首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Two series of laboratory bioassays were carried out in order to evaluate the effect of the simultaneous presence of two insect species inside the experimental vials and the effect of different sizes (50, 65, 90, 145 mm in diameter) of experimental vials on the efficacy of diatomaceous earth (DE) formulations as wheat (Triticum durum Desf.) protectants. Three DE formulations were tested; Insecto, SilicoSec and one DE enhanced with pyrethrum, PyriSec. In a third series of bioassays the influence of application technique of DE formulations in wheat and maize (Zea mays L.) on their insecticidal efficacy was also evaluated in the laboratory. Two DE formulations were tested; SilicoSec and Protect-It. The application technique was based on the duration of admixing (0.5 or 3 min) and surface treatment (without admixing) of DE formulations in grain. In all series of bioassays three species were tested; Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). Significant differences were noted in mortality levels of the tested species among the three DE formulations and among doses for the simultaneous presence of two insect species in all combinations and the different size of vials. In contrast, no significant differences were found in the mortality levels among the adult densities of any of the insects tested. The progeny production was low for all tested species. The increase of diameter of vials used in the bioassays decreased the mortality of S. oryzae and T. confusum adults significantly whereas no significant differences were noted for R. dominica adults. The increase of dose and exposure interval reduced differences of R. dominica adult mortality in admixture durations in the case of wheat. For S. oryzae, no significant differences in adult mortality in maize were found among admixture durations while significant differences were detected in wheat.  相似文献   

2.
Diatomaceous earth (DE) deposits from regions of central and southeastern Europe were evaluated for their insecticidal efficacy against Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) in comparison with the commercially available DE formulation SilicoSec. The effects of temperature, RH, grain commodity (wheat, barley, maize, rice), application method (spraying vs. dusting) were evaluated. FYROM, a DE from the Former Yugoslavian Republic of Macedonia, was the most effective of the DE deposits for grain treatment, whereas the least effective was from Greece (named Crete). However, for surface treatment, Slovenia was the most effective followed by Elassona 1 and Begora. Increase of temperature increased DE efficacy, while the reverse was noted with the increase of RH. Furthermore, the DEs were more effective in barley or wheat than in maize or rice. Neither the mined DEs nor SilicoSec were able to suppress progeny production of the tested species after previous exposure on the treated commodities. Generally, dust application of DEs was more efficacious than spraying against S. oryzae and T. confusum. However, spraying of wheat significantly reduced the bulk density (test weight) compared to dusting. For surface treatment, after 1 d of exposure, Slovenia was the most effective of the mined DEs followed by Elassona 1 and Begora, whereas after 6 d of exposure the mortality was almost complete (>99%) with all three DEs. More than 6 d of exposure were required for an effective control of T. confusum adults with the remainder of the mined DEs.  相似文献   

3.
The insecticidal and residual effect of spinosad on wheat, maize and barley grain was evaluated in the laboratory against adults of Sitophilus oryzae (F.) (Coleoptera: Curculionidae), Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae), Tribolium confusum (DuVal) (Coleoptera: Tenebrionidae), Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) as well as against larvae of T. confusum. Spinosad was applied as a solution to 2 kg lots of each commodity at three concentrations, 0.1, 0.5 and 1 ppm, and the treated grain quantities were kept at 25 °C and 65% RH. Samples were taken from each concentration-commodity combination at the day of storage and every 30 d for 6 consecutive months (6 bioassays). The test species were exposed for 14 d to the samples and mortality and reproduction were assessed over this exposure interval. With the exception of T. confusum, 1 ppm of spinosad was highly effective against the remainder of the tested species and provided protection for a period of storage at least 4 months. Although in general, spinosad performance was not very much affected by the grain type, efficacy on maize was less stable over the 6-month period of storage and declined sooner compared to the other commodities. Spinosad almost suppressed progeny production of R. dominica during the storage period, but did not suppress progeny of the other species, since progeny were recorded even 30 d post application especially with the lowest of the tested concentrations. The results of this study indicated that spinosad may provide suitable protection for 6 months against S. oryzae or R. dominica, but is not suitable for long-term protection against T. confusum or C. ferrugineus.  相似文献   

