthening of variability of oxidation–reduction potential and formation of pedogenic, bacteriomorphic, and nanodispersic magnetic oxides of iron. Conclusions and perspectives  Specificity of soil functioning on a gas-bearing area is in interaction of technogenic-allochtonous methane with solid, liquid, gaseous, and living substance of the soil system. Spatial laws of soils functioning on gas-bearing area in the Albeluvisol’s zone are revealed. Distinctions of soil functions depending on litologically geomorphological conditions are shown. The greatest changes of parameters of functioning under the influence of technogenic-allochthonous methane occur in automorphic soils, and it is less in semi-hydromorphic soils. Activity of bacterial methane oxidation in soils, emission, and consumption from the atmosphere and their spatial laws are characterized by the time dynamics depending on hydrothermal and technological conditions of seasons and years. During oxidation in soils of gas-bearing areas, carbon of methane is concentrated on a biogeochemical barrier that is shown in the increase of methylotrophic microorganisms’ biomass and leads to a high variability and decrease of Eh and to the formation of magnetic oxides of iron. Recommendations  Results of research can be used for carrying out ecological monitoring and an estimation of tightness of objects of the gas industry. Activity of bacterial methane oxidation, Eh, and magnetic oxides of iron can be used as diagnostic parameters of soils on gas-bearing areas. This paper has been developed from a presentation at the conference SUITMA-4 (Soils in Urban, Industrial, Traffic, Mining and Military Areas) Nanjing, China, 2007  相似文献   

15.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

16.
The effect of natural and technogenic factors on the mobility and transformation of metal compounds was studied from an analysis of the fractional-group composition of Cu, Zn, and Pb compounds in the soils of areas adjacent to the Novocherkassk power station. Changes in the composition of Cu, Zn, and Pb compounds in the soils of technogenic landscapes were estimated. The effect of aerosol technogenic emissions on the mobility of metal compounds was revealed; a higher metal mobility was found in soils with low buffering capacity. Common and specific features of the formation of Cu, Zn, and Pb compounds in soils were determined. The role of individual soil components in the retention of metals in clean and contaminated soils was established.  相似文献   

17.
Soils of the Vorob’evy Gory nature park (Moscow) are characterized by a high content of technogenic ecotoxicants. Dangerous levels of pollution are fixed on ∼60% of soil cover for benzopyrene, ∼40% of soil cover for heavy metals, and ∼6% of soil cover for mineral oils. Besides the total high aerogenic load, the local sources of soil pollution in cities are highways; increased concentrations of heavy metals are also registered near unauthorized dumps. Benzopyrene and mineral oils are characterized by high migratory ability in soils and can form secondary auras of pollution in accumulative landscape facies.  相似文献   

18.
According to the present-day ecotoxicologic data, hazardous heavy metals/metalloids form the following sequence in the soil: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence differs from the well-known series of the hazardous heavy elements, in which the danger of Pb and Zn is exaggerated, whereas that of V, Sb, and Ba, is underestimated. Tl also should be included in the list of hazardous elements in the soil. At present, the stress is made on the investigation of heavy metals/metalloids in agricultural soils rather than in urban soils, as the former produce contaminated products poisoning both animals and humans. The main sources of soil contamination with heavy metals are the following: aerial deposition from stationary and moving sources; hydrogenic contamination from the industrial sewage discharging into water bodies; sewage sediments; organic and mineral fertilizers and chemicals for plant protection, tailing dumps of ash, slag, ores, and sludge. In addition to the impact on plants and groundwater, heavy metals/metalloids exert a negative effect on the soil proper. Soil microorganisms appear to be very sensitive to the influence of heavy elements.  相似文献   

19.
上海土壤中微量元素的含量与分布的研究   总被引:3,自引:0,他引:3  
植物必需的微量营养元素锌、锰、钼、硼、铜在土壤中供给不足或过剩时,都可能引起植物、动物及人体生理功能失调,生长发育受阻,诱发出各种特殊的生理病害。明确土壤中微量元素含量分布规律及其有效性问题,有助于采取措施来调剂微量元素的供应水平,对于农业生产的发展,以及维护人类和动物的健康,都具有重要的意义。本文就1978-1979年关于上海土壤中微量元素的含量分布及其有效性问题的研究,作一总结。  相似文献   

20.
The contents of heavy alkaline-earth (Sr and Ba) and rare-earth (Y, La, and Ce) metals have been studied in two technogeochemical anomalies and in the soils of Perm and Chusovoi. The soils are contaminated with barium, lanthanum, and cerium in the territory of the Cherepovets technogeochemical anomaly formed due to the atmospheric emissions from the Severstal metallurgical works. Strontium, barium, and yttrium are accumulated in the soils of the Revda technogeochemical anomaly formed by aerial emissions from the Mid-Urals copper smelter. The portion of technogenic strontium reaches 43–84% near the metallurgical works, while that of barium and yttrium, 47–63 and 28–32%, respectively. In Perm, the urban soils are polluted with technogenic alkaline-earth metals, i.e., strontium and barium, with their content reaching 31–48%. In Chusovoi, the calcareous horizons of the soddy soils are enriched in strontium and depleted in barium. The eluvial-illuvial distribution of the rare-earth metals is registered in the soddy-podzolic soil. The soils of the terrace are contaminated with barium. The technozem is contaminated with all the metals (barium and yttrium, in particular).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号