首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objectives— To compare in vitro monotonic biomechanical properties of an equine spoon plate (ESP) with an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws (DCP‐TLS) inserted in lag fashion for equine proximal interphalangeal (PIP) joint arthrodesis. Study Design— Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Animal Population— Cadaveric adult equine forelimbs (n=18 pairs). Methods— For each forelimb pair, 1 PIP joint was stabilized with an ESP (8 hole, 4.5 mm) and 1 with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression with load applied under displacement control at a constant rate of 5 cm/s. Six construct pairs were tested for cyclic fatigue under axial compression with cyclic load (0–7.5 kN) applied at 6 Hz; cycles to failure were recorded. Six construct pairs were tested in single cycle to failure under torsional loading applied at a constant displacement rate (0.17 radians/s) until rotation of 0.87 radians occurred. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results— Mean yield load, yield stiffness, and failure load for ESP fixation were significantly greater (for axial compression and torsion) than for DCP‐TLS fixation. Mean (± SD) values for the ESP and DCP‐TLS fixation techniques, respectively, in single cycle to failure under axial compression were: yield load 123.9 ± 8.96 and 28.5 ± 3.32 kN; stiffness, 13.11 ± 0.242 and 2.60 ± 0.17 kN/cm; and failure load, 144.4 ± 13.6 and 31.4 ± 3.8 kN. In single cycle to failure under torsion, mean (± SD) values for ESP and DCP‐TLS, respectively, were: stiffness 2,022 ± 26.2 and 107.9 ± 11.1 N m/rad; and failure load: 256.4 ± 39.2 and 87.1 ± 11.5 N m. Mean cycles to failure in axial compression of ESP fixation (622,529 ± 65,468) was significantly greater than DCP‐TLS (95,418 ± 11,037). Conclusion— ESP was superior to an axial 3‐hole narrow DCP with 2 abaxial transarticular screws inserted in lag fashion in resisting static overload forces and cyclic fatigue. Clinical Relevance— In vitro results support further evaluation of ESP for PIP joint arthrodesis in horses. Its specific design may provide increased stability without need for external coaptation support.  相似文献   

2.
Objectives— To compare in vitro monotonic biomechanical properties of an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP‐TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3‐TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Study Design— Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Sample Population— Cadaveric adult equine forelimbs (n=15 pairs). Methods— For each forelimb pair, 1 PIP joint was stabilized with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results— Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP‐TLS fixation were significantly greater than those of the 3‐TLS fixation. Mean cycles to failure in axial compression of the DCP‐TLS fixation was significantly greater than that of the 3‐TLS fixation. Conclusion— The DCP‐TLS was superior to the 3‐TLS in resisting the static overload forces and in resisting cyclic fatigue. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.  相似文献   

3.
Objectives: To compare the mean number of cycles to failure under axial compression of equine proximal interphalangeal (PIP) joint arthrodesis constructs created by 2 parallel transarticular Acutrak Plus screws (AP‐TS) or 2 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (AO‐TLS). Study Design: Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Sample Population: Cadaveric adult equine forelimbs (n=5 pairs). Methods: For each forelimb pair, 1 PIP joint was stabilized with AP‐TS and 1 with AP‐TLS. The 5 construct pairs were tested for cyclic fatigue under axial compression. Mean number of cycles to failure for each fixation method were compared by a paired t‐test within each group with statistical significance set at P<.05. Results: The mean number of cycles to failure under axial compression for AO‐TLS fixation and AP‐TS fixation were 57,723±8488 and 35,322±4698, respectively. Conclusion: The AO‐TLS was superior to the AP‐TS in resisting cyclic fatigue under axial compression.  相似文献   

4.
Objectives: To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3‐hole 4.5 mm locking compression plate (LCP) or 3‐hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design: Experimental. Sample Population: Cadaveric adult equine forelimbs (*n=6 pairs). Methods: For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results: There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion: Biomechanically, fixation of the equine PIP joint with a 3‐hole 4.5 mm LCP is equivalent to fixation with a 3‐hole 4.5 mm narrow DCP under the test conditions used.  相似文献   

