首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinetoram, imidacloprid, thiamethoxam and chlorantraniliprole are new insecticides with novel mode of actions, low mammalian toxicity and low impact to environment. In the present study, the efficacy of these insecticides was tested against Tribolium confusum Jacquelin du Val on concrete. Among the tested insecticides, spinetoram proved to be more effective, providing complete control of T. confusum adults and young larvae after 14 days of exposure. For the young larvae, thiamethoxam at the highest dose and chlorantraniliprole at both doses were equally effective with spinetoram. On the other hand, none of the tested insecticides were able to control T. confusum pupae. Moreover, none of the insecticides had ovicidal effect, with the exception of chlorantraniliprole in some combinations. From the mobile life stages, the most tolerant life stages were old larvae and the most susceptible young larvae. The presence of food (flour) moderated T. confusum mortality. From the results of the present study, we can conclude that spinetoram, thiamethoxam and chlorantraniliprole showed potential and need be further evaluated for surface treatments in stored product facilities. Our work underlined the need for good cleaning and sanitation procedures in warehouses and food processing facilities.  相似文献   

2.
Lepidopteran insect pest management has relied heavily on synthetic chemical pesticides, but their efficiency is declining as a result of emerging insecticide resistance. Recently biopesticides have become the most promising products employed in pest management strategies. We investigated the sublethal effects of two bioinsecticides, spinosad and emamectin benzoate, on larval and pupal development, and reproductive activity including calling behaviour, pheromone production, fecundity and fertility of the cabbage moth, Mamestra brassicae. To assess sublethal effects, second instar larvae were fed with 0.005, 0.05, or 0.5 μg a.i. spinosad/g diet or 0.00005, 0.0005, or 0.005 μg a.i. emamectin benzoate/g diet. Both bioinsecticides significantly increased larval and pupal development time and negatively affected reproductive activity of M. brassicae. The calling activity of females decreased very significantly in the highest sublethal concentration of spinosad and in all treatments by emamectin benzoate. The results suggest that, both spinosad and emamectin benzoate are promising alternatives to conventional insecticides for the control of M. brassicae if successfully introduced into Integrated Pest Management (IPM) programs.  相似文献   

3.
The cotton bollworm Helicoverpa armigera (Hubner) is one of the most destructive pest insects in Iran and many other countries. In this study, lethal and sublethal effects of methoxyfenozide, and thiodicarb were evaluated against H. armigera larvae that fed on insecticide-treated artificial diet. The effects of methoxyfenozide and thiodicarb were assessed in 3rd instars. Methoxyfenozide and thiodicarb showed LC50 values of 4 and 639 mg a.i./ml, respectively, in H. armigera larvae. Sublethal effects on development, adult longevity, and reproduction were observed in H. armigera larvae that survived exposure to an LC30 of the insecticides. Larvae that were exposed to an LC30 concentration of methoxyfenozide exhibited lower pupal weight and increased larval and pupal developmental times compared with thiodicarb treated larvae or control larvae. Adults that were exposed as larvae to an LC30 concentration of methoxyfenozide or thiodicarb showed reduced fecundity (35% and 30%, respectively) compared to control adults. The tested insecticides significantly reduced adult longevity. The longevity of adult females that as larvae were treated with an LC30 concentration of methoxyfenozide or thiodicarb was reduced by 28% and 23%, respectively, in comparison to control females. We predict that the combination of lethal and sublethal effects of the insecticides, especially methoxyfenozide, will induce significant effects on field population dynamics of H. armigera.  相似文献   

