首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用木材等生物质资源制备的纳米纤维素,因其独特的纳米结构和性能优势在诸多领域广泛应用。纳米纤维素具有精细的尺寸,且表面含有大量的羟基,其组装制备的材料可以拦截微纳尺寸的颗粒,纳米纤维素间的孔隙有利于水分和其他类型的亲水性液体的快速流动通过。开发纳米纤维素基微纳颗粒过滤材料,不仅有利于环境净化、回收昂贵的微纳颗粒,而且为纳米纤维素基材料的提质增效提供新的研究思路。本文综述纳米纤维素基微纳颗粒过滤材料的开发与应用研究进展。介绍纳米纤维素的类型、制备方法以及结构特征,总结利用纳米纤维素为基本单元来构筑纳米纤维素/电纺纤维复合材料、纤维素纳米纸和纳米纤维素凝胶薄膜的方法,阐述利用不同类型的纳米纤维素基过滤材料分离不同类型微纳颗粒的过滤效果,并对此领域研究面临的问题以及未来重点研究方向进行展望分析。  相似文献   

2.
通过饱和滴定法研究了广西天然红辉沸石的吸油值、吸水量,并且将不同目数的沸石经过硫酸改性后,分析了其吸油值与吸水量的变化。实验结果表明:红辉沸石本身具有一定的亲油性,且随着沸石粒径的减小而增大,对其进行酸改性可以令沸石的亲水性减弱,亲油性增强,为后续研究添加红辉沸石的室内环保水性涂料配方提供了参考依据。  相似文献   

3.
随着水体油类污染造成的环境和健康危害问题日益严重,开发高效、低成本且绿色环保的油水分离材料受到越来越多的关注。木材作为一种可持续、可再生、可生物降解的环境友好型天然材料,具有多尺度分级结构、高度各向异性、丰富的孔隙构造以及结构可调控等特点。直接利用木材的层级多孔结构,通过“自上而下”策略对木材的化学组成、孔隙结构以及表面润湿性进行调控,可为开发高性能油水分离材料提供新思路和新方法。本文从过滤和吸附两种主要的油水分离方式出发,介绍近年来基于天然木材的多孔过滤膜和吸油材料的构建策略,并综述这两类木基功能材料用于分离不混溶油水混合物、油水乳液和水面高黏度原油的最新研究进展,讨论存在的问题以及未来潜在的研究方向。  相似文献   

4.
杉木间伐材热降解处理制取吸油材料的研究   总被引:5,自引:0,他引:5  
以杉木间伐材为原料,经蒸煮、纤维帚化疏解、热降解处理制备出植物纤维吸油材料。研究了吸油材料的吸油性能及其与热处理温度、抽出物的关系等问题。结果表明,经过350℃热处理试样的吸油量最大、吸水量最小,吸油量与吸水量之比值最大,高达77.5,是原料用蒸煮纤维的10倍以上,显示出卓越的吸油性能。蒸煮纤维在200~500℃热处理时,试样的热水抽出物与1%NaOH抽出物含量随热降解温度升高而减少,苯醇抽出物含量则在200~250℃时减少,300℃时增大,400℃后急剧减少。研究表明,纤维表面的亲油性物质对吸油能力有重要影响。制备过程中的热水、苯醇抽出物等的生成、分解、挥发对其选择性吸油能力影响较大,亲油性物质在热降解过程中生成并附着于纤维表面使吸油材料的亲油性提高。  相似文献   

5.
生命健康、精密仪器和国防信息等领域对电磁屏蔽/吸波材料均有迫切的需求,但传统金属基电磁屏蔽/吸波材料存在屏蔽效能质量比低、易造成二次环境污染和屏蔽机理单一等不足,而新型碳基纳米电磁屏蔽/吸波材料制备烦琐、价格昂贵。木材及其衍生品具有多级孔结构、强重比高、绿色低碳、易加工、可再生等天然优势,开发轻质、环境友好的木基电磁屏蔽/吸波材料逐渐成为研究热点。系统分析和讨论了国内外木基电磁屏蔽/吸波材料的研究进展,介绍了电磁屏蔽材料的基本概念和原理,对比了涂层型、填充型、碳化型3种制备方法的特点及适用范围,总结了制备工艺、孔隙结构、导电/磁性填充组分等因素对电磁屏蔽和吸波性能的影响,并分析了木基电磁屏蔽/吸波材料中的电磁屏蔽机理和吸波机制,以及木质材料的各向异性结构对屏蔽性能的调控机制,最后对木基电磁屏蔽/吸波材料的未来发展趋势和研究重点进行了展望,可为木基电磁屏蔽/吸波材料的研发提供一定参考。  相似文献   

6.
木浆纤维素交联聚合复合高吸油性材料性能研究   总被引:5,自引:0,他引:5  
采用悬浮聚合法合成木浆纤维素交联聚合复合高吸油性材料,并测定其吸油性能指标。结果表明,采用木浆纤维素与甲基丙烯酸十六脂交联聚合,能提高聚甲基丙烯酸烷基酯类高吸油性树脂的吸油性能,所制得的吸油材料对二甲苯的饱和吸油倍率达2 3 5 g/g。  相似文献   