4.
Several pyrrole compounds exhibit insecticidal properties against a wide range of insect pest species. In the present work, the insecticidal effect of the two new pyrrole derivatives, ethyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3i) and isopropyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3k) were studied as stored-grain protectants (maize and barley) against two major stored-product insect species, the confused flour beetle, Tribolium confusum Jaquelin du Val (Coleoptera: Tenebrionidae) adults and larvae and the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae at three doses (0.1, 1 and 10 ppm) and five exposure intervals (1, 2, 7, 14 and 21d). All T. confusum adults were dead at all doses on barley treated with 3i after 21d of exposure, while for 3k mortality was >92%. Progeny production was very low (≤1 individual per vial) at all doses for both pyrrole derivatives. Mortality of T. confusum larvae was not complete with any dose of both pyrrole derivatives but it exceeded 96% with 3k at 10 ppm after 21d of exposure on maize. For barley, all exposed larvae were found dead at all doses of both pyrrole derivates after 7d of exposure. Mortality of E. kuehniella larvae was complete at 1 and 10 ppm of 3i and all doses of 3k at 7d of exposure. After 14d of exposure, all E. kuehniella larvae were dead at 0.1 ppm of 3i. The results of the present study indicate that the tested compounds have elevated insecticidal effect against both species tested on certain combinations of dose, exposure interval and type of commodity.  相似文献   

5.
We investigated the application of phosphine at low pressure for various exposure durations against major stored-product insects in a commercial dried fig processing facility in Central Greece. Trials were carried out inside a chamber, in which phosphine, in the form of aluminium phosphide pellets, was introduced with the use of a phosphine generator. The generator unit was also equipped with a vacuum pump to achieve low pressure inside the chamber. The chamber was filled with pallets with boxes containing figs. The insects tested were Tribolium confusum (all life stages), Ephestia elutella (eggs and larvae), Sitophilus oryzae (adults), Sitophilus granarius (adults), Rhyzopertha dominica (adults), Oryzaephilus surinamensis (adults) and Prostephanus truncatus (adults). Moreover, wheat grains containing immature stages of S. oryzae were also used. All insect-life stage combinations were exposed to phosphine at low pressure for 18, 48 and 72 h. In most cases, significant differences in mortality of insects treated with phosphine at low pressure compared to the control treatments were recorded. However, complete control (100%) was recorded only in the case of O. surinamensis adults and T. confusum larvae after exposure for 48 and 72 h, respectively. We conclude that the combined application of phosphine and low pressure at short exposure durations (up to 72 h) cannot provide sufficient control at least against the stored-product insect species and life stages tested in the present study.  相似文献   

6.
Mortality effects of low temperature exposure to −16 °C were investigated on larvae and adults of the grain beetles Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) and Trogoderma granarium (Everts) (Coleoptera: Dermestidae), in the laboratory. The main effects and interactions of exposure time (0.2, 0.5, 1, 2, 4, 8, 12, 24 and 48 h), developmental stage (larva and adult) and individual’s age (young and old) were examined. After 4 h of exposure 100% mortality has been achieved in most of the treatments. The only exceptions were that of old larvae of T. granarium and O. surinamensis, and adults of T. granarium which needed 48, 8, and 24 h, respectively. T. granarium was the most cold-hardy species irrespective of developmental stage, and age, followed in decreasing order by O. surinamensis and T. confusum. Younger adults were generally more susceptible to cold in the cases of O. surinamensis and T. confusum. On the contrary, older adults of T. granarium suffered higher mortality than younger ones. Larvae of T. granarium were generally more cold-tolerant than adults but the opposite pattern was observed in O. surinamensis and T. confusum. Main effects of exposure time, developmental stage and individual’s age on mortality proved to be significant for all species, with the exception of T. granarium where the effect of developmental stage proved to be insignificant. Lethal time values were estimated via probit analysis. Values of LT50 ranged between 0.7 and 1.0 h for T. confusum, 0.7-1.9 h for O. surinamensis and 1.2-3.4 h for T. granarium. Our results are discussed with findings from relevant studies and the possibility of including extreme cooling to IPM programs against stored product pests is investigated.  相似文献   