4.
井上蛀果斑螟(Assara inouei Yamanaka)是云南石榴上的重要害虫。为系统评价乙基多杀菌素对井上蛀果斑螟的综合控制作用,研究了乙基多杀菌素对该虫卵和初孵幼虫的直接致死效应及对存活后续虫态生长发育的影响。结果表明,浸渍法处理井上蛀果斑螟不同日龄卵后,随着乙基多杀菌素浓度和卵日龄的增大,卵孵化率显著降低,幼虫的死亡率升高。饲喂法处理井上蛀果斑螟初孵幼虫后,幼虫死亡率随药剂浓度的增大和处理后时间的延长而升高,且低剂量乙基多杀菌素对存活幼虫及其后续虫态的生存产生显著影响。低剂量乙基多杀菌素可显著延长存活幼虫的发育历期、预蛹期和蛹期,显著降低其化蛹率、蛹质量、羽化率和单雌产卵量。乙基多杀菌素对井上蛀果斑螟卵和初孵幼虫具有良好的杀虫活性,同时低剂量下对该虫的生长发育亦有明显的抑制作用,可用于控制井上蛀果斑螟的种群发展。  相似文献   

5.
The present study was carried out to evaluate conventional insecticide resistance in populations of Spodoptera litura (Fab.) from seven different soybean-growing districts (Dharwad. Belgaum, Pune, Parbani, Adilabad, Hyderabad and Indore) of India. Experimental results revealed among the three chemical insecticides bioassayed, quinolphos 25 EC registered the highest LC50 value (29.7 mg a.i./L) followed by chlorpyrifos 20 EC (18.3 mg a.i./L) while the lowest LC50 value was found for lambda-cyhalothrin 5 EC (1.3 mg a.i./L) in a susceptible population of S. litura larvae. Evaluation of the seven different populations of S. litura from India showed that populations from Adilabad and Pune exhibited elevated LC50 values for chlorpyrifos [(1622.0 mg a.i./L) and (1137.0 mg a.i./L)], quinolphos [(1892.0 mg a.i./L) and (1744.0 mg a.i./L)] and lambda-cyhalothrin [(56.4 mg a.i./L) and (41.6 mg a.i./L)], respectively. Seven different S. litura populations collected varied in their resistance ratio (RR) for three conventional insecticides used in this study. For chlorpyrifos RR values ranged from 3 to 88 fold, for quinolphos RR values ranged from 3 to 63 fold and for lambda-cyhalothrin RR values ranged from 2 to 42 fold in the seven different S. litura populations compared to the susceptible population. Based on the raised LC50 values, the resistance is quite concerning for organophosphates (chlorpyrifos and quinolphos). The present study is a warning bell suggesting the cautious use of organophosphates and lambda-cyhalothrin in soybean.  相似文献   

6.
Several pyrrole compounds exhibit insecticidal properties against a wide range of insect pest species. In the present work, the insecticidal effect of the two new pyrrole derivatives, ethyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3i) and isopropyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3k) were studied as stored-grain protectants (maize and barley) against two major stored-product insect species, the confused flour beetle, Tribolium confusum Jaquelin du Val (Coleoptera: Tenebrionidae) adults and larvae and the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae at three doses (0.1, 1 and 10 ppm) and five exposure intervals (1, 2, 7, 14 and 21d). All T. confusum adults were dead at all doses on barley treated with 3i after 21d of exposure, while for 3k mortality was >92%. Progeny production was very low (≤1 individual per vial) at all doses for both pyrrole derivatives. Mortality of T. confusum larvae was not complete with any dose of both pyrrole derivatives but it exceeded 96% with 3k at 10 ppm after 21d of exposure on maize. For barley, all exposed larvae were found dead at all doses of both pyrrole derivates after 7d of exposure. Mortality of E. kuehniella larvae was complete at 1 and 10 ppm of 3i and all doses of 3k at 7d of exposure. After 14d of exposure, all E. kuehniella larvae were dead at 0.1 ppm of 3i. The results of the present study indicate that the tested compounds have elevated insecticidal effect against both species tested on certain combinations of dose, exposure interval and type of commodity.  相似文献   