5.
The objective of this study was to compare the biomechanical properties in a single cycle axial loading test and the types of failures in two constructs (a 3-hole 4.5-mm dynamic compression plate (DCP) and 7-hole 5.5-mm Y locking compression plate (Y-LCP)) in equine proximal interphalangeal joint (PIJ) arthrodesis. One limb in each pair was randomly assigned to PIJ arthrodesis using a 3-hole 4.5-mm DCP combined with two transarticular 5.5-mm cortical screws, whereas the contralateral limb was submitted to PIJ arthrodesis using a 7-hole Y-shaped 5.0-mm LCP in conjunction with one transarticular 4.5-mm cortical screw inserted through the central plate hole. Cortical screws were inserted in lag fashion. Constructs were submitted to a single axial load cycle to failure. Construct stiffness, load, and deformation were analyzed. Dynamic compression plate and Y-LCP arthrodesis constructs did not differ significantly and were equally resistant to axial loading under the conditions studied (DCP and Y-LCP group stiffness, 5685.22 N/mm and 6591.10 N/mm, respectively). Arthrodesis of the PIJ using a DCP and two transarticular 5.5-mm cortical screws or a Y-LCP yielded biomechanically equivalent outcomes under the test conditions considered. However, Y-LCP provides less impact in the palmar/plantar bone. Application of Y-LCP with unicortical screws has equivalent biomechanical characteristics of DCP and may be a safe option for PIJ arthrodesis, where potential trauma secondary to applying bicortical screws in the palmar/plantar aspect of the pastern can be avoided.  相似文献   

6.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

7.
OBJECTIVE: To compare the biomechanical characteristics and mode of failure of 2 techniques using parallel 5.5 mm screws for pastern joint arthrodesis in horses. STUDY DESIGN: Randomized block design, for horse (1-5), method of fixation (two 5.5 mm screws versus three 5.5 mm screws), side (right, left), and end (front, hind). Constructs were tested to failure in 3-point bending. SAMPLE POPULATION: Twenty limbs (5 cadavers). METHODS: A combined aiming device was used to facilitate screw placement. Two parallel 5.5 mm screws were inserted in lag fashion in 1 limb of a pair, and three 5.5 mm screws were inserted in the contralateral limb. Constructs were then tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials testing machine at a loading rate of 19 mm/s. Maximal bending moment at failure and stiffness were obtained from bending moment-angular deformation curves. RESULTS: There was no significant difference between two and three 5.5 mm screw constructs for bending moment and stiffness (P<.05). All constructs ultimately failed by bone fracture or screw bending. For proximal interphalangeal (PIP) joint arthrodesis constructs loaded in 3-point bending, no significant effect of treatment, side, or end on maximal bending moment or stiffness was detected. CONCLUSIONS: Two 5.5 mm cortical screws inserted in parallel should provide a surgically simpler and equally strong PIP joint arthrodesis compared with three 5.5 mm cortical screws. CLINICAL RELEVANCE: Two 5.5 mm cortical screws inserted in parallel for PIP joint arthrodesis should perform similarly under conditions used in this study, as three 5.5 mm screws inserted in a similar manner, when loaded under bending.  相似文献   

8.
Objective— To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population— Cadaveric adult equine MC3 bones (n=12 pairs). Methods— MC3 were divided into 3 groups (4 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm LC‐DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4‐point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly greater for the LCP fixation compared with LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC‐DCP fixation. Conclusion— The 4.5 mm LCP was superior to the 4.5 mm LC‐DCP in resisting the static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.  相似文献   

9.
Lag screw fixation using single 4.5 mm cortical bone screws is a recommended technique for repair of mid-sagittal plane fractures of the distal phalanx in adult horses. However, implant infection and technical difficulties in obtaining adequate interfragmentary compression have made this surgical procedure somewhat controversial. We hypothesized that use of larger diameter screws would result in increased axial compression and improved stability of this fracture.Paired distal phalanges from the forelimbs of 10 adult horses were collected at necropsy and divided in half in the midsagittal plane. Using a randomized block study design, four types of bone screws (4.5 mm cortical, 5.5 mm cortical, 6.5 mm cancellous pre-tapped, and 6.5 mm cancellous non-tapped) were inserted to a depth of 15 mm. During screw insertion, the axial force generated under the screw head was measured with a load washer containing a piezoelectric force transducer, while torque of insertion was recorded with a torsional testing machine. The 6.5mm screw inserted after pre-tapping generated significantly greater axial force (2781 N) than the 4.5 mm (1522 N), 5.5 mm (2073 N) or 6.5 mm non-tapped (2295 N) screws. The relationship between maximal applied torque and axial force generated was linear for each screw type. Each unit of torque applied during insertion of cortical screws resulted in a greater increase in axial compression, as compared to cancellous screws. These data suggest that use of larger diameter screws would result in improved interfragmentary compression of distal phalangeal fractures.  相似文献   