7.
纳米纤维素作为纤维素基纳米材料的代表,不但保留了天然纤维素的性质,同时赋予纳米粒子以高强度、高结晶性、高比表面积、高抗张强度等特性,能够明显改善材料的光、电、磁等性能,在复合材料、精细化工、医药载体、药物缓释等领域具有广阔的应用前景。进一步对纳米纤维素的结构进行调控,在纳米尺度操控纤维素超分子聚集体,进行结构设计并组装出稳定的功能性纤维素基纳米材料,即可以纤维素为原料构建具有优异性能的生物质材料,这也正是目前生物质材料和纤维素科学领域的研究热点。概括了目前纳米纤维素的主要制备方法:机械法、化学法和生物法,并对各种制备方法的优缺点进行了讨论,同时综述了纳米纤维素的应用状况,指出了纳米纤维素的制备及应用方面需要解决的主要问题及今后的发展方向。  相似文献   

8.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

9.
层层自组装技术,具有原理简单、易于操作、可调控纳米尺度上组装物质的形貌等优点,在多种制备纳米纤维素基复合功能材料的方法中脱颖而出。基于此原理,以纳米纤维素作为研究对象,按其在复合功能材料中承担的不同角色,详细阐述纳米纤维素基功能复合材料的制备过程、结构特征和功能特性,并提出了层层自组装技术在纳米纤维素基功能复合材料制备中进一步的研究方向。  相似文献   

10.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

11.
天然木材由于其本身的构造及化学组成原因,呈现出不透明性,而以纳米纤维素为骨架随后浸渍树脂,可制备出透明木材,兼具高透光和高雾度特性且力学性能优异。进一步在树脂中添加不同纳米粒子,还能使之具有发光性、磁性等功能化特性。透明木材在新一代环保建筑、光学器件等方面具有潜在的应用价值,是当前改性木材领域的研究热点。笔者综述了目前制备透明木材的有效方法,通过木质纳米纤维素骨架的制备、折射指数匹配的树脂浸渍、树脂的固化等工艺过程,达到高透光率和高雾度的实现。并对制备透明木材的现有方法进行了归纳和分析,为寻求快速、便捷、可工业化生产的制备方法提供新的研究思路,并为实现透明木材的工业化制造提供理论基础。同时,对透明木材应用前景进行了论述,系统介绍了其在节能建筑、光电子器件及家居材料方面的应用前景展望。最后,对未来透明木材的发展趋势进行了初步描述。  相似文献   

12.
为了应对全球日益严重的环境污染和资源短缺,近年来,可再生、环境友好的生物质材料受到越来越多的关注。纤维素是地球上产量最大的生物质,在自然界中分布广泛且含量丰富,具有资源优势的同时还具有可生物降解、无毒等优点。纳米纤维素是一种可通过物理、化学或生物方法从原纤维中分离出的直径为纳米级的纤维素材料,其优异的力学、光学和热稳定性使其在电子器件领域具有广阔的应用前景。纳米纤维素结构的基本属性对其在新兴应用设计和产品制造上至关重要。因此,笔者在介绍纳米纤维素不同维度结构的基础上,对纳米纤维素基导电材料制备过程中的改性和炭化处理研究进展,以及其在电子、储能器件领域所取得的应用研究进展进行了综合评述,并对其在应用过程中存在的问题进行了分析。最后,就纳米纤维素基导电材料未来应用研究的重点和方向阐述了自己的观点,认为应该在降低纳米纤维素材料的制备成本以提高纳米纤维素的生产效率,以及开发既能方便储存运输又不会导致纳米纤维素聚集的新方法等方面加强投入。  相似文献   

13.
纳米纤维素晶须的制备及应用的研究进展   总被引:14,自引:3,他引:11  
综述了以天然纤维素为原料制备纳米纤维素晶须,及对其进行表面改性的方法和纳米纤维素晶须应用于精细化工等领域中的研究现状和发展概况。主要介绍了纤维素水解工艺的研究、纳米纤维素晶须的制备方法及工艺、产品结构及性质的表征、纳米纤维素晶须的改性方法及其在精细化工产品、材料学等领域的应用现状。  相似文献   

14.
以纤维素纸为基底或电正性摩擦材料的摩擦纳米发电机在柔性电子器件具有潜在应用前景,然而纤维素纸基摩擦纳米发电机需要在高工作频率下才能获得良好的输出性能,限制了纤维素纸基摩擦纳米发电机的应用与发展。为提高纤维素的电正性摩擦性能,将银纳米颗粒原位负载于纤维素纤维表面,制备纳米银复合纸(Ag@paper),并以Ag@paper与聚四氟乙烯薄膜(PTFE)为摩擦材料构建纸基摩擦纳米发电机(P-TENG)。结果表明:P-TENG开路电压可达95 V,短路电流可达0.19μA。该P-TENG在长期工作过程中还能防止细菌生长,因而可用于开发新型可穿戴电子产品。  相似文献   