7.
Rotation of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) is the prevailing double-cropping system in the North China Plain. Typically, winter wheat is planted at the beginning of October and harvested during early June. Maize is planted immediately after wheat and harvested around 25th of September. The growing season of maize is limited to about 100–110 days. How to rectify the sowing date of winter wheat and the harvest time of summer maize are two factors to achieve higher grain yield of the two crops. Three-year field experiments were carried out to compare the grain yield, evapotranspiration (ET), water use efficiency (WUE) and economic return under six combinations of the harvest time of summer maize and sowing date of winter wheat from 2002 to 2005. Yield of winter wheat was similar for treatments of sowing before 10th of October. Afterwards, yield of winter wheat was significantly reduced (P < 0.05) by 0.5% each day delayed in sowing. The kernel weight of maize was significantly increased (P < 0.05) by about 0.6% each day delayed from harvest before 5th of October. After 10th of October, kernel weight of maize was not significantly increased with the delay in harvest because of the lower temperature. The kernel weight of maize with thermal time was in a quadratic relationship. Total seasonal ET of winter wheat was reduced by 2.5 mm/day delayed in sowing and ET of maize was averagely increased by 2.0 mm/day delayed in harvest. The net income, benefit–cost and net profit per millimetre of water used of harvest maize at the beginning of October and sowing winter wheat around 10th of October were greater compared with other treatments. Then the common practice of harvest maize and sowing winter wheat in the region could be delayed by 5 days correspondingly.  相似文献   

8.
The parasitic weed Striga hermonthica is a major constraint to maize production in sub-Saharan Africa and causes serious food insecurity. We discovered serendipitously an effective control method for the weed that involves intercropping cereals with the fodder legume, silverleaf desmodium, Desmodium uncinatum (Jacq.) DC., through mechanisms that involve soil shading and nitrogen fixation. In the current study we investigated long-term effects of inorganic nitrogen (N), mulching and D. uncinatum, singly and in combinations, on S. hermonthica infestation, maize plant growth and grain yields. Treatments comprised sole maize with and without 120 kg N/ha; sole maize plots covered with maize straw (i.e. mulching), with and without N; and maize–D. uncinatum intercrop, with and without N. Intercropping maize with D. uncinatum gave the most significant suppression of S. hermonthica, with addition of N only minimally enhancing its effect. Similarly, mulching significantly suppressed S. hermonthica, although to a much less extent. Application of N both to sole maize and mulched plots reduced seasonal S. hermonthica infestations but the effect was largely insignificant. The effect of D. uncinatum was again notable as it dramatically increased maize plant height and grain yields, with the addition of N only minimally improving both effects. Application of N and mulch, singly and in combination, to the sole maize crop generally enhanced plant height and grain yields, although to a less extent, with the effect of N on grain yields being statistically insignificant during most of the cropping seasons. These results confirm the efficacy of D. uncinatum in S. hermonthica suppression leading to better growth and yields of maize. The effects of N application, mulching and a combination of both treatments in S. hermonthica control in maize were also observed, although these effects were much weaker. The results and their implications are discussed in the context of smallholder cropping systems in the region.  相似文献   

9.
This study evaluated improved maize hybrids (Zea mays L.) with varying level of resistance to the maize weevil, Sitophilus zeamais Motschulsky, for yield and agronomic traits for two seasons. A total of 22 improved maize hybrids and three commercial standards were tested. Out of the 22 tested, two hybrids CKPH08035 (7.4–9.9 t ha−1) and CKPH08039 (7.3–9.8 t ha−1) significantly out yielded the commercial standards WH505 (8.8 t ha−1) and BH140 (5.5 t ha−1). In addition to yield, the improved hybrids also possess desirable traits including good plant height, good plant and ear aspects and good husk cover. The hybrid CKPH08004 had the lowest Dobie index of susceptibility and was regarded as resistant to S. zeamais. Weevils fed with the resistant hybrids produced low numbers of F1 generation weevils, had a high median developmental time and a low percentage of grain damage and grain weight loss. An increasing number of F1 generation resulted in an increasing grain damage and grain weight loss. We found an inverse relationship between the susceptibility index and percent mortality. However, the numbers of F1 generation, percent grain damage and grain weight loss were positively correlated with the susceptibility index. The use of resistant maize hybrids should be promoted in managing S. zeamais in stored maize under subsistence farming conditions in Africa.  相似文献   