7.
Field and laboratory experiments were conducted in the early and late rainy seasons in Thailand to evaluate the effect of pre-emergence application of herbicides and determine the herbicide residues on vegetable soybean (Glycine max L. Merrill cv. No. 75) production. No visible crop injury was observed after application of alachlor 469 g a.i./ha, clomazone 1080 g a.i./ha, metribuzin 525 g a.i./ha, pendimethalin 1031.25 g a.i./ha, tank-mixed clomazone 960 g a.i./ha + pendimethalin 928 g a.i./ha, or tank-mixed metribuzin 350 g a.i./ha + pendimethalin 928 g a.i./ha. However, acetochlor 1875 g a.i./ha, isoxaflutole 75 g a.i./ha, and oxadiazon 1000 g a.i./ha caused visible crop injury. Plant bioassay of herbicide residues in the soil after harvest showed no phytotoxic effect on baby corn (Zea mays Linn. cv. Suwan 3), cucumber (Cucumis sativus L. cv. Pijit 1), pak choi (Brassica chinensis Jusl. cv. Chinensis), and soybean (G. max L. Merrill cv. CM 60). Gas Chromatography-Mass Spectrometry (GC–MS) analysis showed no significant herbicide residues on crop yield (or MRLs < 0.01 ppm) for all herbicides used in this study. The application of metribuzin at 525 g a.i./ha was sufficient to provide satisfactory full-season control of several weed species and gave the highest crop yield. In addition, pendimethalin at 1031.25 g a.i./ha, and tank-mixed metribuzin at 350 g a.i./ha + pendimethalin at 928 g a.i./ha can provide a similar level of weed control as an alternative to reduce herbicide dosage thereby increasing food and environmental safety in vegetable soybean production.  相似文献   

8.
Native to the neotropics, the avocado seed moth Stenoma catenifer Walsingham (Lepidoptera: Elachistidae) is a specialist pest of the family Lauraceae and considered one of the most important pests of avocados worldwide. However, little is known regarding its spatial distribution within a single tree. Therefore, we designed a study to evaluate the effects of canopy height and aspect (i.e., side of the tree) on fruit infestation by S. catenifer larvae in avocados. The study was conducted in three commercial organic avocado orchards located in São Paulo, Brazil. At each orchard, 40 fruit from 30 random trees were sampled weekly from October 2017 through February 2018, evaluating the number of fruits infested by S. catenifer larvae at three tree heights (bottom, middle, and top). In addition, fruits on the ground were also sampled. We also evaluated the effect of the side of the tree where the fruits were collected, i.e., whether they were on the side facing the east (sunrise) or the west (sunset). Within the avocado canopy, the level of fruit infestation by S. catenifer larvae was significantly higher at the top of the trees than in the middle and bottom. Fruit on the ground had lower levels of infestation than those on the tree canopy. The level of fruit infestation was also higher on the side of avocado trees facing the east (sunrise). Understanding the within-tree distribution of S. catenifer will help to better target monitoring and control activities against this pest in avocados.  相似文献   

9.
The tomato leafminer, Tuta absoluta (Meyrick), is one of the most important pests of tomato worldwide. The use of chemicals is still the major tactic of control against this pest in Brazil, where spray overuse leads to resistance, frequently associated with control failures in the field. In this study, a survey of the susceptibility to indoxacarb, metaflumizone, chlorfenapyr, cartap, and abamectin aimed to determine the resistance status of T. absoluta populations. Also, the major enzyme systems associated with metabolic resistance were assessed to infer variability. The LC50 values varied among the populations for abamectin (0.54–3.38 mg a.i./L), cartap (93.1–589.8 mg a.i./L), chlorfenapyr (0.62–2.83 mg a.i./L), indoxacarb (0.86–2.89 mg a.i./L), and metaflumizone (0.35–7.44 mg a.i./L). Resistance ratios varied among populations being 6.2-, 6.4-, 4.6-, 3.3-, and 21.2-times for abamectin, cartap, chlorfenapyr, indoxacarb, and metaflumizone, respectively. Only the cartap confidence limits of the LC80 bracketed the recommended label concentration for three populations (Anápolis, Guaraciaba do Norte, and Tianguá), suggesting control failures. No cross-resistance was observed between indoxacarb and metaflumizone, and natural variation may explain the variability of response to this latter insecticide. The activity of enzymes frequently associated with metabolism of insecticides significantly differed among populations, and glutathione S-transferases and cytochrome P450-dependent monooxygenases were variable among the populations of T. absoluta, while alpha and beta-esterases were very homogeneous. T. absoluta resistance to abamectin and cartap has not been critical in Brazil despite their long use and together with chlorfenapyr appear to be an interesting option of rotation with indoxacarb, for which there is no cross-resistance to metaflumizone.  相似文献   