10.
Objectives— To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited‐contact dynamic compression plate (5.5‐LC‐DCP) fixation with a 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Sample Population— Adult equine cadaveric MC3 bones (n=18 pair). Methods— MC3 were divided into 3 test groups (6 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 5.5 mm broad LC‐DCP (5.5‐LC‐DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm broad LC‐DCP (4.5‐LC‐DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t–test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4‐point bending, single cycle to failure, of the 5.5‐LC‐DCP fixation were significantly greater (P<.024) than those of the 4.5‐LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly (P<.05) greater for the 4.5‐LC‐DCP fixation compared with the 5.5‐LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5‐LC‐DCP fixation was not significantly different (P>.05) than those with the 4.5‐LC‐DCP fixation. Conclusion— 5.5‐LC‐DCP fixation was superior to 4.5‐LC‐DCP fixation in resisting the static overload forces under palmarodorsal 4‐point bending. There was no significant difference between 5.5‐LC‐DCP fixation and 4.5‐LC‐DCP fixation in resisting static overload forces under torsion; however, the 5.5‐LC‐DCP offers significantly less stability (80% of that of the 4.5‐LC‐DCP) in cyclic fatigue testing. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.  相似文献   

11.
Objective— To compare the biomechanical cyclic fatigue properties of 2 and 3 parallel transarticular 5.5 mm cortical screws used in arthrodesis of the proximal interphalangeal (PIP) joint.
Study Design— Randomized block design, for horse, fixation method (2 versus three 5.5 mm cortical screws), side (right, left) and end (front, hind) in cadaveric equine limbs.
Sample Population— Cadaveric adult equine fore- and hindlimbs (n=5 pairs each).
Methods— Two parallel 5.5 mm cortical screws were inserted in lag fashion, transarticularly through the PIP joint in 1 limb of a pair, and in the contralateral limb, three 5.5 mm cortical screws were inserted in similar fashion. Constructs were then tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials testing machine using a cyclic load of −500 to −3500 N at a rate of 6 Hz.
Results— There was no significant difference in displacement at failure, force at failure or number of cycles between limbs. Forelimb constructs tended to fail at a greater mean displacement than hindlimb constructs but this difference was not significant ( P =.06). There was no statistical difference in any tested biomechanical variable between left- and right-sided limbs.
Conclusions— There was no significant difference in the number of cycles to failure for the 2 methods tested.
Clinical Relevance— Two 5.5 mm cortical screws inserted in parallel for PIP joint arthrodesis is surgically simpler, results in comparable biomechanical performance in the current model and should perform as well as three 5.5 mm screws under cyclic fatigue conditions.  相似文献   

12.
Objectives— To compare (1) pullout properties between 3.5 mm cortical and locking screws, and (2) mechanical properties and gap displacements between the 3.5 mm broad limited‐contact dynamic compression plate (LC‐DCP), broad dynamic compression plate (DCP), and narrow locking compression plate (LCP), during axial loading of plate‐stabilized diaphyseal fragments with an interfragmentary gap. Study Design— In vitro mechanical testing of implanted polyurethane foam (PUF) hollow cylinders that simulated compact or osteopenic diaphyseal bone. Sample Population— (1) Five cortical and locking screws and (2) 4 PUF‐plate constructs for each plate type; using high‐ and low‐density (0.8 and 0.32 g/cm3) cylinders. Methods— (1) Screws were completely extracted at 5 mm/min. (2) Plated constructs were axially compressed at 300 N/s for 10 cycles from 5 to 355 N to determine gap displacement during physiologic loading, followed by single cycle increasing load to failure. Results— Pullout properties were not different between screw types. All plate constructs had yield loads over 3 times trotting loads. Gap closure occurred with LC‐DCP and DCP constructs, but not LCP constructs. LCP construct properties were most similar to LC‐DCP and DCP construct properties in the low‐density model. Conclusion— All plate systems sustained physiologic limb loads. Only LCP constructs maintained some gap integrity, although LC‐DCP and DCP screws were placed in neutral position. Clinical Relevance— The LCP system is more likely than LC‐DCP and DCP systems, with neutrally positioned screws, to maintain a planned interfragmentary gap, although gap strains range from 0% to 15% across the 2 mm gap during a trot load.  相似文献   