10.
Spinetoram, imidacloprid, thiamethoxam and chlorantraniliprole are new insecticides with novel mode of actions, low mammalian toxicity and low impact to environment. In the present study, the efficacy of these insecticides was tested against Tribolium confusum Jacquelin du Val on concrete. Among the tested insecticides, spinetoram proved to be more effective, providing complete control of T. confusum adults and young larvae after 14 days of exposure. For the young larvae, thiamethoxam at the highest dose and chlorantraniliprole at both doses were equally effective with spinetoram. On the other hand, none of the tested insecticides were able to control T. confusum pupae. Moreover, none of the insecticides had ovicidal effect, with the exception of chlorantraniliprole in some combinations. From the mobile life stages, the most tolerant life stages were old larvae and the most susceptible young larvae. The presence of food (flour) moderated T. confusum mortality. From the results of the present study, we can conclude that spinetoram, thiamethoxam and chlorantraniliprole showed potential and need be further evaluated for surface treatments in stored product facilities. Our work underlined the need for good cleaning and sanitation procedures in warehouses and food processing facilities.  相似文献   

11.
Secondary plant compounds are recognised as important components of plant defence system against herbivores and pathogens. Five monoterpenoids, (R)-linalool, 1,8-cineole, (S)-2-heptyl acetate, (S)-2-heptanol and citral, which are natural components of the essential oils of Aframomum melegueta (K. Schum) and Zingiber officinale (Roscoe), were tested at the ratios in which they occur naturally for repellent activity against Tribolium castaneum (Herbst.) and Rhyzopertha dominica (F.) in a 4-way olfactometer. The results showed the repellent properties of the compounds as both beetles spent less time in the olfactometer arm containing the test stimuli. (R)-linalool and (S)-2-heptanol were stronger repellent compounds than the others. Linalool showed good repellent activity against T. castaneum (P = 0.001) as the insect spent 1.22 min in the test arm compared to the control arms (2.78 min), and R. dominica (P = 0.001) with 0.89 min in the test arm compared to 2.87 min in the control arms. With (S)-2-heptanol, T. castaneum spent 1.23 min in the test arm compared to 2.83 min in the control arms. R. dominica spent 1.61 min in the test arm and 2.69 min in the control arms. For the number of entries or visits made, while both insects were significantly repelled (P < 0.05) by the linalool-treated arm than the control, only R. dominica was repelled by the (S)-2-heptanol-treated arm (P = 0.038) compared to the control arms. The results indicate that A. melegueta and Z. officinale essential oils and their components could be suitable as safer repellents or fumigants against T. castaneum and R. dominica.  相似文献   

12.
The Cry1F protein from Bacillus thuringiensis Berliner expressed in event TC1507 maize (Zea mays L.) was one of the most effective ways to control Spodoptera frugiperda (J. E. Smith) in Brazil. After reports of reduced effectiveness of this Bt maize event in some areas of Brazil, research was undertaken to investigate if damage to Cry1F maize was caused by resistant S. frugiperda. Additional investigations were conducted to evaluate the genetic basis of the resistance and to test if Cry1F resistant S. frugiperda selected from populations of different regions of Brazil share the same resistance locus by using complementation tests. Neonate larvae of S. frugiperda collected from TC1507 maize fields with damage in Western Bahia region in 2011 were able to survive on Cry1F maize plants under laboratory conditions and subsequently produced normal adults. Survival of Cry1F-susceptible S. frugiperda on non-Bt maize was significantly higher in leaf than plant bioassays. Resistance ratio in diet overlay bioassays was >5000-fold. A discriminating concentration of 2000 ng cm−2 of Cry1F protein was defined for monitoring the frequency of resistance of S. frugiperda to Cry1F. Cry1F resistant S. frugiperda showed a recessive autosomal inheritance for alleles involved in resistance to Cry1F protein. In complementation tests, the resistant population from Western Bahia was crossed with the other seven resistant populations collected from different States of Brazil. F1 larvae from each cross had the same survival at discriminating concentration of 2000 ng cm−2 of Cry1F protein, indicating that the resistance alleles in each population were likely at the same locus. Therefore, implementation of resistance management strategies is urgent to prolong the lifetime of Cry1F for controlling S. frugiperda in Brazil.  相似文献   