10.
Fifteen pesticides were tested in laboratory bioassays on Galendromus occidentalis (Nesbitt), the principal phytoseiid mite predator in Washington apple orchards. We developed a rating system for pesticides using lethal and sublethal effects, and applied the rating system to our results. At the 1× dose, only spinetoram and lambda-cyhalothrin caused >75% acute mortality of females. Carbaryl, azinphos methyl, spinosad, spirotetramat, cyantraniliprole, and sulfur had relatively little effect on mortality, but moderate to high effects on fecundity. Egg viability was most affected by carbaryl, spinosad, novaluron, spirotetramat, and sulfur. Lambda-cyhalothrin, spinosad, and sulfur were the most toxic compounds to larvae. Materials such as sulfur and spinetoram had widely divergent toxicity to adults versus larvae. The cumulative impact of these effects was best integrated by the numbers of live larvae of the F1 generation. Using this measurement, spirotetramat, sulfur, spinetoram, acetamiprid, lambda-cyhalothrin, carbaryl and novaluron caused the greatest percentage reduction compared to the check, yet only spinetoram and lambda-cyhalothrin would have been identified as harmful in acute bioassays. These bioassays provide support for the benefits of measuring a range of sublethal effects and testing multiple life stages to provide an accurate assessment of the harmfulness of reduced-risk pesticides.  相似文献   

11.
A field trial in 2003 and 2004 assessed the efficacy of a new formulation of glyphosate, Touchdown Forte HiTech (glyphosate-TF) and two older versions, Roundup (glyphosate-RP) and Touchdown (glyphosate-TD) for weed control in Nigeria. Treatments were glyphosate-TF at 0.25–1.25 kg a.i./ha, glyphosate-RP at 1.8 kg a.i./ha, and glyphosate-TD at 1.0 kg a.i./ha. Weeded and unweeded treatments were controls. Visual evaluations of weed control at 4 and 8 weeks after treatment (WAT) in both years indicated that glyphosate-TF at all doses gave moderate to complete control of all major weeds (50–100%). At 4 WAT, control of Ageratum conyzoides L., Commelina benghalensis L., Ipomoea involucrata P. Beauv., Brachiaria comota [Hochst ex A. Rich] stapf, and Acalypha ciliata Forssk was at a level similar to that in the weeded control. In 2003, all herbicide formulations and the weeded control reduced Imperata cylindrica (L.) Beauv. shoot dry biomass to the same level at 8 WAT (91–100%) and at maize harvest (83–88%). In 2004, 0.50–1.25 kg a.i./ha of glyphosate-TF and 1.8 kg a.i./ha of glyphosate-RP gave 95% reduction at 8 WAT and 97% at harvest, similar to the weeded control. Maize grain yield in the weeded control and herbicide treatments was 2.8 times higher than that in the unweeded control in both years. These results indicate that glyphosate-TF is effective for weed control in maize at herbicide doses lower than the older formulations.  相似文献   