13.
REASONS FOR PERFORMING STUDY: A method for proximal interphalangeal joint (PIP joint) arthrodesis that provides a stable fixation and minimal duration of cast support is evaluated retrospectively. OBJECTIVES: Evaluate the clinical use of a combined plate-screw method for PIP joint arthrodesis in a large number of horses. METHODS: The records of 53 horses undergoing PIP joint arthrodesis were reviewed. Arthrodesis was performed with a dorsally placed 3-, 4- or 5-hole narrow dynamic compression plate (DCP) with 2 transarticular cortex screws placed in lag fashion either side of the plate. Subject details, clinical presentation, radiographic findings, surgical technique, post operative treatment and complications were recorded. Long-term follow up (mean 3 years) was obtained for 46 horses. RESULTS: Arthrodesis procedures (n = 58) were performed on 53 horses with a DCP in combination with transarticular cortex screws placed in lag fashion. Conditions treated were osteoarthritis (OA) of the PIP joint, fracture of middle phalanx, PIP joint subluxation, subchondral cystic lesions and degenerative joint disease secondary to sepsis. Time of post operative cast application was 14 days. Overall 40/46 (87%) horses could be used as intended including 20/25 (81%) forelimb and 20/21 (95%) hindlimb arthrodeses. Twenty-three of 27 (85%) horses used for performance had successful outcomes. Complications included implant infection, cast sores and partial implant failure. CONCLUSIONS: PIP joint arthrodesis using a DCP and transarticular cortex screws placed in lag fashion provides a stable construct and short casting period with minimal complications. The prognosis for return to performance was excellent for horses treated with hindlimb PIP joint arthrodesis and good for forelimb arthrodesis. POTENTIAL RELEVANCE: Use of a combination technique for PIP joint arthrodesis allows a high proportion of horses with pastern joint disease to be returned to their athletic potential.  相似文献   

14.
Objective: To determine whether intra‐articular 70% ethyl alcohol alone (IAEA) or in combination with 2 percutaneously placed transarticular lag screws (EA‐TLS) would result in arthrodesis of the equine proximal interphalangeal (PIP) joint. Study Design: Experimental. Animals: Healthy horses (n=6), aged 1.5–3 years, free of lameness, diagonally paired front and hind PIP joints. Methods: Six milliliters 70% ethyl alcohol was injected into randomly selected diagonally paired front and hind PIP joints. Thirty days later, 2 parallel 5.5 mm cortical screws were inserted in lag fashion across the hind PIP joints and the limbs were cast. Horses were confined for 60 days after surgery before free exercise was permitted. Serial lameness examinations were performed at 1, 6, and 10 months. Radiographs of the PIP joints were obtained before injection with alcohol (front, hind PIP joints), at 6 and 10 months (front PIP joints) and 1, 3, 6, and 10 months (hind PIP joints). At 10 months, horses were euthanatized and gross and histopathologic examination of the treated joints was performed. Results: Horses had variable cartilage thinning (more severe in hind PIP joints) and dorsal bone proliferation. One front and 1 hind PIP joint were fused 10 months after alcohol injection. Conclusions: Ethyl alcohol injected alone or in combination with percutaneously placed transarticular lag screws failed to reliably produce fusion of the PIP joint.  相似文献   