13.
The present investigation was carried out to study the biological parameters and orientation of Sitophilus oryzae (L.) toward wheat cultivar HPW-236 and mixed grains of different cultivars (HPW-155, HPW-236, HPW-249, HPW-349, HPW-360, HS-490, and VL-892). The incubation period, larval period, pupal period, and total life cycle period of S. oryzae was longer when fed on mixed grains as compared to HPW-236. Also, the weevils were more oriented toward HPW-236 and lower germination rates were observed from HPW-236 than mixed cultivars when exposed to S. oryzae. We also evaluated quantitative losses caused by S. oryzae in different cultivars of wheat recommended in the northwestern Himalayas under free-choice conditions. The weevil inflicted greater damage and weight loss in grains of HPW-236 while it was negligible in the case of HPW-360 and HPW-249. HPW-236 which is the most cultivated variety of wheat in northwestern Himalayas proved to be highly susceptible to the weevil and provided a more suitable environment for weevil’s development. Therefore, this particular cultivar can be avoided for prolong storage and the farmers should prefer cultivars such as HPW-360 and HPW-249, which proved to be least affected the weevil.  相似文献   

14.
From a nutritional perspective, rice flour is one of the most valuable flours and it is suitable for preparing food for people suffering from wheat allergy. However, bread made from rice flour is very difficult to bake because it lacks gluten. We found that pre-fermenting of rice flour using Aspergillus oryzae facilitated a better formulation of gluten-free rice bread. Bread swelling was remarkably improved with a longer pre-fermenting period at 55 °C. The specific loaf volume (SLV) without polymeric thickeners after a 12 h fermentation was approximately 2.2-fold (2.98 ml/g) higher than that after 0 h (1.36 ml/g). An enzymatic assay of the batter indicated that protease activity during the pre-fermentation period increased from 0.38 to 1.44 U/ml and this activity correlated with bread swelling. Furthermore, a commercial protease from A. oryzae also produced similar results with an adequate SLV of 3.03 ml/g. Rheological analysis showed that batter treated with protease had an increased batter viscosity and decreased flour settling behavior because of the aggregation of flour particle after partial cleavage of storage proteins. These results indicated that the improved SLV was mainly because of an A. oryzae protease, which affected the batter rheology thereby improving gas retention before baking.  相似文献   

15.
The orange wheat blossom midge, S. mosellana (Gehin) (Diptera: Cecidomyiidae), a global pest of wheat (Tritium aestivum L.), has recently invaded Montana's Golden Triangle, an important wheat producing region. Unchecked, S. mosellana populations can quickly grow to damaging levels. In this study, we document the prevalence of S. mosellana and its main natural enemy, Macroglenes penetrans (Hymenoptera: Pteromalidae), in this newly invaded area of Montana, and compared the effects of irrigated versus dryland cropping systems on S. mosellana and its parasitoid. Different approaches to monitoring S. mosellana populations were examined, including pheromone traps for adults, collection of larvae from wheat heads, and overwinter sampling of soil to measure the levels of larvae and cocoons. Adults of the M. penetrans were surveyed through daily sweep net sampling. This study demonstrated that the emergence of M. penetrans was usually well synchronized with emergence of S. mosellana as the emergence of parasitoids occurred shortly after the pest with the highest peak (90%) at 26 June and 14 July, 2015, respectively. Irrespective of sampling techniques; pheromone traps or soil sampling, no significant difference was observed in population of S. mosellana between irrigated and dryland cropping systems. In contrary, cropping systems played a significant role in the abundance of parasitoids since the irrigated fields had significantly higher population of parasitoids (five times on an average) compared to dryland cropping system. The possible implications of these findings in monitoring of S. mosellane and the establishment of M. penetrans are discussed.  相似文献   