12.
Oxathiapiprolin is a new fungicide active against oomycetes. In vitro assays and field studies were conducted to examine the effect of oxathiapiprolin on Phytophthora nicotianae (Pn), the causal agent of black shank. The efficacy of oxathiapiprolin on mycelial growth, sporangia production, zoospore motility, and zoospore germination was assessed with four Pn isolates. EC50 values were low ranging from 0.0039 to 0.0049 μg a.i./mL for mycelial growth, 0.00052–0.00081 μg a.i./mL for sporangia production, 0.0035–0.0051 μg a.i./mL for encysted zoospore germination, and 0.0055–0.0166 μg a.i./mL for zoospore motility. Sixty six Pn isolates, 60 from tobacco and six from ornamental plants were examined for sensitivity to oxathiapiprolin at 1 μg a.i./mL. Mycelial growth at 1 μg a.i./mL was observed in only one isolate from tobacco whereas the six Pn isolates from ornamental plants five of which were resistant to mefenoxam at 100 μg a.i./mL, were found to be sensitive to oxathiapiprolin. The efficacy of oxathiapiprolin against black shank was assessed in three field studies in North Carolina. Treatments of oxathiapiprolin were equal or superior to mefenoxam against black shank in each field study. Our results suggest that oxathiapiprolin is a highly efficacious fungicide against P. nicotianae, and will be a useful tool in controlling black shank of tobacco.  相似文献   

13.
Chemical control with insecticides, typically applied as foliar sprays or chemigation, is the primary tactic used to manage Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae). We evaluated the efficacy of 14 insecticides, including both systemic and non-systemic insecticides, against B. hilaris applied as a seedling tray drench. Experiments were conducted in both greenhouse and field settings. In all experiments, we used the maximum label rate of insecticides and calculated dose per seedling based on this rate and standard plant density per hectare. Each seedling in the tray received 2-mL insecticide solution, and the seedlings were then exposed to B. hilaris adults after transplanting in cages for greenhouse experiments or natural B. hilaris populations in the field experiments. A scale system (0–4) was used to evaluate the severity of B. hilaris feeding injury on leaves where 0 = no injury and 4 = >75% of the leaf margins with B. hilaris feeding injury. We evaluated damage using the rating system, percentage of damaged leaves, number of feeding injury sites, as well as plant height, leaf width, and fresh and dry weight. In the greenhouse experiment, percentage of injured leaves, number of injury sites, and damage rating were significantly lower for transplants treated with acetamiprid, clothianidin, dinotefuran, imidacloprid, and thiamethoxam, and cyclaniliprole compared with the untreated. There was a relationship between feeding injury sites and plant height, leaf width, fresh and dry weight (R2 > 0.5) in both 2015 field experiments. Similarly, the transplants treated with acetamiprid, clothianidin, dinotefuran, imidacloprid, thiamethoxam, thiamethoxam + chlorantraniliprole, imidacloprid + β-cyfluthrin and cyclaniliprole had significantly lower damage ratings than those treated with chlorpyrifos, bifenthrin, tolfenpyrad, flonicamid, cyantraniliprole, spinetoram and the untreated control. For transplanted broccoli, treatment of transplant plugs with neonicotinoid insecticides prior to planting can be an effective method for controlling B. hilaris.  相似文献   

14.
Blueberry spanworm (Itame argillacearia Packard) is a key insect defoliator of wild blueberry, an important crop in north-eastern North America. We evaluated the susceptibility of blueberry spanworm to several reduced-risk insecticides in laboratory and field experiments. Two populations from two Canadian provinces were studied in the laboratory. Both were highly susceptible to flubendiamide, spinetoram and deltamethrin, although there were inter-population differences, and flubendiamide was slower acting. Flubendiamide, spinosad, spinetoram, and methoxyfenozide demonstrated good suppression of economically damaging populations of blueberry spanworm larvae in the field.  相似文献   

15.
Transgenic of Indian potato cultivar Kufri Badshah expressing synthetic, modified cry1Ab gene were developed against potato tuber moth (Phthorimaea opercullela Z.) a destructive pest. The cry1Ab gene was in spatial and temporal expression under the control of tuber-specific GBSSi promoter. The transformation vector pBinCG1 was developed harbouring transgene expression cassette comprising cry1Ab gene under the control of potato GBSSi promoter, castor bean catalase intron (5′UTR) and OCS termination signals. Selected kanamycin-resistant putative transformed potato lines were evaluated by positive PCR amplification of 713 bp, 1206 bp and 700 bp with npt II, GBSSi promoter and cry1Ab gene specific primers, respectively. Gene integration in transformed potato plants was elucidated through Southern hybridization and in planta transgene expression analysis. Transgene expression was highest in stolons, followed by tubers matured leaves and young leaves. Insect bioassay of stored transgenic tubers resulted in significant retardation and mortality in neonate tuber moth larvae. RT-PCR and northern hybridization confirmed stable expression in stored tubers. These transgenic lines; thus can represent an effective resistance management strategy which can significantly reduce the selection pressure on target and non-target insect pests to a threshold level.  相似文献   