15.
OBJECTIVE--To compare the biomechanical characteristics and mode of failure of 2 parallel-screw techniques for proximal interphalangeal joint arthrodesis in horses. STUDY DESIGN--Randomized block design, blocking for horse (1-5), method of screw fixation (three 4.5-mm vs two 5.5-mm), side (left limb vs right limb), and end (front limb vs hind limb). Constructs were loaded to failure in 3-point bending in a dorsal-to-palmar (plantar) direction. SAMPLE POPULATION--Twenty limbs (10 limb pairs) from 5 equine cadavers. METHODS--A combined aiming device was used to facilitate consistent screw placement. Three parallel 4.5-mm cortical screws were placed in lag fashion in 1 limb of a pair, and 2 parallel 5.5-mm cortical screws were placed in lag fashion in the contralateral limb. Arthrodesis constructs were tested in 3-point bending in a dorsal-to-palmar (plantar) direction using a materials-testing machine. Loading rate was 19 mm/s. Maximal bending moment at failure and composite stiffness were obtained from bending moment-angular deformation curves. Data were analyzed using ANOVA and chi(2) analysis. RESULTS--There were no significant differences in bending moment (P >.05, power = 0.8 @ delta = 19%) or composite stiffness (P >.05, power = 0.8 @ delta = 19%) between the 2 fixation techniques. Higher maximal bending moment was found in front limbs than hind limbs, and front limbs with two 5.5-mm screws than hind limbs with two 5.5-mm screws. In all cases, constructs completely failed. A greater number of 4.5-mm cortical screws failed than 5.5-mm cortical screws. CONCLUSIONS-In pastern arthrodesis constructs loaded in 3-point bending, end (front limb vs hind limb) affected maximal bending moment at failure of constructs. There was no significant effect of horse, treatment, or side on maximal bending moment or stiffness. Two 5.5-mm cortical screws should provide a surgically simpler pastern arthrodesis than three 4.5-mm cortical screws while maintaining similar biomechanical characteristics. CLINICAL RELEVANCE--Three 4.5-mm screws or two 5.5-mm screws will provide similar biomechanical characteristics in bending when performing equine pastern arthrodesis.  相似文献   

16.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

17.
OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.  相似文献   

18.
Objectives: To compare number of cycles to failure for palmarodorsal 4‐point bending of a modified 5.5 mm broad locking compression plate (M5.5‐LCP) fixation with a 5.5 mm broad LCP (5.5‐LCP) fixation used to repair osteotomized equine third metacarpal (MC3) bones. Study Design: In vitro biomechanical testing. Animal Population: Adult equine cadaveric MC3 bones (n=6 pairs). Methods: An 8‐hole, M5.5‐LCP, obtained by having a 1.0 mm thickness removed from the bone contact portion of the 5.5‐LCP, was applied to the dorsal surface of 1 randomly selected MC3 from each pair, and an 8‐hole, 5.5‐LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. Plates and screws were applied using standard ASIF techniques to MC3 bones with a mid‐diaphyseal osteotomy. MC3 constructs had palmarodorsal 4‐point bending cyclic fatigue testing. Mean cycles to failure for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results: Mean±SD cycles to failure of the M5.5‐LCP fixation (188,641±17,971) was significantly greater than that of the 5.5‐LCP fixation (166,497±15,539). Conclusion: M5.5‐LCP fixation was superior to 5.5‐LCP fixation of osteotomized equine MC3 bones in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: This suggests that biological plate fixation is not the ideal choice for osteotomized equine MC3 bones.  相似文献   

19.
This study compared in vitro monotonic and cyclic mechanical properties of equine proximal interphalangeal joint arthrodeses stabilized using an open or closed technique combined with axial 4.5 mm narrow limited-contact dynamic compression plate (LC-DCP) or 4.5 mm narrow locking compression plate (LCP). Ten forelimb pairs were randomly assigned to LCP or LC-DCP groups. One limb in each pair was assigned to either open or closed technique. Limbs were tested for cyclic fatigue at 20 000 cycles and then single-cycle to failure under 3-point dorsopalmar bending. There was no significant difference in stiffness of constructs during cyclic fatigue testing or on force or stiffness at failure in single cycle to failure testing between open and closed techniques or between plate types. Both implants, surgical technique, or combinations thereof are suitable for clinical use. More work is necessary to define the interaction between implant type and surgical technique.  相似文献   

20.
OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号