16.
The resistance to bismerthiazol in the Xanthomonas oryzae pv. oryzae population in China has not been clearly determined. Three bismerthiazol-resistant mutants (1-1-1, 2-1-1, 4-1-1) of X. oryzae pv. oryzae were induced on rice plants and the characteristics were compared with their parental strain ZJ173. After 10 subcultures on fresh bismerthiazol-free nutrient agar plates and after being inoculation onto and re-isolation from untreated rice plants two times, the mutants remained pathogenicity on rice plants treated with 300 μg/ml bismerthiazol, indicating that the in vivo-induced bismerthiazol resistance was stable in vivo. The in vitro characteristics of the bismerthiazol-resistant mutants and a wild-type bismerthiazol-sensitive strain (ZJ173) were also compared. The three mutants grew faster than ZJ173 during the logarithmic growth phase but at the same rate during the decline phase. Bismerthiazol had protective and curative activity against strain ZJ173 but not against the three mutants. To evaluate the current degree of bismerthiazol resistance in field populations of X. oryzae pv. oryzae in China, 781 isolates of X. oryzae pv. oryzae were obtained from 1419 leaf samples collected from Yunnan, Sichuan, Jiangsu, Anhui, Hubei, Guangdong, Hainan, and Hunan Provinces in China from 2007 to 2009. The in vivo sensitivity of 505 of the 781 isolates to bismerthiazol was determined by applying them to rice plants treated with 300 μg/ml bismerthiazol and evaluating blast severity. The tested strains were considered resistant, if they showed <70% inhibition relative to strain ZJ173. Of the 505 isolates, 62 were resistant to bismerthiazol. The resistance frequencies among field population ranged from 0 to 21.1%, differed among the provinces, and was 11.2, 20.0 and 10.4% in 2007, 2008 and 2009, respectively. Resistance determined in vivo was not related to resistance determined in vitro. The in vivo-induced bismerthiazol resistance identified in this study will serve as a base line for further studying bismerthiazol resistance in fields, and the current degree of bismerthiazol resistance in field populations of X. oryzae pv. oryzae in China determined would be useful for the rice growers for control of rice bacterial blight.  相似文献   

17.
《Field Crops Research》2001,71(3):173-181
While early-maturing crops benefit from intercropping, late-maturing crops usually suffer growth penalties during the intercropping phase. It is possible, however, that recovery or compensation of the late-maturing crops occurs after the harvest of the early-maturing crops. Three field experiments were conducted at Baiyun in 1997 and at Jingtan in 1997 and 1998 to test the hypothesis in wheat/maize and wheat/soybean intercropping. The biomass and nutrient accumulation in intercropped soybean were significantly smaller than in sole soybean before wheat harvest but thereafter increased sharply at Jingtan site in 1997. The rates of dry matter accumulation in the intercropped maize (10.0–20.1 g/m2 per day) were significantly lower than those in the sole maize (17.1–34.8 g/m2 per day) during the early stage from 7 May to 3 August, while mostly intercropped with wheat. After 3 August, however, the rates of intercropped maize, increasing to 58.9–69.9 g/m2 per day, was significantly greater than in sole maize (22.7–51.8 g/m2 per day) at Baiyun site in 1997 and nutrient acquisition showed the same trends as growth. At Jingtan site in 1998, the disadvantage of the border row of intercropped maize resulted from interspecific competition diminished after wheat harvest and disappeared at maize maturity. It was concluded that there was indeed recovery of growth after wheat harvesting in wheat/maize and wheat/soybean intercropping. However, the recovery was limited under N0P0 treatment. The interspecific competition, facilitation and recovery are together contributed to yield advantage of intercropping.  相似文献   