16.
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is the main target pest of transgenic maize expressing insecticidal proteins from Bacillus thuringiensis Berliner (Bt) in Brazil. To optimize resistance management strategies, we evaluated the functional dominance of different aged larvae of Bt-resistant FAW on Vip3Aa20 maize. We measured the survival and development of Vip3Aa20-resistant, -heterozygote, and -susceptible strains on MIR162 (expressing Vip3Aa20) and Bt11 × MIR162 × GA21 (expressing Vip3Aa20 and Cry1Ab) maize. The resistant strain, from neonate to sixth instar, showed more than 72% survival on Vip3Aa20 maize. From surviving larvae, more than 64 and 54% developed to pupae and adults, respectively. In contrast, heterozygote and susceptible strains showed no larval survival up to fourth instar, and less than 25% larval survival in the fifth and sixth instar on Vip3Aa20 maize. These larvae produced less than 21% of pupae and adults. The development time of FAW strains from neonate-to-adult exposed to Vip3Aa20 maize was similar; however, the resistant strain showed an increase of ∼ 2 d when compared to those fed only non-Bt maize. In summary, the resistance of S. frugiperda to Vip3Aa20 maize is functionally recessive from neonate up to fourth instar larvae. However, high larval survival of resistant strain and some survival of heterozygote larvae in advanced instars on Vip3Aa20 maize were observed. These results will be important for designing insect resistance management to Bt maize plants expressing Vip3Aa20 protein in Brazil.  相似文献   

17.
Proof of concept was demonstrated for a practical, off-the-shelf bioassay to monitor for tobacco budworm resistance to pyramided Bt cotton using plant filtrates. The bioassay was based on a previously described feeding disruption test using hydrateable artificial diet containing a blue indicator dye, a diagnostic dose of insecticide and novel assay architecture. Using neonate larvae from a Bt-susceptible, laboratory reared tobacco budworm strain, a diagnostic dose for Bollgard II and WideStrike cotton was obtained that limited neonate blue fecal production to 0-2 pellets in 24 h (Bt-resistant larvae produced >2 fecal pellets). The bioassay was tested with three different field populations of tobacco budworm collected from tobacco in central North Carolina (USA) and shown to accurately diagnose susceptibility to Bt. The diagnostic doses were also successfully evaluated with two Bt-resistant, laboratory reared tobacco budworm strains. Shelf life studies showed the assay could be stored for at least 6 months at room temperature (longer storage times were not studied). The application of the bioassay as an easy to use monitoring tool is discussed.  相似文献   

18.
The beneficial parasitoid Asecodes hispinarum Bouček plays an important role in integrated pest management (IPM) of the coconut leaf beetle, Brontispa longissima (Gestro), in China. A. hispinarum females parasitize 3rd to 4th instars B. longissima larvae. Hatched parasitoid larvae develop within the host, and parasitoid adults emerge through holes that they chew through the cuticle of the host. Although chemicals serve as the main short term control agents, the compatibility of biological and chemical control has never been investigated for this system. This study examined the responses of immature and adult B. longissima and its larval parasitoid A. hispinarum to avermectin and acetamiprid. Avermectin caused complete mortality of 2nd to 4th instar larvae, and of adults of B. longissima at 10, 15 and 2 d after treatment, respectively. However, 26.7% of the 2nd instar larvae, 55.3% of the 4th instar larvae, and 74%, of adult B. longissima were still alive 40 d after acetamiprid application. Following avermectin exposure, 17.5%, 9.2% and 23% of mummified B. longissima larvae contained viable adult parasitoids for the parasitoid egg, larva and pupa treatments, respectively, and the numbers of dead parasitoids per mummy were 3.3, 7.2 and 13.3 for the egg, larva and adult treatments, respectively. However, for acetamiprid treatment, 70–75.9% of mummified B. longissima larvae contained viable adult parasitoids in all three stage treatments, and the number of dead parasitoids per mummy was 2.8, 2 and 3.4 in egg, larva and adult treatments, respectively. This study showed that a sublethal dose of avermectin is more toxic than acetamiprid to B. longissima and A. hispinarum. Therefore, direct contact of the parasitoid with avermectin should be avoided when this insecticide is used to control B. longissima.  相似文献   