15.
纳米纤维素是从天然纤维素中提取的一种纳米级纤维素,它不仅具有纤维素的基本特征,还具有因纳米尺寸带来的大的比表面积和独特的强度以及光学性能,但纤维素中存在的游离羟基具有亲水性,使纳米纤维素材料在潮湿环境中的挺度下降,这限制了它的应用领域,因此,对纳米纤维素进行疏水改性可扩大其适用范围.本文综述了近年来对纳米纤维素进行疏水...  相似文献   

16.
天然木材制备的木材海绵可替代硅胶海绵、聚氨酯和三聚氰胺等合成高分子基海绵,作为高效吸油剂用于污水净化,并衍生出一系列运用。在去除木质素和半纤维素后,天然木质材料保留了原生的精巧三维分级孔隙结构,从木材直接转化为生物基纤维素骨架,具备高孔隙率、比表面积大、优异机械性能等特性的同时,还保留了木材生物相容性等特点。对木质纤维素骨架进一步改性后得到的木材海绵,在油水分离、能源存储、传感器、穿戴设备等领域具备一定的发展潜力。文中综述目前制备木材海绵的有效方法,包括精巧分级孔隙率的木质纤维素骨架制备和基于该木质纤维素骨架的各类功能性材料开发探索;针对木材海绵的高效制备和功能化,从基础物质、基本性能与工艺流程角度梳理近5年的相关工作,以启发该类先进材料的创制思路;同时,探讨木材海绵功能的先进性,并对其应用前景进行展望。  相似文献   

17.
纤维素纳米晶体(cellulose nanocrystals,CNCs)和纤维素纳米纤维(cellulose nanofibrils,CNFs)具有独特的理化性质,例如,比表面积高(100 m2/g)、机械性能优越(弹性模量130~150 GPa)、密度低(低至1.6 g/cm3)、膨胀系数小(低至0.1×10-6/K)、生物相容性好、表面多羟基结构容易进一步修饰等,且原料易得、可再生和生物降解,是理想的先进功能材料构建砌块,已被证明是具有良好应用前景的生物基纳米材料。近年来,纳米纤维素基水凝胶引起了大量的关注,并且其在生物医学领域的应用得到了广泛研究。笔者主要综述了CNCs和CNFs基水凝胶的制备及其在生物医学应用的研究进展。首先介绍了制备CNCs基水凝胶的物理交联法和化学交联法,以及CNFs与金属离子交联、CNFs与聚合物交联两种制备CNFs基水凝胶的方法;其次重点介绍了CNCs和CNFs基水凝胶在药物递送、创伤敷料和组织工程支架中的应用;最后总结了CNCs和CNFs基水凝胶在生物医学领域的应用前景和面临挑战,并指明了CNCs和CNFs基水凝胶在生物医学领域研究的发展方向。  相似文献   

18.
介绍了纳米纤维素的分类及性质,纳米纤维素分为纳米纤维素晶体(NCC)、微纤化纤维素(MFC)和细菌纳米纤维素(BNC)。NCC呈棒状晶须结构,结晶度高且具有高的力学性能;MFC呈纤丝状,具有宽的尺寸范围和更大的长径比,比表面积大,成氢键能力强;BNC呈超细网络状纤维结构,化学纯度和聚合度高,保水能力强。综述了纳米纤维素在纸基增强材料、纸基抗菌材料、纸基过滤材料、纸基导电材料、纸基发光材料、纸基绝缘材料、纸基疏水材料和纸基传感器材料领域的应用现状,并对其在纸基功能材料未来发展方向进行了展望。  相似文献   

19.
以水溶性的甲基纤维素和磁性Fe_3O_4纳米粒子为原料,经过共混、环氧氯丙烷交联及冷冻干燥等过程制备了磁性纤维素气凝胶,并进一步以十六烷基三甲氧基硅烷(HDTMS)为改性剂,通过化学气相沉积法对气凝胶进行改性,得到超疏水磁性纤维素气凝胶材料。采用扫描电镜(SEM)、红外光谱(FT-IR)和光学接触角测量仪对气凝胶的结构性能进行表征分析,结果表明所制备的气凝胶具有三维贯通的多孔网络结构,表面改性没有改变气凝胶的微观结构;经HDTMS修饰后的磁性纤维素气凝胶具有超疏水和超亲油性能(水接触角为150.4°,油接触角为0°)。气凝胶展现出良好的油/水选择性和较高的油吸附能力,对多种油品和有机溶剂的吸附量达到45~98 g/g;吸油后的气凝胶可通过磁铁快速回收。气凝胶具有可多次循环使用的性能,循环使用30次后吸附能力仍然保持在80%以上,可以通过简单的力学挤压把吸附的油挤出来,使得废油的回收利用过程变得简单,同时也有利于节约吸附材料,降低油水分离成本。  相似文献   

20.
纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号