18.
《Field Crops Research》2005,94(1):33-42
Subtropical highlands of the world have been densely populated and intensively cropped. Agricultural sustainability problems resulting from soil erosion and fertility decline have arisen throughout this agro-ecological zone. This article considers practices that would sustain higher and stable yields for wheat and maize in such region. A long-term field experiment under rainfed conditions was started at El Batán, Mexico (2240 m a.s.l.; 19.31°N, 98.50°W; fine, mixed, thermic, Cumulic Haplustoll) in 1991. It included treatments varying in: (1) rotation (continuous maize (Zea mays) or wheat (Triticum aestivum) and the rotation of both); (2) tillage (conventional, zero and permanent beds); (3) crop residue management (full, partial or no retention). Small-scale maize and wheat farmers may expect yield improvements through zero tillage, appropriate rotations and retention of sufficient residues (average maize and wheat yield of 5285 and 5591 kg ha−1), compared to the common practices of heavy tillage before seeding, monocropping and crop residue removal (average maize and wheat yield of 3570 and 4414 kg ha−1). Leaving residue on the field is critical for zero tillage practices. However, it can take some time—roughly 5 years—before the benefits are evident. After that, zero tillage with residue retention resulted in higher and more stable yields than alternative management. Conventional tillage with or without residue incorporation resulted in intermediate yields. Zero tillage without residue drastically reduced yields, except in the case of continuous wheat which, although not high yielding, still performed better than the other treatments with zero tillage and residue removal. Zero tillage treatments with partial residue removal gave yields equivalent to treatments with full residue retention (average maize and wheat yield of 5868 and 5250 kg ha−1). There may be scope to remove part of the residues for fodder and still retain adequate amounts to provide the necessary ground cover. This could make the adoption of zero tillage more acceptable for the small-scale, subsistence farmer whose livelihood strategies include livestock as a key component. Raised-bed cultivation systems allow both dramatic reductions in tillage and opportunities to retain crop residues on the soil surface. Permanent bed treatments combined with rotation and residue retention yielded the same as the zero tillage treatments, with the advantage that more varied weeding and fertilizer application practices are possible. It is important small-scale farmers have access to, and are trained in the use of these technologies.  相似文献   

19.
In the present investigation, we studied resistance imparted by seed treatment with an endophytic strain of Achromobacter xylosoxidans, AUM54, against rice blast caused by Magnaporthe oryzae. In vitro studies showed that A. xylosoxidans AUM54 was able to inhibit mycelial growth of M. oryzae by 11% and was able to increase rice germination and seedling vigor index of rice by 31 and 114%, respectively. AUM54 also showed better survivability in the spermosphere and spermoplane and was able to move systemically through the roots and stem. Among the evaluated carriers, liquid formulation amended with 2% glycerol sustained the maximum bacterial population (7.4 log cfu ml−1) after six-months-storage at room temperature. Plants treated with A. xylosoxidans AUM54 followed by inoculation with M. oryzae showed a significant increase in the activities of defense related enzymes such as polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and chitinase. A. xylosoxidans AUM54 treatment was able to reduce blast disease incidence by 39% in treated rice plants. Additionally, inoculation with A. xylosoxidans AUM54 significantly enhanced the growth (3–13% plant height), and yield (11–31%) of inoculated rice plants under no-disease and disease conditions in the greenhouse experiments.  相似文献   

20.
HW02, a pyruvate dehydrogenase inhibitor, is a newly developed herbicide for broadleaf weed control in wheat, maize and turf in China. Greenhouse and field experiments were conducted to evaluate its efficacy against weeds and safety to winter wheat. In the greenhouse experiment, this herbicide had higher activities than 2,4-D against Descurainia sophia (L.) Schur., Amaranthus retroflexus L., Capsella bursa-pastoris (L.) Medic., and Malachium aquaticum (L.) Fries.. When it was applied at late tillering stage of winter wheat in spring, the herbicide provided weed biomass reduction of 98%–100% at the rates 225–525 g a.i. ha−1 and was safe to the crop at the rate of up to 900 g a.i. ha−1. These results showed HW02 could be an alternative herbicide for resistant weed management because its mode of action is different from herbicides presently used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号