19.
Herbicides applied to combat weeds and increase crop yields may also have undesired effects on beneficial soil microorganisms. Field studies were conducted in 2005 and 2006 in Zaria, Nigeria, to evaluate the response of weeds and soil microorganisms to imazaquin applied at 0.05, 0.10, 0.20 and 0.40 kg a.i./ha and pendimethalin applied at 1.0, 2.0, 4.0, and 8.0 kg a.i./ha in cowpea and soybean. Hoe-weeded and unweeded (no herbicide) plots were controls. Both herbicides significantly reduced weed biomass in both crops, when compared to the unweeded control, which had the highest weed biomass at all sampling dates. Treatments with 0.40 kg a.i./ha of imazaquin, 2.0 and 4.0 kg a.i./ha of pendimethalin, and the hoe-weeded control, had the highest cowpea grain yield. The unweeded control had the lowest grain yield which was comparable to that in all other herbicide treatments. All treatments except 4.0 and 8.0 kg a.i./ha of pendimethalin had higher soybean grain yield than the unweeded control. Soybean yield was lowest in the unweeded control, and treatments that received 4.0 and 8.0 kg a.i./ha of pendimethalin. All rates of imazaquin gave similar soybean grain yields that were 29–41% higher than that from pendimethalin. The hoe-weeded control had the highest yield, which was 79% more than that in the unweeded control. Higher rates of imazaquin and pendimethalin reduced nodulation, nitrogen fixation, and vesicular arbuscular mycorrhizal (VAM) fungi colonisation in both crops. VAM fungi species diversity and species richness in cowpea rhizosphere soil and species diversity in soybean rhizosphere soil were reduced relative to the controls due to application of both herbicides with the rates of 0.10, 0.20, and 0.40 kg a.i./ha of imazaquin and 8.0 kg a.i./ha of pendimethalin being significantly effective.  相似文献   

20.
An ATV-mounted mechanical applicator was designed to treat vineyards with SPLAT-GBM™ for mating disruption of grape berry moth, Paralobesia viteana (Lepidoptera: Tortricidae). SPLAT-GBM was applied to vineyards in 0.8 g drops at a density of 1544 or 3089 drops per hectare for a total of 1.3 or 2.5 kg per hectare. Trials were conducted in 2008 and 2009 in vineyards receiving grower-standard insecticide sprays for control of grape berry moth and other insect pests. In the first trial, SPLAT-GBM applied twice at 1.3 or 2.5 kg/ha caused a significant reduction in grape berry moth infestation at harvest on clusters at the border of the vineyards where infestation is highest, compared with the no-pheromone control, but three applications at 2.5 kg/ha did not result in lower infestation compared with both the control and other treatments. In the second trial, application of SPLAT-GBM 2.5 kg/ha in mid-June and late-July caused a significant reduction in grape berry moth infestation at harvest on clusters at the border of the vineyards. Application in early-May and late-June resulted in infestation that was similar to the other program, but not statistically different from the control. In both trials, there were no significant differences between any of the treatments of SPLAT-GBM and the control inside the vineyards where infestation is low. Among treatments of SPLAT-GBM, infestation was similar regardless of number, rate, or timing of the applications. This study shows that mechanical application of wax matrix drops to release pheromone is an effective method for control of grape berry moth using mating disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号